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ABSTRACT

HEURISTICS FOR CONCOLIC SOFTWARE TESTING

Software testing is an essential part of the software development process. Con-

colic testing is an automated unit test generation technique which is a result of decades

of study on making the automated testing scalable. However, bottlenecks such as con-

straint solving still prevents concolic testers to be used in large projects. The constraint

solving bottleneck occurs due to the large number of branches on the execution paths

of a Unit Under Test (UUT).

In this thesis, we design a novel constraint solving strategy called Incremental

Partial Path Constraints (IPPC) on top of a standard concolic tester. Our strategy

makes more but smaller queries to the constraint solver, i.e. ignores some path con-

ditions. We implement IPPC on top of a known concolic testing framework, CREST.

We show that it is possible to reach the same branch coverage as the standard concolic

tester while decreasing the burden on the constraint solver. We support our claims

by testing several C programs using different strategies. Experimental results show

that our modification improves runtime performance of the standard concolic tester in

half of the experiments and results in more than 5x speedup when the UUT has many

infeasible paths. Ultimately, IPPC eliminates the need for solving large constraints

while automatically generating unit tests.
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ÖZET

KONKOLİK YAZILIM TESTİ İÇİN SEZGİSEL

YÖNTEMLER

Yazılım testi, yazılım geliştirme sürecinin ayrılmaz bir parçasıdır. Konkolik

test üzerinde sistematik testin daha büyük yazılımlara uygulanabilmesi amacıyla on

yıllarca süren çalışmaların sonucu geliştirilmiş bir birim test yaratma tekniğidir. An-

cak kısıt çözümü gibi darboğazlar konkolik testçilerin büyük projelerde kullanılmasına

engel teşkil etmektedir. Kısıt çözümündeki darboğaz Test Altındaki Birim’in icra yol-

larındaki yüksek sayıda dallanmadan ileri gelmektedir.

Bu tezde, Artımlı Kısmi Yol Kısıtları adını verdiğimiz ve standard konkolik testçi

üzerine geliştirdiğimiz özgün bir kısıt çözüm stratejisi önermekteyiz. Önerdiğimiz

değişiklik bazı yol koşullarını gözardı ederek kısıt çözücüye çok sayıda ama küçük

sorgular göndermektedir. IPPC algoritmasını iyi bilinen bir konkolik test sistemi olan

CREST üzerinde geliştirdik. IPPC üzerine olan çalışmamızda kısıt çözücü üzerindeki

yükü azaltırken aynı dallanma kapsamasına ulaşılabileceğini göstermekteyiz. İddiaları-

mızı farklı stratejileri çeşitli C programları üzerinde test ederek desteklemekteyiz.

Deneysel sonuçlar yaptığımız değişikliğin standard konkolik testçinin işleyiş süre per-

formansını deneylerin yarısında artırdığımızı ve eğer test altındaki birim fazla imkansız

yol içeriyorsa 5 kattan daha fazla hızlanma sağladığını göstermektedir. Yaptığımız

çalışma otomatik birim test yaratımı için büyük kısıtların çözülmesine olan ihtiyacı

ortadan kaldırdığımızı göstermektedir.
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1. INTRODUCTION

In this chapter, we describe the motivating factors behind our work, present a

summary of our contributions and give an outline of this thesis.

1.1. Motivation

Testing is a crucial part of software development. A study conducted by National

Institute of Standards and Technology (NIST) in 2002 reports that software bugs cost

the U.S. economy $59.5 billion annually [1]. The potential of early detection of bugs

and avoiding this cost naturally drives many researches to investigate different testing

techniques.

Testing can be done in several levels, defined solely by the test target. These levels

are unit testing, integration testing, and system testing [2]. Unit testing, also known

as component testing, refers to tests that verify the functionality of a specific section of

code, usually at the function level. In an object-oriented environment, this is usually at

the class level, and the minimal unit tests include the constructors and destructors [3].

Unit testing not just discovers localized defects, but also allows programmers to verify

later changes, such as refactoring, do not cause existing code to break. Therefore, unit

testing is an important aspect of regression testing for a software product. Although

unit testing has been the best practice for years, its adoption in industry is poor. While

a few companies have successfully instituted unit testing, such as Microsoft (where 79%

of developers are dedicated to writing unit tests [4]), the majority of software developed

in industry have either few, outdated, or low quality unit tests, due to the high cost of

creating and maintaining the test suite [5].

Testing with manually generated inputs is the predominant technique in industry

to ensure software quality. This type of testing accounts for up to 80% of the typical
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cost of software development, but manual test generation is expensive, error-prone,

and rarely exhaustive. Thus, several techniques have been proposed to automatically

generate test inputs [6].

Automated unit testing dates back to 1975 [7], along with other following works

[8–10]. These approaches exploit a technique known as symbolic execution. Symbolic

execution (also symbolic evaluation) is a means of analyzing a program to determine

what inputs cause each part of a program to execute. An interpreter follows the

program, assuming symbolic values for inputs rather than obtaining actual inputs as

normal execution of the program would, a case of abstract interpretation. It thus arrives

at expressions in terms of those symbols for expressions and variables in the program,

and constraints in terms of those symbols for the possible outcomes of each conditional

branch. Symbolic execution is used in conjunction with an automated theorem prover

or constraint solver based on constraint logic programming to generate new concrete

inputs (test cases) with the aim of maximizing code coverage. The theorem provers of

that date were not sufficent to accomplish such a task, so the research on the subject

has become popular only after the development of strong constraint solvers such as

Z3 [11] and Yices [12].

Although symbolic execution is effective at generating high coverage tests, it still

is not scalable enough to apply in industry. Therefore, concolic testing has been pro-

posed [13]. Concolic testing is an abbreviation for concrete and symbolic execution.

Concrete execution can be defined as executing the Unit Under Test (UUT) with con-

crete inputs. Concolic testing needs only the program code to execute and it combines

symbolic and random testing to overcome shortcomings of both.

Concolic testing can generate effective test cases, which has been evaluated in

previous studies [6, 13–15]. These studies were conducted on small programs, most

of which were libraries or utility functions. The software under test may not contain

the limitations that large industrial software does. Popular concolic testers such as
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CREST [6] is unable to test large systems within a few days [5].

The bottleneck of concolic testing comes from three sources. These are path

explosion, path divergence, and constraint solving [16]. Most of the research focuses

on the path explosion and the path divergence [17–22]. Instead, our aim in this thesis

is to develop methods that improve concolic testing by reducing the constraint solving

overhead.

At this point, we describe in what way the automated unit test generation tech-

niques interact with constraint solvers. Automated unit test generator considers the

Unit Under Test (UUT) as a system with inputs. The input space is divided into

equivalence classes where each equivalence class represents a unique execution path in

the UUT. Both concolic and symbolic testing aims to test all execution paths via gen-

erating one test input for each equivalence class. To be able to generate the test inputs,

the tester collects information on the execution paths by analyzing the program. The

information of each execution path is represented as a path constraint, a conjunction of

conditions on inputs. At this point, a constraint solver is used to generate inputs that

satisfy each path constraint. This way, the automated unit test generator guarantees

that the generated test inputs take each execution path of the UUT at least once.

Constraint solving is a serious bottleneck [16]. For small to moderate sized pro-

grams, we demonstrate that the cost of constraint solving dominates the cost of ex-

ecuting the UUT. We know that constraint solvers are exponential time algorithms

that depend on the number of inputs and the number of conditions. For large path

constraints (i.e. long execution paths), we demonstrate that there can be thousands of

conditions to solve at once.

We propose a solution to the constraint solving bottleneck, called Incremental

Partial Path Constraints (IPPC). A standard concolic tester instruments the unit under

test (UUT) to collect operations that either affect or depend on symbolic variables
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during a concrete execution. This sequence of operations is called an execution trace.

A concolic tester symbolically reexecutes the execution trace to generate path conditions

that solely depend on the symbolic variables. Then, the concolic tester negates the last

path condition that is not negated before. At the final step, constraint solver is called

only once with all path conditions to generate a new input vector. As noted in [23],

solving more but smaller constraints against one large constraint (i.e. a constraint

that contains large number of path conditions) is more efficient. Towards this goal,

we use an heuristic which selects only a part of the path conditions at the input

generation step of a standard concolic tester such that we call the constraint solver

multiple times, but using only a few path conditions at each invocation. Conjunction

of these selected path conditions are called Partial Path Constraint (PPC). To the best

of our knowledge, usage of Partial Path Constraints (PPC) is a novel approach in CBT

domain. Our experiments show that we can generate inputs that fall into the same

equivalence class (i.e. inputs that force the program into generating the same execution

trace) using fewer path conditions than a standard concolic tester. Although we pay the

cost of more constraint solver calls on average, we show that our modification results

in more than 5x speedup when UUT has many infeasible paths and 3.35x speedup on

the average.

1.2. Contributions

In this thesis, we provide the following contributions,

• We propose an input generation strategy based on partial path constraints, called

IPPC and incorporate our strategy into a standard concolic testing algorithm.

• We implement our modification using the CREST tool [6], which is a concolic

testing framework for C.

• We perform several experiments to demonstrate the effectiveness of IPPC on

several benchmarks.
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1.3. Outline

We give a background on automated unit test generation and a detailed back-

ground on CBT approaches in Chapter 2. We present the related work for concolic

testing, constraint solving, and incremental solving strategies in Chapter 3. We de-

scribe our strategy in detail with examples, algorithms, and proofs in Chapter 4. We

present and discuss our experimental results in Chapter 5. We describe conclude with

discussion on validity, future work, and our contributions in total in Chapter 6.
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2. BACKGROUND

In this chapter, we describe and categorize various automated unit test generation

methods. We categorize all testing methods which depend on a constraint solver as

Constraint-Based Testing (CBT). We describe both symbolic execution and concolic

testing with algorithms and examples. We explain how constraint solving continues to

be a bottleneck through examples.

2.1. Automated Unit Test Generation

A unit is defined as the smallest testable part of a computer program. When

subjected to testing, the unit is called Unit Under Test (UUT). In procedural pro-

gramming, UUT could be an entire module, but more commonly it is an individual

function or a procedure. In object-oriented programming, UUT is sometimes an entire

interface or a class, but often it is an individual method. Unit testing is done in an

isolated and controlled environment. Anything other than the UUT is assumed to work

correctly during testing.

Today, automated unit test generation is more common as it is implemented for

popular languages such as Java and C. Some programming languages such as Ruby [24]

comes with a built-in automated unit test generator whereas there exist unit testing

frameworks for other languages such as JUnit for Java [25] and XUnit for C# [26].

Automated unit test generation procedures can be viewed in two categories, black-

box and white-box (structural) testing. Black-box approaches treat the UUT as an

unknown system with inputs. Black-box approaches do not require the source code of

the UUT and are effective at identifying out-of-the-box errors. Black-box approaches

can be utilized to perform stress tests and are easy to setup. However, black-box

approaches may fail to find many bugs, or take a long time before finding bugs. We
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give a general categorization of automated unit test generation approaches in Figure

2.1. We discuss Symbolic Execution and Concolic Testing in Section 2.2.

Executing the UUT with random inputs is called Random Testing (RT) or Mon-

key Testing. Improved black-box testing such as Adaptive Random Testing (ART) is

also proposed [16, 27]. ART exploits a distance metric defined between inputs of the

UUT. If a group of randomly generated inputs does not hit a bug, ART generates new

inputs farther from the correctly executing inputs. ART can be viewed as sampling

from a non-uniform distribution of inputs.

Model-Based Testing (MBT) approaches still view the UUT as a black-box entity,

but acknowledge that the UUT has an internal state which changes as it processes

inputs [16]. Although MBT treats the UUT as a black-box, it requires some model of

the UUT be given or extracted such as a Finite State Machine (FSM). MBT generates

inputs from the model.

Fuzz Testing is also researched to generate close-to-valid inputs from an input

model which tend the find the deepest crashes. One of the early tools which employs

Fuzz Testing is crashme [28]. It is introduced in 1991 as a tool to test robustness of

Unix systems.

White-box unit testing views the UUT as a computer program with different

execution paths. The UUT executes one of its execution paths depending on the

input. White-box unit testing approaches fall into two main categories, Constraint-

Based Testing (CBT) and Search-Based Testing (SBT).

All testers which use a constraint solver to generate test inputs are called Cons-

traint-Based Testing (CBT) approaches. We make a detailed discussion of CBT in

Section 2.2.
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Automated Unit Test Generation

Black-Box Testing

Random Testing (RT)

Adaptive Random Testing (ART)

Model-Based Testing (MBT)

White-Box (Structural) Testing

Search-Based Testing (SBT)

Constraint-Based Testing (CBT)

Symbolic Execution

Concolic Testing

Figure 2.1. Categorization of Automated Unit Test Generation Approaches

SBT uses Genetic Algorithm (GA) to generate new inputs to cover as many

execution paths of the UUT as possible [16]. EvoSuite is a common Search-Based

Testing tool for Java [29]. SBT is proposed to avoid the usage of constraint solvers, thus

completely avoid the constraint solving bottleneck while achieving less coverage. Also,

SBT is not good at generating test inputs if the execution path contains conditions like

string equalities or regular expressions which require a constraint solver to satisfy [30].

2.2. Constraint-Based Testing

In this section, we give definitions to facilitate the understanding of Constraint-

Based Testing (CBT) and describe CBT using these definitions. We present two main

CBT techniques, Symbolic Execution and Concolic Testing in Sections 2.2.1 and 2.2.2,

respectively.

Definition 2.1. (Symbolic Variable). A symbolic variable is a program variable which

initially represents all values of its range.

Definition 2.2. (Execution Trace). An execution trace of a UUT is a sequence of

assignments and conditions on symbolic variables which is a result of one particular

execution of the UUT.
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Definition 2.3. (Symbolic Execution Tree). A symbolic execution tree of the UUT is

a binary tree of all execution traces of the UUT. Assignments of the execution traces

are denoted on the nodes and conditions are denoted on the edges of the tree.

Definition 2.4. (Execution Path). An execution path is a path on the symbolic

execution tree which starts from the root of the tree and ends at a leaf node.

Definition 2.5. (Bounded Symbolic Execution Tree). A bounded symbolic execution

tree of depth k is a subgraph of the symbolic execution tree which contains the root,

any node whose distance to the root is not greater than k, and all edges between these

nodes.

Definition 2.6. (Path Condition). A path condition is a function from the test inputs

of the UUT to {T, F}.

Definition 2.7. (Path Constraint). A path constraint is a conjunction of path condi-

tions.

In Constraint-Based Testing (CBT), the UUT is divided into several logical parts

and inputs are represented as symbolic variables. A path constraint is extracted for each

such part. Then, a constraint solver is used to generate one test input for each feasible

path constraint. Coverage of the resulting test suite depends on the partitioning of the

UUT. DeMillo et al. [31] coined the term CBT by doing mutation analysis, describing

the test cases using algebraic constraints and then solving the constraints using a

constraint solver.

Symbolic Execution and Concolic Testing view the UUT as a collection of execu-

tion paths and extract constraints for each execution path. Then, they generate one

input for each feasible path constraint to achieve path coverage.
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2.2.1. Symbolic Execution

Symbolic Execution (or symbolic evaluation) is a very old testing technique that

dates back to 1975. Due to the lack of powerful constraint solvers, Symbolic Execution

used to be considered neither scalable nor practical until recently.

Definition 2.8. (Full Path Constraint). A path constraint (π) is a full path constraint

of an execution path e if and only if all test inputs that satisfy π follow e and all test

inputs that does not satisfy π does not follow e.

In Symbolic Execution, inputs are denoted as symbolic variables. Initially, a

symbolic variable represents every value in the range of the input. Then, we extract

the bounded symbolic execution tree of the UUT by inspecting the code line by line.

If a statement does not involve any of the symbolic variables, that statement is either

a terminate statement or it is ignored. If a statement contains symbolic variables or

it is a terminate statement, we create a node in the tree for that statement. If the

statement is a terminate statement, the added node is a leaf and has no children. If

the statement is a branch condition statement, the added node has two children, one

when the branch condition evaluates to T and one for the branch condition evaluates

to F . If the statement is an assignment statement, the added node has only one child.

Symbolic execution trees generated during symbolic execution are in Single Static

Assignment (SSA) form, in which each variable is assigned exactly once. To be able to

achieve this, we split each symbolic variable x into versions x0, x1, etc., one subscripted

variable for each assignment. The advantage of SSA form is that it makes the generation

of symbolic execution trees simple (e.g. in Figure 2.4, the static single assignment on

the node L7 allows us to denote conditions on the subtree of L7 to be generated without

any calculations required).
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In Figure 2.2, we present an example UUT written in C. Let both inputs a and

b be symbolic variables. Since we use the SSA form, we start with a node where

i = 0, j = 0 and ai = a and bj = b. Then, we start the symbolic execution by executing

the first line, L0. L0 is a branch condition. We transform the condition a > 0 to it’s

SSA form as ai > 0. We create two children and connect ai > 0 to one and the negation

ai ≤ 0 to the other. Then we symbolically execute each children and continue. L1 is a

terminating statement and therefore is a leaf node on the tree. Then, we symbolically

execute L2, L3, L4, L8, and L5 as we previously explained in this example. L6 and L7

are assignment statements to the symbolic variables, so we increase the corresponding

subscript by 1 and pass the assignment to the new symbolic variable. We present the

generated bounded symbolic execution tree in Figure 2.4.

Definition 2.9. (Test Suite). A tests suite is a collection of test inputs.

From the symbolic execution tree, we extract the execution traces (each execution

path corresponds to an execution trace). Then, we convert these execution traces to

full path constraints. We use a constraint solver to generate test inputs for each full

path constraint. We form the test suite by taking all generated test inputs.

Converting execution traces into full path constraints is a straightforward pro-

cess. Execution traces are written in SSA form, which means they contain subscripted

variables. First, we write any subscripted variable xi in terms of x0. Then, we replace

any variable x0 with the original symbolic variable x. At last, we remove all statements

which equates the same expression to itself like x = x. For example, an execution trace

like [a0 > 5, a1 = 2a0, a1 6= 12] is first converted into [a0 > 5, 2a0 = 2a0, 2a0 6= 12].

Then, we remove the subscript as [a > 5, 2a = 2a, 2a 6= 12]. At last we remove the

second statement and get [a > 5, 2a 6= 12].

We generally bound the depth of the generated execution tree. This is because

there can be too many paths in the symbolic execution tree (execution tree where all
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int gcd ( int a , int b) {
i f ( a <= 0) { // L0

return ERROR; // L1

}

i f (b <= 0) { // L2

return ERROR; // L3

}

while ( a != b) { // L4

i f ( a > b) { // L5

a = a − b ; // L6

} else {
b = b − a ; // L7

}
}

return a ; // L8

}

Figure 2.2. Source Code for Greatest Common Divisor (GCD) Algorithm

leaves are terminal nodes), which is called the path explosion problem.

As a last note, we describe feasibility of a path constraint which is used in the

literature [32]. Infeasible path constraints correspond to the impossible executions of

the UUT (i.e. there are no such input that follows the corresponding execution path).

Definition 2.10. (Feasibility of a Path Constraint). A path constraint is feasible if

and only if the path constraint is satisfiable.
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2.2.1.1. Example. We present an example UUT in Figure 2.2 written in C. We also

present the Control-Flow Graph (CFG) of the UUT in Figure 2.3 to represent all

execution paths of the UUT in graph notation. Symbolic Execution can be viewed

as unwinding the CFG and generating a tree of possible execution traces using Static

Single Assignment (SSA) form. The tool we used, CREST, automatically generates

SSA form using the CIL instrumentation framework [33]. Since the while-loop would

cause a path explosion, we bound the tree to have a maximum depth of 6. We can

generate execution traces from the execution tree. We present the execution traces

in Table 2.1. For example, the execution trace [a > 0, b ≤ 0] is generated from the

path L0 → L2 → L3 from Figure 2.4. Each execution trace starts with i = 0, j =

0, ai = a, bj = b and ends with either a RETURN statement or a ’-’ denoting that a

return statement is not reached until the maximum depth. From the execution traces,

we generate path constraints as shown in Table 2.2. We call these path constraints

full path constraints since they contain all conditions on the execution path. Full

path constraints only depend on the input variables and can be given as input to a

Constraint Solver (CS). If the full path constraint (π) is feasible, CS(π) returns an

input that satisfy the path constraint. In this example, the test suite contains 7 test

inputs and covers all execution paths of length 6 or shorter (We can see that each test

input in Table 2.2 follows a unique path in the symbolic execution tree in 2.4).

Table 2.1. Execution Traces of GCD in SSA Form with length ≤ 6

# Execution Trace Return Value

1 a0 ≤ 0 ERROR

2 a0 > 0, b0 ≤ 0 ERROR

3 a0 > 0, b0 > 0, a0 = b0 a0

4 a0 > 0, b0 > 0, a0 6= b0, a0 > b0, a1 = a0 − b0, a1 = b0 a1

5 a0 > 0, b0 > 0, a0 6= b0, a0 > b0, a1 = a0 − b0, a1 6= b0 -

6 a0 > 0, b0 > 0, a0 6= b0, a0 ≤ b0, b1 = b0 − a0, a0 = b1 a0

7 a0 > 0, b0 > 0, a0 6= b0, a0 ≤ b0, b1 = b0 − a0, a0 6= b1 -
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L0

L1

ERROR

L2

L3

ERROR

L4

L6

a← a− b

L7

b← b− a

L5

L8

a

a ≤ 0

a > 0

b ≤ 0

b > 0

a = b

a 6= b

a > b

a ≤ b

Figure 2.3. Control-Flow Graph (CFG) of GCD

L0

L1L2

L3L4

L5L8

L6
ai+1 ← ai − bj

i← i+ 1
L7

bj+1 ← bj − ai
j ← j + 1

L4 L4

L8 L5 L8 L5

i = 0, j = 0, ai = a, bj = b

ai > 0 ai ≤ 0

bj > 0 bj ≤ 0

ai = bj ai 6= bj

ai > bj ai ≤ bj

ai = bj ai 6= bj ai = bj ai 6= bj

Figure 2.4. Execution Tree of GCD with Maximum Depth = 6
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Table 2.2. Full Path Constraints for each Execution Trace in Table 2.1

# Full Path Constraint (π) CS(π)

1 (a ≤ 0) a = 0, b = 0

2 (a > 0) ∧ (b ≤ 0) a = 1, b = 0

3 (a > 0) ∧ (b > 0) ∧ (a = b) a = 1, b = 1

4 (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a > b) ∧ (a− b = b) a = 2, b = 1

5 (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a > b) ∧ (a− b 6= b) a = 3, b = 1

6 (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a = b− a) a = 3, b = 6

7 (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a 6= b− a) a = 3, b = 7

We give the Definitions 2.11 and 2.12 to measure the performance of a constraint-

based tester in terms of constraint solver calls.

Definition 2.11. (Size of a Path Constraint). The size of a path constraint is defined

as the number of path conditions that the path constraint contains. It is denoted as s.

Definition 2.12. (Constraint Solving Overhead). Constraint solving overhead of a

constraint-based tester over a UUT is defined as

overhead =
1

N

N∑
i=1

si

where N is the number of CS calls by the tester and si is the size of the ith path

constraint.

We calculate the constraint solving overhead as the average number of conditions

in a path constraint used by the CS as denoted in Definition 2.12. In Example 2.2.1.1,

symbolic executor made 7 CS calls as shown in Table 2.2 with average path constraint

size of (1 + 2 + 3 + 5 + 5 + 5 + 5)/7 ≈ 3.71. If the bound k is increased, we can see that

the average path constraint size will increase as well.
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2.2.2. Concolic Testing

Since symbolic execution is bounded, it fails to execute critical parts deep in-

side the UUT. To be able to test the UUT without extracting the full execution tree,

Concolic Testing has been proposed [13]. Concolic Testing is an abbreviation for com-

bination of concrete and symbolic testing.

At this point, we present an overview of concolic testing procedure. First, the

concolic tester instruments the UUT (i.e. adds statements to specific places of the

source code), so the UUT generates its own execution trace whenever it is executed with

concrete inputs. This procedure is automated using some instrumentation framework

(CREST uses CIL [33]). Then, the UUT is executed with random inputs. The concolic

tester captures the execution trace and generates its full path constraint. We order

the path conditions inside the path constraint by their order in the execution trace.

According to this ordering, the last path condition that is not negated before is negated.

After the negation we get a new path constraint. We give the new path constraint to

the constraint solver to generate new inputs. We continue to make concrete executions

with the new inputs and generate new inputs until no path condition remains unnegated

(exhaustion) or a bound is hit. We bound the maximum iterations of this procedure

since CREST implements the standard concolic testing in this way as well. This

algorithm is called DFS after Depth-First Search (given in Algorithm 2.5), since it

corresponds to a depth-first search of the symbolic execution tree of the UUT. Although

there could be other strategies such as random branch selection, DFS is the most

common strategy [6, 13].

CREST’s standard concolic testing algorithm (denoted by DFS) is shown in

Algorithm 2.5. We initially give nIterations ← 0, TestInput ← random input and

TestSuite← ∅. We can see from line 1 that the algorithm is bounded by the maximum

number of iterations. At line 2, we check the test input because constraint solver is

assumed to return null if a test input can not be generated, i.e. given path constraint
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input : uut (unit under test), nIterations, maxIterations, testInput, testSuite

output: testInputs

1 if nIterations < maxIterations then

2 if testInput 6= null then

3 nIterations ←nIterations +1;

4 π ←execute(uut, testInput);

5 add(testSuite, testInput);

6 end

7 for i ←sizeOf(π)−1 to 0 do

8 if !isNegatedBefore(π[i]) then

9 setNegatedBefore(π[i]);

10 π[i]← ¬π[i];
11 testInput ← constraintSolver({π[0]...π[i]});
12 return crest(uut, nIterations, maxIterations, testInput, testSuite);

13 end

14 end

15 end

16 return testSuite;

Figure 2.5. Concolic Tester, DFS with Bounded Maximum Iterations (CREST)

is infeasible. We increment the number of iterations only if the path constraint is fea-

sible. At line 4, we execute UUT with input and save the full path constraint of the

execution trace as π. Lines 8 and 9 ensure that the algorithm performs a depth first

search (DFS). According to the ordering of the execution trace, we always negate the

last unvisited condition of a path constraint. If there exists no path condition that is

not negated before, we stop because all paths are executed. At line 11, constraintSolver

takes a path constraint and returns a satisfying test input. We don’t terminate the

solver, we use it in its built-in incremental mode. Notice that we exclude the path

conditions which come after the negated path condition on the full path constraint.

Negated path condition will force the program to a different execution trace. So, path
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conditions coming after the negated condition is not a part of the new execution trace

and therefore should be removed. If the unnecessary path conditions are not excluded,

they may cause false path constraint infeasibilities. For example, if we are going to

negate the second path condition of π = (a > 0) ∧ (b > 0) ∧ (a = b), we exclude the

third condition and get π′ = (a > 0) ∧ (b ≤ 0). If we used (a > 0) ∧ (b ≤ 0) ∧ (a = b),

this would be infeasible and therefore would not generate any test input although the

execution path was feasible (there exists test input i such that i follows the execution

path). False infeasibilities force the concolic tester not to generate any test input for

the path constraint and therefore cause a decrease in test coverage.

In Algorithm 2.5, we use functions isNegatedBefore and setNegatedBefore.

We keep a map (preferably a hash map) of path conditions to boolean values where

initially all path conditions map to F . When we call setNegatedBefore, we set the

value of the path condition to T . isNegatedBefore returns the boolean value mapped

to the given path condition.

2.2.2.1. Example. We consider the UUT from the previous example, given in Fig-

ure 2.2. For demonstration purposes, we performed an equivalent manual instru-

mentation in Figure 2.6 whereas in our implementation uses CIL for this purpose.

For the sake of simplicity, we narrow the range of inputs to the set of digits D =

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Then, we generate random values for a and b like a = 4 and

b = 0. Executing the instrumented UUT will traverse lines L0 → L2 → L3 in the code

and therefore generate the execution trace "i = 0, j = 0, a[i] = a, b[j] = b,

a[i] > 0, b[j] <= 0, RETURN ERROR". From this execution trace, we get the full

path constraint π = (a > 0)∧(b ≤ 0). We negate the last constraint to generate the new

path constraint π′ = (a > 0) ∧ (b > 0). Let CS(π′) return a = 4 and b = 6. When we

execute the UUT with these inputs we get the new execution trace as shown in Figure

2.7 (the execution follows L0 → L2 → L4 → L5 → L7 → L4 → L5 → L6 → L4 → L8

in Figure 2.3). We find that the full path constraint of this new execution trace is
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int gcdInstrumented ( int a , int b) {

f p r i n t f (TRACE, ” i = 0 , j = 0 , a [ i ] = a , b [ j ] = b , ” ) ;

i f ( a <= 0) { // L0

f p r i n t f (TRACE, ”a [ i ] <= 0 , ” ) ;

f p r i n t f (TRACE, ”RETURN ERROR\n” ) ;

return ERROR; // L1

}

f p r i n t f (TRACE, ”a [ i ] > 0 , ” ) ;

i f (b <= 0) { // L2

f p r i n t f (TRACE, ”b [ j ] <= 0 , ” ) ;

f p r i n t f (TRACE, ”RETURN ERROR\n” ) ;

return ERROR; // L3

}

f p r i n t f (TRACE, ”b [ j ] > 0 , ” ) ;

while ( a != b) { // L4

f p r i n t f (TRACE, ”a [ i ] != b [ j ] , ” ) ;

i f ( a > b) { // L5

f p r i n t f (TRACE, ”a [ i ] > b [ j ] , ” ) ;

a = a − b ; // L6

f p r i n t f (TRACE, ”a [ i +1] = a [ i ] − b [ j ] , i = i + 1 , ” ) ;

} else {

f p r i n t f (TRACE, ”a [ i ] <= b [ j ] , ” ) ;

b = b − a ; // L7

f p r i n t f (TRACE, ”b [ j +1] = b [ j ] − a [ i ] , j = j + 1 , ” ) ;

}

}

f p r i n t f (TRACE, ”a [ i ] == b [ j ] , ” ) ;

f p r i n t f (TRACE, ”RETURN a [ i ]\n” ) ;

return a ; // L8

}

Figure 2.6. Instrumented GCD for Concolic Testing

π′′ = (a > 0)∧(b > 0)∧(a 6= b)∧(a ≤ b)∧(a 6= b−a)∧(a > b−a)∧(a− [b−a] = b−a).

Therefore, we can say that the concolic tester has successfully found an input which

satisfies a path constraint of size 7 by solving a path constraint of only size 2, which is

an improvement over symbolic execution.
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"i = 0, j = 0, a[i] = a, b[j] = b, a[i] > 0, b[j] > 0, a[i] != b[j],

a[i] <= b[j], b[j+1] = b[j] - a[i], j = j + 1, a[i] != b[j], a[i] >

b[j], a[i+1] = a[i] - b[j], i = i + 1, a[i] == b[j], RETURN a[i]"

Figure 2.7. Execution Trace for [a = 4, b = 6]

After a few iterations of concolic testing, path constraints grow in size. When we

continue the example, we negate the last path condition in π′′ and are now going to solve

π′′′ = (a > 0)∧(b > 0)∧(a 6= b)∧(a ≤ b)∧(a 6= b−a)∧(a > b−a)∧(a− [b−a] 6= b−a).

Solution to this path constraint (e.g. a = 5, b = 6) is going to lead the concolic tester

to solve even larger constraints (e.g. gcd(5, 6) will generate an execution trace which

follows L0 → L2 → L4 → L5 → L7 → L4 → L5 → L6 → L4 → L5 → L6 → L4 →
L5 → L6 → L4 → L5 → L6 → L4 → L8). Our experimental results show that to

make 1000 iterations, the standard concolic tester solves path constraints of size 161

on average for this UUT as shown in Table 5.3. So, although being better than symbolic

execution, constraint solving is still a bottleneck in concolic testing.

Definition 2.13. (Overapproximation). A proposition p is an overapproximation of q

if and only if

q → p.

Definition 2.14. (Partial Path Constraint). A partial path constraint is an overap-

proximation of the full path constraint. It is denoted as φ.

To decrease the constraint solving burden, we aim to use partial path constraints

instead of the full path constraints and use simple heuristics for the selection of the

partial path constraints. To the best of our knowledge, usage of partial path constraints

is a novel approach in CBT domain. We give a detailed description of our approach in

Chapter 4.
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3. RELATED WORK

In this chapter, we discuss previous work on concolic testing and constraint solv-

ing. We also discuss the history of the term incremental solving and how it is used in

concolic testing.

3.1. Concolic Testing

There exist a large number of concolic testing tools used in domains such as unit

testing for a specific language, model checking, web service testing, and smartphone

testing. The most notable related tools and work can be listed as follows:

CUTE [13] is the earliest concolic testing tool (along with DART [23]). It is

implemented for testing C programs. It uses source code instrumentation (CIL [33])

to collect symbolic information on a given unit under test (UUT). This approach fol-

lows a bounded depth-first strategy (DFS) to exhaust as many computation paths as

possible. Even though this work is accepted as the basis of concolic testing, it also

includes three major optimizations on constraint solving to boost performance. These

optimizations are Fast Unsatisfiability Check (checks if the last path condition is the

syntactic negation of another path condition in the path constraint.), Common Sub-

Constraint Elimination (identifies and eliminates common path conditions which occur

multiple times in the path constraint) and Incremental Solving which we describe in

Section 3.3.

Many concolic testers (CUTE [13], LCT [34], jCUTE [35], Jalangi [36]) use

bounded depth-first search (bDFS ) instead of bounding the number of iterations as

in IPPC and CREST [13, 37]. bDFS can be viewed as an attempt to keep the num-

ber of path conditions in a path constraint limited. We believe that our approach

makes bounding the number of iterations more preferable to bounding the depth of the
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search as in bDFS since experiments show that IPPC already reduces the size of path

constraints significantly.

KLEE [14] is a widely known pure symbolic execution tool for C where constraint

solving is identified as a major time consuming bottleneck. They introduce the idea

of caching as an improvement. The main motivation in this idea is that verifying a

cached input to see if it satisfies a path constraint is easier than deciding on the input

only from the path constraint. We mention a possible improvement based on caching

as a future work.

CREST [6] is a testing framework for C which implements different strategies to

improve performance of the concolic testing. This work shows that by statically ana-

lyzing the control flow graph of a program, it is possible to collect useful information

which may guide and improve the concolic tester. CREST implements the basic strat-

egy and optimizations of CUTE as well as other concolic testing strategies. CREST

is also publicly available for download unlike CUTE. Therefore, we implemented our

strategy on top of CREST and we compared our results against other strategies.

ConCREST [38] extends CREST to generate tests for concurrent C programs.

ConCREST solves constraints during testing, like CREST. Therefore, our constraint

solving strategy is easily implementable on top of ConCREST to optimize testing of

concurrent UUTs. We were not able to test our heuristics on top of ConCREST due

to its unavailability.

A recent work on concolic testing introduces interpolation as a technique to sub-

suming paths that are guaranteed to be bug-free [17]. This approach attacks the path

explosion problem. Optimizations on path explosion problem is compatible with our

optimization on constraint solving since we do not change any part of concolic testing

methodology other than the constraint solving part.
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Racageddon [39] extends concolic testing to multithreaded programs for Java,

but it specializes on detection of race conditions, it does not generate test suites for

multithreaded units.

ACTEVE [40] is a concolic tester which specializes on testing of smartphone apps.

This work shows how the methodology of concolic testing can be applied on different

domains.

ExpliSAT [41] applies concolic testing to the domain of model checking. In this

concolic model checker, the model checker traverses states of the model representing

the software being checked, while storing both a concrete state and a symbolic state.

The symbolic state is used for checking properties on the software, while the concrete

state is used to avoid reaching unreachable state.

3.2. Constraint Solving

All concolic testers require a constraint solver. Z3 and Yices are commonly used

constraint solvers [11, 12]. Constraint solving is known to be an NP-Complete prob-

lem [42]. Solving constraints of different models is an open area of research since

constraints may include different types of variables and different operations on vari-

ables such as concatenation on strings and modulo on integers. Details on constraint

solver limitations for concolic testing can be found in [5].

Yices is a constraint solver which uses Satisfiability Modulo Theories (SMT).

CREST uses Yices as default. In CREST, Yices is used in incremental mode. We

discuss this incremental solving optimization in Section 3.3.

For Yices, path conditions are assumed to be in linear form, k ./
∑N

i=1 cixi where

./∈ {<,≤,=, 6=, >,≥}, k ∈ R, ∀i ∈ {1, ..., N}, ci ∈ R and N : total number of symbolic

variables. However, this form does not cover division and modulo operations. Z3
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supports division and modulo operations. Also, Z3 gives very limited support for non-

linear constraints. CREST-z3 is a modified CREST which uses Z3 constraint solver

instead of Yices in order to support broader arithmetic [43]. Although we used Yices,

we could easily implement IPPC on top CREST-z3.

Path conditions can easily become non-linear (e.g. multiplication of two input

variables). CalCS [44] solves non-linear convex path conditions. Functions that satisfy

f(Θx − (1 − Θ)y) ≤ Θf(x) + (1 − Θ)f(y) and whose domain set is convex are called

non-linear convex functions. Yices and Z3 are not able to solve non-linear conditions.

In non-linear case, Yices and Z3 try to assign constants to inputs until the condition

becomes linear.

Path conditions may involve high-precision rational numbers (e.g. 5 = x−
√

2).

CORAL [45] uses Particle Swarm Optimization (PSO) to solve constraints that involve

high-precision arithmetic. CREST does not support floating-point arithmetic.

Path conditions may involve string operations. HAMPI [46] solves conditions in-

volving regular expressions and even more powerful expressions which accept members

of a fixed-size context-free language. CREST does not support string operations.

In summary, there exist several works that improve the performance of constraint

solver power, so it becomes more and more adequate for test input generation. We seek

to exploit domain knowledge to decrease the constraint solving burden.

3.3. Incremental Constraint Solving

The idea of incremental constraint solving for concolic testing is as old as concolic

testing itself and suggested along with CUTE, one of the first concolic testing tools [13].

However their incremental solving idea should not be confused with the one that we

present here. In CUTE, since they negate only one path condition, they keep the
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variables which are irrelevant to that path condition fixed. Therefore, they solve for

variables which are only relevant to the negated path condition and decrease the burden

on the constraint solver [13]. In our approach, CREST still does the incremental solving

optimization of CUTE. On top of that, we also produce path contraints with fewer path

conditions than a standard concolic tester.

Solving only a subset of path conditions instead of the whole path constraint is an

approach recently used in finding integer overflows [47]. The motivation is supported

by observing that many of the path conditions of an execution trace are irrelevant

w.r.t. integer overflows. In our work, we make a more general assumption that some

of the path conditions should be irrelevant to the execution trace itself. Experimental

results support our motivational assumption.

Our approach to decrease constraint solver burden is applied in different domains

such as Model Checking. IC3 [48] uses the incremental approach to prove reachability of

states, instead of a monolithic approach where one formulates the required specification

as a large boolean expression and gives it to a constraint solver. In the incremental

approach, the aim is to make thousands of small queries instead of a few large queries,

which has been shown to result in an increase in performance, thereby an increase in

scalability. This incremental approach is very similar to the Counter-Example Guided

Abstraction Refinement (CEGAR) methodology which is commonly used in model

checking [49].

Random branch selection (RND) is an approach introduced in CREST [6]. In

random branch selection one negates each path condition of a path constraint with

probability 0.5. A variant of this strategy negates only one path condition at random

and calls the constraint solver with that path condition.

Control flow directed search (CFG) is a search strategy which guides the search

using the static structure of the UUT. CFG assigns weights to edges of the control
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flow graph of the UUT and calculates distances to each unvisited branch. Then, CFG

solves a path constraint which leads to the unvisited branch with the least distance to

the current execution trace [6]. We compare our approach with both CFG and RND.

A recent study on CREST proposes a new search strategy, called DYNASTY,

which uses the control flow graph of the UUT to guide the search as in CFG technique

[50]. They modify CREST to increase branch coverage with fewer iterations. Their

approach is based on avoiding infeasible paths, whereas our approach decreases the

penalty of hitting an infeasible path by using partial path constraints.
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4. INCREMENTAL PARTIAL PATH CONSTRAINTS

(IPPC)

In this chapter, we explain our approach on decreasing the constraint solving

bottleneck in detail. We first describe the motivation behind using overapproximations

of full path constraints which we call partial path constraints in Section 4.1. However,

we argue that using partial path constraints drop completeness and we propose our

solution, Incremental Partial Path Constraints (IPPC) in Section 4.2. To the best of

our knowledge, usage of Partial Path Constraints (PPC) is a novel approach in CBT

domain. We provide the algorithm and the correctness proof as well as a motivating

example to explain how IPPC improves the standard concolic testing.

4.1. Partial Path Constraints

In this section, we describe our motivation behind using partial path constraints

instead of the full path constraint itself using three examples.

(i) In the example at Section 2.2.1.1, we demonstrated how full path constraints

are used to generate test inputs. Then, we described the concolic testing as an

improvement. In Section 2.2.2.1, the path constraint π′′ = (a > 0) ∧ (b > 0)

was used to generate a test input. To generate the same input, symbolic executor

would use the full path constraint π′′′ = (a > 0)∧(b > 0)∧(a 6= b)∧(a ≤ b)∧(a 6=
b− a) ∧ (a > b− a) ∧ (a− [b− a] 6= b− a). Notice that π′′′ → π′′, in other words

π′′ is an overapproximation of π′′′. This shows that overapproximations can be

used instead of full path constraints to generate test inputs.

(ii) In π′′′ mentioned above, notice the two path conditions (a 6= b−a) and (a > b−a),

let us call these conditions p and q, respectively. We can see that the relation

q → p holds. From the satisfiability point of view, p = (a 6= b− a) is redundant
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(unnecessary). If a path condition p is an overapproximation of another path

condition q in the full path constraint, then we can safely remove p. This further

motivates us not to use the full path constraint itself.

(iii) Consider π = (a > 0) ∧ (b > 0) ∧ (a = b) and φ = (a = b). Notice that φ

is an overapproximation of π. Assume that constraint solver returns one of the

satisfying inputs randomly. Then, for a, b ∈ N, with 0.25 probability, CS(φ)

returns an input that satisfies π. For φ′ = (b > 0) ∧ (a = b), CS(φ′) returns

an input that satisfies π with 0.5 probability. Therefore, even if there is no

redundancy, usage of partial path constraints allows us to find correct inputs

with smaller queries to the constraint solver.

4.2. Incremental Partial Path Constraints

In this section, we propose the Incremental Partial Path Constraints (IPPC)

approach which utilizes partial path constraints. We explain why IPPC should be

used as a partial path constraints methodology. We design the IPPC to replace the

constraint solver call in a constraint-based tester.

The symbolic execution and concolic testing algorithms are correct and complete

algorithms assuming the underlying constraint solver is correct and complete. A test

input returned by a correct algorithm always drives the execution into the execution

path of the full path constraint whereas a complete algorithm terminates as we discuss

in Section 4.4. When partial path contraints are used instead of full path constraints,

we drop completeness. This is because the constraint solver can not guarantee that the

inputs generated via the partial path constraint will satisfy the full path constraint.

When a generated input does not satisfy the full path constraint, path divergence

problem occurs. Path divergence is described as the case that the generated input

does not force the UUT into the execution path of the full path constraint. The input

follows the execution path of the full path constraint until a branch condition which

we call the cause of divergence and takes the wrong side of the branch. Therefore, we
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may not execute some execution paths in the UUT.

To avoid dropping completeness, we propose Incremental Partial Path Constraints

(IPPC) methodology. In this methodology, to generate satisfying inputs for π, we first

start with selecting φ as the last path condition in π. If φ is infeasible, then π is also

infeasible (see Theorem 4.1), and we conclude that the execution path is infeasible.

Otherwise, CS(φ) generates a test input i which satisfies φ. If i also satisfies π, we can

use i as our test input. If i does not satisfy π, there must exist a cause of divergence

(cd) in π where i does not satisfy cd. Then we update φ using the rule φ← φ ∧ cd and

repeat the procedure until we prove infeasibility of the execution path or we reach a

fixed point where π ↔ φ and at that point, satisfying inputs of φ must also satisfy π.

The selection of the initial partial path constraint in IPPC is important. We

designed IPPC on top of CREST, which uses concolic testing. Therefore, we used an

heuristic which lets the last path condition in the full path constraint be the initial

partial path constraint. This heuristic is based on the fact that in concolic testing,

we change only the last path condition. CREST utilizes Yices constraint solver in

incremental mode, in which the old input is used whenever it does not appear in the

path constraint. So, intuitively, we expect to make a small change on the inputs we

have to make the last condition satisfied and hope that the previous path conditions

are still satisfied after the change.

4.2.1. Example

Consider π = (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a 6= b − a) ∧ (a >

b− a) ∧ (a− [b− a] = b− a) from the example in Section 2.2.2.1.

Let φ1 = (a − [b − a] = b − a). Yices generates a = −2, b = −3 for CS(φ1).

However, this input does not satisfy π due to the cause of divergence c1d = (a > 0).

Then we generate φ2 = (a− [b−a] = b−a)∧(a > 0). Now Yices generates a = 2, b = 3.
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The generated input satisfies π therefore we stop.

In this example, we found the correct test input by using a path constraint of size

2 instead of 7. However, we pay the price of making 2 constraint solver calls instead of

1. As noted in [23], solving more but smaller constraints against one large constraint

is desirable, so we implemented IPPC on top of CREST. For the GCD example with

1000 iterations, IPPC makes 11K CS calls in total while the DFS makes 5.6K CS calls.

However, IPPC’s CS calls are very small, path constraints have an average size of 1.9,

whereas DFS’s CS calls have a path constraint size of 161 on average. IPPC finishes

testing in 7.5 seconds whereas DFS finishes testing in 22.6 seconds.

4.3. Algorithm

IPPC is exactly the same as Algorithm 2.5 except we replace line 11 with input←
IPPC (UUT, {π[0]...π[i]}, {π[i]}). We describe IPPC in Algorithm 4.1. We keep the

constraint solver running in incremental mode.

Line 1 of Algorithm 4.1 invokes the constraint solver with φ. If the constraint

solver is unable to generate a test input, we conclude that the full path constraint is

also infeasible and return null. We prove the infeasibility of a full path constraint given

the infeasibility of a partial path constraint in Theorem 4.1. The for loop starting at

line 5 checks if the test input satisfies the full path constraint. If input satisfies π, we

can return input. If not, we learn the unsatisfied path condition by adding it to φ and

generate a new test input. This process may be continued until φ = π in the worst

case where either an input can be generated or π is infeasible given that the constraint

solver is sound (if exists, returns a correct test input) and complete (terminates and is

correct for all cases). This worst case condition is rare or non existent at least in our

experiments.
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input : uut (unit under test), π (full path constraint), φ (partial path

constraint)

output: testInput

1 testInput ← constraintSolver(φ);

2 if testInput = null then

3 return null;

4 end

5 for i ← 0 to sizeOf(π)− 1 do

6 if !sat(testInput, π[i]) then

7 append(φ, π[i]);

8 return IPPC (uut, π, φ);

9 end

10 end

11 return testInput;

Figure 4.1. Incremental Partial Path Constraints (IPPC)

4.4. Correctness and Completeness

To be able to produce readable proofs, we assume all boolean operations on a path

constraint are performed on the conjunction of all conditions of the path constraint.

Theorem 4.1. If a partial path constraint φ is unsatisfiable, then its full path constraint

π is also unsatisfiable.

Proof. Since φ is unsatisfiable, ¬φ is valid. Since φ is an overapproximation of π,

π → φ by definition. Therefore by modus tollens, ¬π is valid. In other words, π is

unsatisfiable.
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We now show the correctness of IPPC. We change only one line in Algorithm

2.5. Therefore, to prove the correctness of IPPC, we only need to ensure that for all

path constraints, IPPC generates a test input that has the same property as the test

input generated by the constraint solver. If such a test input exists, a constraint solver

always generates a test input that satisfies the full path constraint.

Theorem 4.2. (a) IPPC generates null whenever the constraint solver in Algorithm

4.1 at Line 11 generates null. (b) Otherwise IPPC always generates a test input that

satisfies the full path constraint.

Proof. Proof of (a) is trivial due to lines 1-4 of Algorithm 4.1. We can see from lines

5-10, that Algorithm 4.1 would not stop until the test input satisfies the full path

constraint. Therefore proof of (b) is trivial as well.

Theorem 4.3. IPPC is correct and eventually terminates, i.e. IPPC is complete.

Proof. IPPC is correct by Theorem 4.2. The second part of the proof is as follows.

At any time, partial path constraint φ is either (a) unsatisfiable, or a test input i is

generated. If a test input i is generated, either (b) i satisfies π, or (c) we add a new

path condition of full path constraint to φ. If (a), IPPC returns null and terminates.

If (b), IPPC returns i and terminates. If (c) happens N − 1 times, where N denotes

the number of path conditions in π, φ↔ π must hold. In other words, we build up the

partial path constraint up to the full path constraint. In that case, the constraint solver

must either generate null or generate a satisfying test input, therefore the algorithm

terminates.
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5. EXPERIMENTS AND RESULTS

We implemented IPPC on top of CREST concolic testing framework. Then, we

compared our strategy against the strategies implemented in CREST. Our implemen-

tation of IPPC and experimental results are available online [51].

We carried out the experiments on a virtual Linux guest with 1024MB memory

and one CPU hosted by a MacBook Pro with an Intel Core i7 2.9 GHz GPU and 8GB

Memory. We collected the following information for each experiment:

(i) Time elapsed: Time spent to test the UUT.

(ii) Total CS Calls: Total number of constraint solver calls made by the concolic

tester.

(iii) Avg Const. Size: Average size of path constraints solved by the constraint solver.

(iv) Branch Coverage: Measurement of total branch coverage of UUT.

Concolic testing involves a degree of randomness due to the randomness of initial

inputs. Therefore we performed 10 executions of each experiment and took average

values of each measure.

We implemented five small benchmarks, gcd, bsort, sqrt, prime, and factor to

conduct our initial experiments. gcd implements the binary greatest common divisor

algorithm. We downloaded and modified the bubble sort algorithm bsort, which sorts

a given array of integers [52]. sqrt takes the floor of the square root of a given integer.

prime decides whether a given integer is prime or not. factor is an integer factorization

algorithm. replace and grep are benchmarks that come with CREST framework and

used in several research studies on concolic testing [6, 50, 53]. ptokens is the printto-

kens benchmark available at Software Infrastructure Repository (SIR) [54]. ptokens

tokenizes the given string according to a grammar. For reasons described in Section
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Table 5.1. List of Benchmarks

UUT KLOC #vars

gcd 0.05 2

bsort 0.05 30

sqrt 0.06 1

prime 0.1 1

factor 0.2 1

replace 0.5 20

ptokens 0.6 40

grep 15 10

5.3, our implementation of gcd, prime, and factor do not contain any bitwise masking

or modulo operations. Instead, we decide divisibility via only subtraction and compar-

ison operations. Also, sqrt does not use any floating point operations since CREST

has no symbolic equivalent of floating point variables.

In our experiments, we used programs in various sizes. None of the given programs

are too large in size so they can be tested in reasonable time without getting into

scalability issues. In our experimental set, we argue that the structure of UUT is related

to the performance of the testers that we use rather than the sizes of the programs.

We observed that small programs such as factor can have very long runtimes (120 sec).

We argue that IPPC will perform well not when the program is small or large, but

when the program contains many infeasible paths. Although being small, prime and

factor contain many infeasible paths. Although being large, grep and replace did not

contain many infeasible paths.

We collected branch coverage of the generated testsuites via gcov utility. We

share our branch coverage collection script in Appendix A.
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5.1. Comparison of DFS and IPPC

In this section, we compare the standard concolic testing (DFS) implemented in

CREST and the IPPC which we implemented on top of CREST.

Table 5.2. IPPC Speedup over DFS

UUT
Avg Const. Size Ratio Speedup

(DFS / IPPC) (tDFS/tIPPC)

replace 4.4 0.6x

bsort 20.8 0.79x

sqrt 21.3 1.25x

grep 31.8 0.83x

ptokens 48.4 1.7x

gcd 97.5 2.77x

prime 115.6 9.1x

factor 137.3 9.8x

We observe from Table 5.2 that there exists a correlation between Avg Const.

Size of DFS / Avg Const. Size of IPPC and speedup of IPPC over DFS. When the gap

between the constraint sizes of DFS and IPPC increases, the speedup of IPPC over

DFS increases with the slight exception of grep.

In Table 5.1, we define number of iterations (# Itr) as the number of test inputs

generated by the concolic tester. If there are no unsatisfiable constraints during testing,

we make exactly one constraint call for each test input, therefore the ratio of # Itr

/ # CS Calls is 1. Figure 5.1 shows that whenever the number of constraint solver

calls (Total CS Calls) of DFS is close to the maximum number of iterations (#Itr),

DFS works faster. If DFS makes many more calls than the number of iterations, IPPC

works faster. Normally, DFS is expected to call constraint solver exactly once for each

iteration. DFS makes more than one constraint solver call for an iteration only if the

generated path constraint for that iteration is infeasible. In that case, DFS changes the
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path constraint and calls constraint solver repeatedly until a feasible path is found. We

believe factor has the largest number of infeasibilities since DFS makes many constraint

solver calls for few iterations. Figure 5.1 shows that the speedup of IPPC over DFS is

above 5x when DFS generates four or more infeasible path constraints for each feasible

path constraint (i.e. DFS makes more than five constraint solver calls for each iteration,

#Itr/Total CS Calls of DFS < 0.2). Therefore, IPPC finds infeasibilities faster for all

benchmarks.

Since both DFS and IPPC implement the same Depth-First Search strategy, they

result in same branch coverage in all cases according to Table 5.3. IPPC modification

results in a performance improvement in terms of time on 5 of the 8 benchmarks.

Therefore, we conclude that IPPC clearly dominates its predecessor, DFS.
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Figure 5.1. Relationship between Speedup and #Infeasible Constraints

5.2. IPPC Against Other Strategies

In this section, we discuss all the results given in Table 5.3. We’ve gathered

these results by comparing IPPC to each strategy implemented in CREST. CREST
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implements the standard concolic testing algorithm (DFS) and two different improve-

ments, denoted by CFG and RND. We compared IPPC with these three techniques.

Techniques we used in experiments are as follows.

(i) DFS: Standard concolic testing algorithm.

(ii) CFG: Control flow directed testing algorithm.

(iii) RND: Random branch testing heuristic on top of the standard concolic testing

algorithm.

(iv) IPPC: Our Incremental Partial Path Constraint algorithm.

Brief explanations of CFG and RND algorithms are given in Section 3.3.

CFG method was not applicable to grep due to a bug in CREST, therefore we

used N/A to denote the results we could not observe in Table 5.3. We used 1000,

5000, and 10000 as the maximum number of iterations (#Itr) in experiments. We

decreased #Itr for prime, factor, bsort, and grep, since those units have few distinct

execution traces. When there are few distinct execution traces and #Itr is too high,

DFS and IPPC are able to stop before completing #Itr iterations, since they check

if all execution traces are explored or not. However, CFG and RND have no such

stopping condition and iterate #Itr times. So, if we kept #Itr high for prime, factor,

bsort, and grep, it would unfairly result in bad runtimes for CFG and RND.

We show the best algorithms for each benchmark in Table 5.4 where All Equal

means all techniques are equally well. The column denoted as by Runtime First com-

pares techniques by runtime first, if techniques have similar runtimes, then compares

their branch coverage. The last column compares techniques by coverage first. DFS

does not perform well in both columns. In terms of runtimes RND is the best and

IPPC is the second. In terms of coverage CFG and IPPC are the best. Hence, IPPC

performs well in both categories.
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In all experiments, the largest path constraint produced by IPPC had a length of

157, whereas the largest path constraints of DFS, CFG, and RND had lengths of 2922,

1603, and 1391, respectively. We conclude that we eliminated the need for solving large

path constraints to generate test inputs while keeping the runtimes fast and coverage

high using IPPC.

We get exactly the same coverage results for both IPPC and DFS. We expect this

since both algorithms perform a depth-first search. We argue that the coverage results

being similar indicates that IPPC correctly does DFS on the UUT while improving the

performance.

IPPC considers constraints that are 10x smaller than other techniques. We believe

it is because that IPPC finds infeasibilities early, since most infeasibilities arise from a

combination of few conditions in the constraint.

Table 5.4. The Best Concolic Testers

UUT by Runtime First by Coverage First

gcd RND RND

bsort CFG CFG

sqrt IPPC IPPC&DFS

prime IPPC IPPC&DFS

factor RND CFG

replace DFS CFG

ptokens RND IPPC

grep All Equal All Equal

5.3. Threats to Validity

We assume that the constraint solver is sound, i.e. the constraint solver can

find an input vector whenever there exists an input vector which satisfies the path
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constraint. In general, this assumption is not valid. We know that the constraint solver

used in CREST, Yices [5, 12], does not find solutions for nonlinear path conditions

(e.g. x2x1 < 12). We also know that CREST may not be able to solve conditions

involving modulo operation and bitwise masking [5]. All path conditions generated

in our experiments are linear, in other words they can be written as k ./
∑N

i=1 cixi

where ./∈ {<,≤,=, 6=, >,≥}, k ∈ R, ∀i ∈ {1, ..., N}, ci ∈ R and N : total number of

symbolic variables). All path conditions in our experiments are also free of modulo and

bit masking operations. Hence, we safely assume that the constraint solver is sound in

our environment. We also do not use any floating point arithmetic.

The UUT can have intermediary variables calculated from symbolic variables and

therefore can have path conditions on those intermediary variables. All path conditions

that CREST returns are on the initial symbolic variables. Therefore, even if all branch

conditions in the code may seem trivial, CREST may fail to generate correct inputs if

variables are nonlinear (e.g. multiplication of two symbolic variables).

We assume the UUT to be sequential and deterministic, i.e. if an input vector

i produces an execution trace e, i will always produce e for this UUT. However, for

example a process which depends on random numbers could violate this assumption.

We carefully chose the experiments so that we never violate these basic assumptions.

We assume the UUT is terminating, since if UUT halts, so does the tester as well. The

test cases we chose and the test cases in previous work are all terminating. We report

runtimes that we acquired from a virtual environment. We got similar results on an

host machine as well.

It is possible that IPPC may learn partial path constraints up to a point that

they become full path constraints. So in the worst case, a standard concolic tester is

more efficient than IPPC. However, our experimental results show that we require only

a small portion of the full path constraint to generate input vectors belonging to the

same equivalence class, i.e. input vectors which generate same execution traces when
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given to UUT.

We assume that CREST is correct and complete. Currently, CREST gives and

exception and terminates if we try to test vim utility which comes with CREST itself.
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6. CONCLUSIONS AND FUTURE WORK

In this section, first we discuss the validity of our research in Section 5.3. Then

we give a summary of our study in Section 6.1 and discuss possible future work for our

research in Section 6.2.

6.1. Conclusion

In this thesis, we propose an improvement to the constraint solving strategy of

standard Constraint-Based Testing (CBT) methods, which we call Incremental Par-

tial Path Constraints (IPPC). We describe how the previous CBT approaches handle

constraints and how our approach aims to improve the current strategies through al-

gorithms and examples. We proved the correctness and completeness of our approach

and implemented it on top of a common concolic testing framework known as CREST.

We conducted experiments on 8 benchmarks to evaluate our approach.

Our experiments show that we eliminate the need for solving large constraints

to generate unit tests. We compared our design with other concolic testing algorithms

in experiments. We observed that when there are many infeasible path constraints in

the Unit Under Test (UUT), IPPC has more than 5x speedup over a standard concolic

tester. We significantly reduce the number of path conditions required to generate

test inputs and show that IPPC dominates other techniques in two of eight cases, has

the best coverage levels in three of eight cases and dominates its predecessor DFS in

five of eight cases. We show that it is possible to reach high branch coverage while

decreasing the burden on the constraint solver. We also show that IPPC’s performance

improvement becomes significant when there are many infeasibilities in the UUT. We

see the main disadvantage of IPPC is that it makes too many constraint solver calls.

Therefore, IPPC may take a longer time to test if the UUT is simple and does not have

many infeasibilities.
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6.2. Future Work

We believe that our work motivates further research on constraint solving strate-

gies involving partial path constraints. In this section, we describe important avenues

to improve IPPC.

The performance of IPPC on nonlinear path constraints (i.e. path constraints

that contain at least one nonlinear path condition) or on concurrent software is an

important question. We believe IPPC will decrease the extra overhead of more complex

constraints by finding infeasibilities faster.

IPPC is a modification that can be implemented on top of any Constraint-Based

Testing (CBT) strategy. This allows us to implement our modification on top of other

CBT tools.

It is possible to further improve IPPC by input caching, i.e. trying the previously

generated inputs to avoid calling constraint solver. In common CBT approaches, we

always use the full path constraints, therefore a previous input had no chance of satis-

fying a new full path constraint. However, previous test inputs may satisfy new partial

path constraints. Since, solving constraints introduces more overhead, verifying with

the previous inputs is an attractive approach.

Without increasing the constraint solver cost, we can initially start with a larger

partial path constraint. A simple idea could be to generate a partial path constraint

where no pair of path conditions have common symbolic variables. In this case, the

constraint solver solves each path condition independently, avoiding exponential costs.
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APPENDIX A: SCRIPT FOR COVERAGE

MEASUREMENT

In this chapter, we present our script for coverage measurement. We first mod-

ified CREST to write the test inputs into a file. Then, we add the line #include

"coverage.h" to the UUT, which redefines CREST macros to read values from the pro-

vided test suite. In the end, we execute the script in Figure A.1 to execute the UUT

using gcov utility and extract branch coverage information.

#!/ usr / bin / p e r l

open TestSuite , ”<$ARGV[ 0 ] ” ;

‘ gcc −Wall − f p r o f i l e −a r c s − f t e s t−coverage

−g $ARGV[ 1 ] cov . c −o $ARGV[ 1 ] cov . out ‘ ;

$count = 0 ;

while (<TestSuite >) {

open TempInputs , ”>temp inputs . txt ” ;

$count++;

print ” $ \n” ;

print TempInputs ” $ \n” ;

close TempInputs ;

‘$ARGV[ 1 ] cov . out $ ‘ ;

}

print ”By us ing $count t e s t ca s e s ;\n” ;

print ‘ gcov −b $ARGV[ 1 ] cov . c | grep Taken ‘ ;

close TestSu i te ;

Figure A.1. bcov.pl: Branch Coverage Measurement Script.
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APPENDIX B: SOURCE CODES FOR SMALL

BENCHMARKS

In this chapter, we present source codes of the benchmarks we used in out exper-

iments. We omitted large benchmarks such as replace and grep. In each benchmark,

notice that the symbolic variables are specified using CREST macros. We provide our

full experimental set with additional benchmarks and instructions to execute online [51]

/∗ Bubble s o r t code ∗/

#include <s t d i o . h>

#include <c r e s t . h>

int main ( )

{

unsigned char n = 30 ;

unsigned char array [ 3 0 ] , c , d , swap ;

CREST unsigned char ( array [ 0 ] ) ;

CREST unsigned char ( array [ 1 ] ) ;

CREST unsigned char ( array [ 2 ] ) ;

CREST unsigned char ( array [ 3 ] ) ;

CREST unsigned char ( array [ 4 ] ) ;

CREST unsigned char ( array [ 5 ] ) ;

CREST unsigned char ( array [ 6 ] ) ;

CREST unsigned char ( array [ 7 ] ) ;

CREST unsigned char ( array [ 8 ] ) ;

CREST unsigned char ( array [ 9 ] ) ;

CREST unsigned char ( array [ 1 0 ] ) ;

CREST unsigned char ( array [ 1 1 ] ) ;

CREST unsigned char ( array [ 1 2 ] ) ;

CREST unsigned char ( array [ 1 3 ] ) ;

CREST unsigned char ( array [ 1 4 ] ) ;

CREST unsigned char ( array [ 1 5 ] ) ;

CREST unsigned char ( array [ 1 6 ] ) ;

CREST unsigned char ( array [ 1 7 ] ) ;

CREST unsigned char ( array [ 1 8 ] ) ;

CREST unsigned char ( array [ 1 9 ] ) ;

CREST unsigned char ( array [ 2 0 ] ) ;

Figure B.1. Source Code of bsort Benchmark
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CREST unsigned char ( array [ 2 1 ] ) ;

CREST unsigned char ( array [ 2 2 ] ) ;

CREST unsigned char ( array [ 2 3 ] ) ;

CREST unsigned char ( array [ 2 4 ] ) ;

CREST unsigned char ( array [ 2 5 ] ) ;

CREST unsigned char ( array [ 2 6 ] ) ;

CREST unsigned char ( array [ 2 7 ] ) ;

CREST unsigned char ( array [ 2 8 ] ) ;

CREST unsigned char ( array [ 2 9 ] ) ;

for ( c = 0 ; c < ( n − 1 ) ; c++)

{

for (d = 0 ; d < n − c − 1 ; d++)

{

i f ( array [ d ] > array [ d+1]) /∗ For decreas ing order use < ∗/

{

swap = array [ d ] ;

array [ d ] = array [ d+1] ;

array [ d+1] = swap ;

}

}

}

p r i n t f ( ” Sorted l i s t in ascending order :\n” ) ;

for ( c = 0 ; c < n ; c++ )

p r i n t f ( ”%d ” , array [ c ] ) ;

p r i n t f ( ”\n” ) ;

return 0 ;

}

Figure B.1. Source Code of bsort Benchmark (cont.)

#include <s t d i o . h>

#include <c r e s t . h>

#define FALSE (0)

#define TRUE ( ! ( 0 ) )

Figure B.2. Source Code of sqrt Benchmark
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typedef unsigned long long N;

typedef int bool ;

N l o g f l o o r (N x ) {

int i ;

for ( i = 0 ; x != 0 ; i++, x >>= 1 ) ;

return i − 1 ;

}

int sqr tTes t (N n , N nSq ) {

i f (n ∗ n > nSq )

return 1 ;

else i f ( ( n+1) ∗ (n+1) <= nSq )

return −1;

else

return 0 ;

}

N s q r t f l o o r (N x ) {

i f ( x == 0 | | x == 1)

return x ;

N k = l o g f l o o r ( x ) ;

N l , h ;

i f ( k & 1) {

l = 1 << ( ( k − 1) >> 1 ) ;

h = l << 1 ;

} else {

h = 1 << ( ( k >> 1) − 1 ) ;

l = h << 1 ;

h ∗= 3 ;

}

i f ( ! sq r tTes t ( l , x ) ) {

return l ;

}

N m;

for (m = ( l + h) >> 1 ; ;

m = ( l + h) >> 1)

Figure B.2. Source Code of sqrt Benchmark (cont.)
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{

switch ( sqr tTes t (m, x ) ) {

case 1 :

h = m;

break ;

case 0 :

return m;

case −1:

l = m;

}

}

}

int main ( ) {

unsigned int x ;

CREST unsigned int ( x ) ;

p r i n t f ( ” f l o o r ( s q r t (%u ) ) = %u” , x ,

s q r t f l o o r ( x ) ) ;

return 0 ;

}

Figure B.2. Source Code of sqrt Benchmark (cont.)

#include <c r e s t . h>

#include <s t d i o . h>

#define FALSE (0)

#define TRUE ( ! ( 0 ) )

typedef unsigned long long N;

typedef int bool ;

bool d i v i d e s (N x , N y) {

while ( y > 0) {

i f ( x > y ) {

return FALSE;

} else {

y −= x ;

}

}

Figure B.3. Source Code of prime Benchmark
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return TRUE;

}

N l o g f l o o r (N x ) {

int i ;

for ( i = 0 ; x != 0 ; i++, x >>= 1 ) ;

return i − 1 ;

}

int sqr tTes t (N n , N nSq ) {

i f (n ∗ n > nSq )

return 1 ;

else i f ( ( n+1) ∗ (n+1) <= nSq )

return −1;

else

return 0 ;

}

N s q r t f l o o r (N x ) {

i f ( x == 0 | | x == 1)

return x ;

N k = l o g f l o o r ( x ) ;

N l , h ;

i f ( k & 1) {

l = 1 << ( ( k − 1) >> 1 ) ;

h = l << 1 ;

} else {

h = 1 << ( ( k >> 1) − 1 ) ;

l = h << 1 ;

h ∗= 3 ;

}

i f ( ! sq r tTes t ( l , x ) ) {

return l ;

}

N m;

for (m = ( l + h) >> 1 ; ;

m = ( l + h) >> 1)

{

switch ( sqr tTes t (m, x ) ) {

Figure B.3. Source Code of prime Benchmark (cont.)
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case 1 :

h = m;

break ;

case 0 :

return m;

case −1:

l = m;

}

}

}

bool i sPr ime (N x) {

i f ( x == 2 | | x == 3)

return TRUE;

else i f ( x == 1 | | x == 0

| | d i v i d e s (2 , x ) | | d i v i d e s (3 , x ) )

return FALSE;

N sq r t x = s q r t f l o o r ( x ) ;

N i ;

for ( i = 5 ; i <= sq r t x ; i+=6) {

i f ( d i v i d e s ( i , x ) | | d i v i d e s ( i + 2 , x ) )

return FALSE;

}

return TRUE;

}

int main ( ) {

unsigned char x ;

CREST unsigned char ( x ) ;

p r i n t f ( ” i sPr ime(%u) = %d\n” , x , i sPr ime (x ) ) ;

return 0 ;

}

Figure B.3. Source Code of prime Benchmark (cont.)

#include <s t d i o . h>

#include <c r e s t . h>

#define FALSE (0)

#define TRUE ( ! ( 0 ) )

Figure B.4. Source Code of factor Benchmark
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typedef unsigned long long N;

typedef int bool ;

int d i v i d e s (N x , N y) {

while ( y > 0) {

i f ( x > y ) {

return 0 ;

} else {

y = y − x ;

}

}

return 1 ;

}

N div id e (N x , N y ) {

N r e s u l t = 0 ;

while ( x >= y) {

x = x − y ;

r e s u l t++;

}

return r e s u l t ;

}

N l o g f l o o r (N x ) {

int i ;

for ( i = 0 ; x != 0 ; i++, x >>= 1 ) ;

return i − 1 ;

}

int sqr tTes t (N n , N nSq ) {

i f (n ∗ n > nSq )

return 1 ;

else i f ( ( n+1) ∗ (n+1) <= nSq )

return −1;

else

return 0 ;

}

N s q r t f l o o r (N x ) {
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N s q r t f l o o r (N x ) {

i f ( x == 0 | | x == 1)

return x ;

N k = l o g f l o o r ( x ) ;

N l , h ;

i f ( k & 1) {

l = 1 << ( ( k − 1) >> 1 ) ;

h = l << 1 ;

} else {

h = 1 << ( ( k >> 1) − 1 ) ;

l = h << 1 ;

h ∗= 3 ;

}

i f ( ! sq r tTes t ( l , x ) ) {

return l ;

}

N m;

for (m = ( l + h) >> 1 ; ;

m = ( l + h) >> 1)

{

switch ( sqr tTes t (m, x ) ) {

case 1 :

h = m;

break ;

case 0 :

return m;

case −1:

l = m;

}

}

}

bool i sPr ime (N x) {

i f ( x == 2 | | x == 3)

return TRUE;

else i f ( x == 1 | | x == 0

| | d i v i d e s (2 , x ) | | d i v i d e s (3 , x ) )

return FALSE;

N sq r t x = s q r t f l o o r ( x ) ;

N i ;
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N i ;

for ( i = 5 ; i <= sq r t x ; i+=6) {

i f ( d i v i d e s ( i , x ) | | d i v i d e s ( i + 2 , x ) )

return FALSE;

}

return TRUE;

}

int main ( ) {

N x ;

CREST unsigned char ( x ) ;

i f ( x > 250)

return 1 ;

i f ( i sPr ime (x ) ) {

return 1 ;

}

N fac to r , s q r t x ;

s q r t x = s q r t f l o o r ( x ) ;

for ( f a c t o r = 2 ; f a c t o r <= sq r t x ; f a c t o r++) {

i f ( i sPr ime ( f a c t o r ) ) {

while ( d i v i d e s ( f a c to r , x ) ) {

p r i n t f ( ”%l l u ” , f a c t o r ) ;

x = d iv id e (x , f a c t o r ) ;

}

}

}

i f ( x == 1)

p r i n t f ( ”\n” ) ;

else

p r i n t f ( ”%l l u \n” , x ) ;

return 0 ;

}
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