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Abstract—Android applications are used extensively around
the world. Many of these applications contain potential crashes.
Black-box testing of Android applications has been studied over
the last decade to detect these crashes. In this paper, we propose
QLearning-Based Exploration (QBE), a fully automated black-
box testing methodology, which explores GUI actions using a
well-known reinforcement learning technique called QLearning.
QBE performs automata learning to obtain a model of the AUT,
and generates replayable test suites. Specifically, QBE learns
from a set of existing applications the kinds of actions that are
most useful in order to reach a particular objective such as
detecting crashes or increasing activity coverage. To the best of
our knowledge, ours is the first machine learning based approach
in Android GUI Testing. We conduct experiments on a test
set of 100 AUTs obtained from the commonly used F-Droid
benchmarks to show the effectiveness of QBE. We show that
QBE performs better than all compared black-box tools in terms
of activity coverage and number of distinct detected crashes. We
make QBE and our experimental data available online.

Keywords-Android; Test Generation; Reinforcement Learning;
Automata Learning

I. INTRODUCTION

Mobile applications have become an essential part of our

daily life. Statistics show that an average person uses mobile

phones 3 hours a day and spends 90% of this time on

mobile applications (non-browsing activity) [1]. Following the

growing trend of the mobile application market, there is an

increasing focus on mobile application testing in top testing

conferences and journals [2]. These testing tools implement

white-box, gray-box, or black-box testing techniques, focusing

mainly on Android applications.

The advantage of black-box testing for Android applications

is that it only requires the binary file and a suitable envi-

ronment to dynamically execute the Application Under Test

(AUT). There are several recent tools on automated black-

box testing of Android applications. These tools are PUMA

[3], A3E [4], SwiftHand [5], Sapienz [6], CrashScope [7],

and DynoDroid [8]. Each tool has its own contribution to

the state-of-the-art such as depth-first and targeted exploration

strategies in A3E, the usage of cosine similarity for state

equivalence in PUMA, approximate model learning through

systematic execution in SwiftHand, addition of contextual

states in CrashScope, biased random testing of DynoDroid

and the Pareto optimal Search-Based Software Engineering

approach in Sapienz.
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Fig. 1. QLearning-Based Exploration (QBE) Overview

There are also several Model-Based Testing (MBT) tools

for Android application testing where MBT assumes that a

model of the AUT is available. Tools such as MobiGUITAR

[9] and SwiftHand [5] automatically generate a model of

the application. For example, SwiftHand employs automata

learning methods where GUI actions of the application are

traversed in a Depth-First Exploration (DFE) strategy. MBT

tools have the advantage of capturing behavioral information

of the AUT in a model. This model can be used to generate

meaningful test cases for the AUT. Also, the model itself can

be tested or verified to avoid the cost involved in testing the

AUT.

Despite the ongoing development in the state-of-the-art, a

simple black-box random testing tool, Monkey [10], outper-

forms complex tools in terms of coverage and the number of

found crashes [7], [4]. The disadvantage of Monkey is that

tests are hard to reproduce and faults are hard to localize.

More importantly, Monkey can be used to generate thousands

of GUI events per second, which is unrealistic since a human

agent will not be able to generate events at that rate. Similarly,

Monkey also generates sudden drops or increases in battery

level, and sudden changes in the orientation of the phone

which results in unrealistically high accelerometer values.

We propose QLearning-Based Exploration (QBE), a fully

automated black-box testing methodology that explores GUI

actions using a well-known reinforcement learning tech-

nique in machine learning, called QLearning [11]. QBE ex-

plores GUI actions of the application according to a pre-

approximated probability distribution of satisfying an objec-
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tive. An example objective can be increasing the activity cov-

erage or detecting a crash. We call this probability distribution

the transition prioritization matrix (i.e. Q-Matrix) and estimate

the transition prioritization matrix using QLearning. Then,

during exploration of the AUT we sample new GUI actions

from the Q-Matrix rather than using a random or depth-first

exploration strategy. For example, QBE may learn that of all

enabled actions on a screen the probability of a click action

has a better chance of leading to a crash. Given the large

state space of the applications, this information is crucial for

improving the state-of-the-art in Android application testing.

We show the overview of our approach in Figure 1. We

first implement a new fully automated black-box testing

tool called AndroFrame. AndroFrame is a modular Android

testing framework that includes an online automata learning

variant, which obtains models for given AUTs during execu-

tion using different strategies. In AndroFrame, we implement

Random Exploration (RE) and Depth-First Exploration (DFE)

strategies, as well as our novel QLearning-Based Exploration

(QBE) strategy. AndroFrame combines features mentioned in

previous Android GUI Testing tools; covers all entry points

(exportable activities) of the AUT as proposed in A3E [4],

obtains a model of the AUT as proposed in SwiftHand [5],

uses cosine similarity to distinguish different states of the

model as proposed in PUMA [3], and supports contextual

states of the AUT as proposed in CrashScope [7]. Furthermore,

AndroFrame generates reproducible test suites which is crucial

for debugging as well as for obtaining a regression test suite.

We implement QBE on top of AndroFrame. In the training

phase of QBE, first, we obtain models of Android applica-

tions from a training set by executing them with Random

Exploration (RE) strategy. Then, using all these models we

obtain a single Q-Matrix with respect to an objective. In the

testing phase of QBE, we test a given Application Under Test

(AUT) by sampling actions from the distribution implied by

the Q-Matrix instead of randomly choosing from the set of

all enabled actions. We also obtain a model of the AUT to

facilitate Model-Based Testing.

Our main contribution in this paper is QLearning-Based

Exploration (QBE) for Android application testing. To the

best of our knowledge, ours is the first machine learning

based approach in Android GUI Testing. We note that machine

learning is different from automata learning and we use

machine learning in conjunction with automata learning. For

experiments, we randomly select 300 AUTs from F-Droid

benchmark suite [12]. We train our QLearning algorithm on

200 AUTs for both crash detection and increasing activity

coverage. Using the remaining 100 AUTs as test set, we

compare QBE with Monkey, PUMA, SwiftHand, Sapienz,

DynoDroid, and Depth-First Exploration (DFE) and Random

Exploration (RE) strategies of AndroFrame. We show that on

average, QBE achieves the best activity coverage with 78%
when it is trained for increasing activity coverage. We also

show that on average, QBE finds the highest number of distinct

crashes by 13 when it is trained for crash detection.

We organize our paper as follows. In Section II, we describe

related testing approaches. We describe Android background

in Section III. In Section IV, we describe our automata

learning framework. In Section V, we describe our QLearning

methodology. In Section VI, we evaluate our tool as well as the

state-of-the-art Android testing tools and discuss the results. In

Section VII, we discuss important design decisions and threats

to validity. We summarize our results in Section VIII.

II. RELATED WORK

In this section, we first describe related studies in Android

testing tools. Then, we discuss testing approaches that use

QLearning. Finally, we discuss record and replay techniques.

Monkey [10] is the first black-box Android testing tool. It

executes thousands of random events per second. Monkey is

known to find the highest number of crashes [7] and achieves

the highest activity coverage [4] so far. The downside of

Monkey is that, in general, tests are not reproducible and there

is not a good way to debug crashes.

A3E [4] systematically executes GUI components using

depth-first exploration or targeted exploration strategies. The

public version of the tool supports depth-first exploration only.

A3E’s depth-first exploration triggers each widget at least

once, whereas our depth-first exploration triggers each widget

at each state.

PUMA [3] is another black-box Android testing tool. PU-

MA’s main contribution is the concept of cosine similarity
which is based on the comparison of contents of two states.

AndroFrame uses cosine similarity, as well as the set of

enabled actions to decide state equivalence. Hence, our state

equivalence relation is the most precise compared to the state-

of-the-art.

CrashScope [7] offers user-friendly reports on detected

crashes, which increase reproducibility and improve debug-

ging. CrashScope’s main contribution is the introduction of

contextual states during testing such as wifi, GPS, and ro-

tation that may trigger crashes. We also provide support for

contextual states in AndroFrame.

Sapienz [6] is a state-of-the-art search-based Android tes-

ting tool that uses evolutionary algorithms to generate fault

revealing test cases or to minimize test suites.

DynoDroid [8] is a guided random testing tool for Android.

DynoDroid supports system events as well as GUI actions.

We devise a new exploration strategy (QBE) in AndroFrame

different from the random exploration strategy used in Dyn-

oDroid. DynoDroid uses instrumentation to deduce relevant
events to guide the exploration, whereas AndroFrame does

not instrument the AUT at all to determine relevant events.

Also, our Q-Learning approach can be trained for different

objectives, whereas DynoDroid has a fixed objective.

SwiftHand [5] is another black-box Android testing tool that

learns an approximate model of the AUT using a modified L∗

algorithm. To the best of our knowledge, SwiftHand is the first

tool that applies automata learning in Android testing but it

does not use machine learning.

We use a reinforcement learning technique in QBE. Re-

inforcement learning is a semi-supervised machine learning
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scheme. Reinforcement learning is concerned with how soft-

ware agents should take actions in an environment such that

a cumulative reward is maximized. Reinforcement learning

differs from standard supervised learning techniques in that

correct input/output pairs are never given, but only a reward

is observed if the agent reaches an objective. Among other

reinforcement learning techniques, QLearning is the most

appropriate for GUI testing because other techniques such

as Monte Carlo and Brute Force require many actions to be

executed during learning, which is costly.

AutoBlackTest [13] is the first GUI testing tool that uses

QLearning method. The main difference between AutoBlack-

Test and our method is that AutoBlackTest learns app-specific

Q-values, and hence it must be trained for each application.

We learn a single matrix of Q-values which we use for all

applications, and hence we avoid training for each application

during testing. AutoBlackTest uses a reward function which is

based on the number of changing widgets between two states

to reach an objective using QLearning. Tracking the change of

widgets allow them to decide whether the screen has changed

or not. We use a similar reward function, called activity

coverage that allows us to determine whether an application

screen (activity) has changed or not. We also add a new reward

function for crash detection, which is especially important for

mobile testing.

To the best of our knowledge, ours is the first machine

learning based approach in Android GUI Testing.

Another approach that uses QLearning is AntQ [14]. It is a

GUI testing methodology which uses ant colony optimization

technique. They increase the performance of their optimiza-

tion by incorporating QLearning in the process. Similar to

AutoBlackTest, AntQ learns a new Q-Matrix for each AUT,

whereas our QLearning method learns a single Q-Matrix from

all AUTs in the training set, which we use on the AUTs in

the test set.

VALERA [15], RERAN [16], and BARISTA [17] are

generic record and replay tools for Android. AndroFrame has

a simpler method that can record and replay only the test

cases that are obtained during model generation. Hence, we

can reproduce crashes. This is crucial for debugging as well

as for obtaining a regression test suite. None of the above

Android testing tools except DynoDroid, Sapienz, and A3E

provide this functionality.

III. ANDROID BACKGROUND

We now describe basic features of the Android GUI to

facilitate the understanding of our methodology.

Android GUI is based on activities and events. An activity
represents a single screen with a user interface and contains

GUI components (widgets). Each GUI component (such as

button or text box) has properties describing the boundaries of

the component in pixels (x1, y1, x2, y2) and how the user can

interact with the component through actions. Example GUI

component properties are enabled, clickable, longclickable,

scrollable, type, and password.

TABLE I
LIST OF GUI ACTIONS

Non-Contextual Param1 Param2 Param3 Param4 Param5
click x y - - -

longclick x y - - -
text x y string - -

swipe x1 y1 x2 y2 duration
menu - - - - -
back - - - - -

Contextual Parameter
connectivity on/off/toggle

bluetooth on/off/toggle
location gps/gps&network/off/toggle

planemode on/off/toggle
doze on/off/toggle

Special Param1 Param2 Param3 Param4 Param5
reinitialize package activity - - -

The Android system and the user can interact with GUI

components using events. We divide events in two categories,

system events and GUI events (actions). We show the list of

GUI actions that we use in Table I, which covers more actions

then are typically used in the literature. We group actions into

three categories; non-contextual, contextual, and special. Non-

contextual actions correspond to actions that are triggered by

user gestures. Click and longclick take two parameters, x and

y coordinates to click on. Text takes three parameters, x and

y for coordinates and string to describe what to write. Swipe
takes five parameters. The first four parameters describe the

starting and the ending coordinates. The fifth parameter is

used to adjust the speed of swipe. Menu and back actions

have no parameters. These actions just click to the menu and

back buttons of the mobile device, respectively. Contextual

actions correspond to the user changing the contextual state

of the AUT. Contextual state is the concatenation of the

global attributes of the mobile device (internet connectivity,

bluetooth, location, planemode, sleeping). Connectivity action

adjusts the internet connectivity of the mobile device (adjusts

wifi or mobile data). Bluetooth, location, and planemode are

straightforward. Doze action taps the power button of the

mobile device and puts the device to sleep or wakes it. We

use doze action to pause and resume the AUT. We also use a

special action called reinitialize, which reinstalls and starts an

AUT. System events are system generated events, e.g. battery
level, receiving SMS, and clock/timer.

Finally, we define a crash in Android as a fatal exception in

Android logs. Crashes often result with the AUT terminating

with or without any warning. Some crashes do not visually

affect the execution, but the screen becomes unresponsive as

a result.

IV. ANDROFRAME BACKGROUND

In this section, we describe our automata learning black-

box test generation framework, AndroFrame. We implement

several exploration strategies including random exploration,

depth-first exploration, and Q-Learning based exploration in

AndroFrame.

We use the Extended Labeled Transition System (ELTS) [5]

as a model for the AUT. Formally, an ELTS M is a 5-tuple,

M = (V, v0, Z, ω, λ), where
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• V is a set of states (vertices),

• v0 ∈ V is the initial state,

• Z is the set of all actions (input alphabet),

• ω : V × V × Z is the transition relation, and

• λ : V → vevenegatif(Z) is the enabling function,

where ∀vınV, λ(v) ⊆ Z denotes set of actions enabled at

state v.

We define a GUI state, or simply a state v to be the

concatenation of the following:

1) Package Name (a name representing the AUT)

2) Activity Name

3) Contextual State

4) GUI Components

Each state v has a set of enabled actions λ(v), extracted

from its set of GUI components. We say that a GUI action,

or simply an action z ∈ λ(v) is enabled at state v iff we can

deduce that z interacts with at least one GUI component in

v. We define a transition as a 3-tuple, (start-state, end-state,

action), shortly denoted by (vs, ve, z). We define an execution

trace, or simply a trace t, as a sequence of transitions. An

example trace is as follows.

t = (v1, v2, z1), (v2, v3, z2), . . . , (vn, vn+1, zn)

where n is the length of the trace.

We say that a trace t is a test case if the first state of the

trace is the initial state v0 (the GUI state when the AUT is

started). A test suite TS is a set of test cases.

Definition 1: An ELTS M = (V, v0, Z, ω, λ) is determinis-
tic iff

∀v, v′, v′′ ∈ V, ∀z ∈ λ(v),
[(v, v′, z) ∈ ω and (v, v′′, z) ∈ ω]→ (v′ = v′′)

In other words, each transition in a model M must have

one unique resulting state in order to make M deterministic.

We describe how we generate test suites using AndroFrame

in Algorithm 1. We take an AUT, a timeout in seconds, and a

number denoting the maximum number of actions per test case

as input. We start with an empty test suite in line 1. Then, we

initialize our model in line 2. We use a timeout in seconds as

termination condition in line 3. For each test case, we start with

reinitializing the AUT in line 4. Reinitialization reinstalls and

restarts the AUT. We generate each test case in the test suite

between lines 6-23. We choose one of the enabled actions in

line 7. Note that we can use Random Exploration (RE), Depth-

First Exploration (DFE) or Q-Learning Based Exploration

(QBE) strategy for choosing the action. We execute this action

and check if the AUT crashed or not. If the AUT crashed,

we add an edge from the previous state to “crash” state in

the transition relation in line 10 and add the transition to our

test case in line 11. Otherwise; we add the next state to the

set of states, add the new actions to the set of actions, add

the transition to the transition relation, and add the transition

to the test case in lines 14-17. If the model becomes non-

deterministic, we call a variant of the PassiveLearn algorithm

to make the model deterministic by adding new states. We

continue the inner loop until any of the conditions in line 23

Algorithm 1 AndroFrame Test Suite Generation Algorithm

Require:
AUT : Application Under Test

X ∈ N : Timeout (in seconds) to terminate testing

N ∈ N : Maximum number of actions per test case

Ensure:
TS : A test suite for the AUT

M = (V, v0, Z, ω, λ) : Model of the AUT

1: TS ← {}
2: M ← ({v0}, v0, {}, {}, {})
3: while elapsed time is less than X do
4: Execute ”reinitialize”

5: v ← v0
6: repeat
7: z ← choose z ∈ λ(v)
8: Execute z
9: if AUT is crashed then

10: ω ← ω ∪ {(v, crash, z)}
11: t← t · (v, crash, z) � Concatenation

12: else
13: v′ ← current state of the AUT

14: V ← V ∪ {v′}
15: Z ← Z ∪ λ(v′)
16: ω ← ω ∪ {(v, v′, z)}
17: t← t · (v, v′, z) � Concatenation

18: if M is non-deterministic then
19: (M,TS)← PassiveLearn(M,TS, t)
20: end if
21: v ← v′

22: end if
23: until elapsed time is greater than X or length of t is

larger than N or AUT is crashed

24: TS ← TS ∪ {t}
25: end while

becomes true and then move onto the generation of the next

test case.

A. Cosine Similarity for State Equivalence

We require an equivalence relation in line 14 of Algorithm

1 during the union operation V ∪{v′}. We now formally define

our state equivalence relation (cosine similarity) between two

states v and v′ which is based on the definition given in

PUMA. We first calculate content vectors of these states

denoted by cv and cv′, using metrics collected from each

corresponding state and then take the cosine similarity of these

content vectors. Formally,

∀v, v′ ∈ V, v = v′ iff

[λ(v) = λ(v′)] ∧ [N(v) = N(v′)] ∧ [cos(cv, cv′) > 0.95]
(1)

In Equation 1, two states v and v′ are equivalent iff they

both have the same set of enabled actions, the same number of

components, and the cosine similarity of their content vectors

cv and cv′ is above 0.95, which was determined by PUMA [3].

Note that our state equivalence check sacrifices accuracy for
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Algorithm 2 PassiveLearn Algorithm

Require:
M = (V, v0, Z, ω, λ) : Non-deterministic AUT model

TS : A test suite for the AUT

t = (v1, v2, z1) . . . (vn, vn+1, zn) : A test case

Ensure:
M ′ = (V ′, v′0, Z

′, ω′, λ′) : Deterministic AUT model

TS′ : Updated Test Suite

1: (M ′, TS′)← (M,TS ∪ {t})
2: v′n ← vn
3: v′n ← vn ·dummy component s.t. v′n 	= vn, λ(v

′
n) = λ(vn)

4: ω′ ← ω′ − {(vn, vn+1, zn)}
5: ω′ ← ω′ − {(vn−1, vn, zn−1)}
6: ω′ ← ω′ ∪ {(vn−1, v

′
n, zn−1)}

7: for t′ ∈ TS′ do
8: for i ∈ Z

+ s.t. i ≤ length of t′ do
9: if ∃d ∈ N s.t. t′i = (vn−1, vn, zn) then

10: t′i ← (vn−1, v
′
n, zn)

11: end if
12: end for
13: end for
14: for t′ ∈ TS′ do
15: for i ∈ Z

+ s.t. i ≤ length of t′ do
16: (v′i, v

′
i+1, z

′
i)← t′i

17: ω′ ← ω′ ∪ {(v′i, v′i+1, z
′
i)}

18: if M ′ is non-deterministic then
19: return PassiveLearn(M ′, TS′, t′1...i)
20: end if
21: end for
22: end for
23: while ∃v ∈ V ′ s.t. ¬∃(v′, z) ∈ V ′−{v0}×Z ′, (v′, v, z) ∈

ω′ do
24: V ′ ← V ′ − {v}
25: ω′ ← ω′ − {(v, v′, z)}, ∀(v′, z) ∈ V ′ × Z ′

26: end while

simplicity and performance. Hence, even with no time limit,

we may not capture the exact model of the AUT. However,

our check suffices for finding bugs or increasing coverage as

shown in experiments.

B. Passive Learning Algorithm

We now describe our implementation of PassiveLearn used

in line 19 of Algorithm 1 for generating a deterministic model

of the AUT. Algorithm 2 for PassiveLearn is based on the

algorithm described in Swifthand [5].

In Algorithm 2, we take the non-deterministic model, the

test suite, and the test case that causes the non-determinism

in the model as input. We know that PassiveLearn is called

when the last generated transition in Algorithm 1 causes

non-determinism. This non-determinism occurs because our

definition of state is not 100% accurate and does not capture

the complete device state. To fix non-determinism, we first

duplicate the problematic state as v′n in line 2. Then we modify

v′n by adding a dummy GUI component to it so that it is

Algorithm 3 QLearning-Based Exploration (QBE)

Require:
M = (V, v0, Z, ω, λ) : Current ELTS of the AUT

vc ∈ V : Current State of the AUT

β : V → S : State Labeling Function

α : Z → Σ : Action Labeling Function
�Qo ∈ [0, 1]S×Σ : Transition Prioritization Matrix

Ensure:
z ∈ λ(vc) : An action

1: qMap← {} � qMap : Σ→ [0, 1]
2: for all z ∈ λ(vc) do
3: qMap← qMap ∪ (α(z), �Qo[β(vc), α(z)])
4: end for
5: a← random a

with probability proportional to q
s.t. (a, q) ∈ qMap

6: return random z ∈ λ(vc) s.t. [a = α(z)]

no longer equivalent to vn. Note that the properties of the

dummy state is irrelevant, as long as it has exactly the same

enabled actions with the original state. We also remove the

last two transitions added to the transition relation from the

model in lines 4 and 5. Instead, we add a new transition to

the transition relation which is going to v′n in line 6. We

replace all transitions in all test cases that were going from

vn−1 to vn with transitions going from vn−1 to v′n in lines

7-13. Then, we add any missing transitions to the transition

relation in lines 14-22. However, this process may make the

model non-deterministic again. In that case, we recursively call

the PassiveLearn algorithm to correct the model once more.

Finally, we remove all states and their outgoing transitions

from the model that are disconnected from the model in lines

23-26.

V. QLEARNING-BASED EXPLORATION (QBE)

METHODOLOGY

In this section, we define our novel exploration strategy,

QLearning-Based Exploration (QBE). Then, we describe how

to estimate the input of QBE, called transition prioritization

matrix using QLearning reinforcement technique.

A. QLearning-Based Exploration (QBE)

QBE explores GUI actions of the application according

to a pre-approximated probability distribution of satisfying

an objective. During exploration of the AUT in line 7 of

Algorithm 1 instead of for example randomly picking an

action, we sample new GUI actions from the Q-Matrix. QBE

can use the knowledge that the probability of clicking on a

screen with several enabled actions leads to a crash. We first

formally define several terms in order to explain QBE then we

describe the QBE algorithm.

An objective o is a function o : V × Z → {0, 1}, where V
is the set of states and Z is the set of actions. In other words,

we divide all state-action pairs into two groups, the ones

that satisfy the objective and the ones that do not. Example
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objectives can be increasing activity coverage or detecting a
crash. A trace t satisfies an objective o iff the last state-action

pair in the trace satisfies the objective.

In order to define trace similarity, we define a set of abstract
states, S and a set of abstract actions, Σ. An example set of

abstract states S can be formed by categorizing states by the

number of enabled actions in that state, such as

S = {too-few, few,moderate,many, too-many}
An example set of abstract actions Σ is

Σ = {menu, back, click, longclick, text, swipe, contextual}
We define an abstract trace p = ρ(t) of a trace t as a

sequence of abstract state action pairs. An abstract state-action

pair (s, a) ∈ S×Σ is obtained from a state-action pair (v, z) ∈
V × Z using two labeling functions β : V → S and α : Z →
Σ.

We say that two abstract traces p and p′ are equal iff they

have the same abstract state-action pairs in the same order.

We say that traces t and t′ are similar iff their abstract traces

p = ρ(t) and p′ = ρ(t′) are equal.

We define the probability of an abstract trace p satisfying

an objective o as the number of traces t such that p = ρ(t) ∧
t satisfies o divided by the number of all traces such that p =
ρ(t).

Definition 2: A transition prioritization matrix (Q-Matrix)
is a 2D matrix �Qo ∈ [0, 1]S×Σ, where S is the set of abstract

states and Σ is the set of abstract actions and each cell of �Qo is

an estimate of the probability of a distinct abstract state-action

pair (s, a) being an element of a abstract trace p = ρ(t) which

has a high probability of satisfying o.

Informally, an abstract state-action pair has a high value

in the transition prioritization matrix if the corresponding

concrete state-action pairs of the abstract state-action pair have

high probability of being an element of a trace t which satisfies

the objective function o. Note that multiple state-action pairs

can correspond to the same abstract state-action pair as well

as multiple traces can correspond to the same abstract trace.

In Algorithm 3, we present our novel exploration strategy,

QLearning-Based Exploration (QBE), which takes five inputs;

the model M , the current state vc, the state labeling function β,

the action labeling function α, and the transition prioritization

matrix �Qo. The goal of the algorithm is to return one of the

enabled actions at the current state by using the transition

prioritization matrix. The rows of the matrix describe the

abstract states whereas the columns describe the abstract

actions. Each cell has a value between 0 and 1. We obtain

the abstract state for the current state using the state labeling

function. In line 3, we add probabilities of all enabled abstract

actions of the abstract state to a map. Then, we choose one

enabled abstract action from this map where the choice is

proportional to the probabilities existing in the map. This step

is described in line 5. Then, in line 6, we randomly return one

of the concrete actions of the abstract state found in previous

step. Note that when QBE is used in Algorithm 1, α, β, and
�Qo should be given as constants.

Algorithm 4 QLearning Algorithm

Require:
o : V × Z → {0, 1} : Objective

MS = set of all M = (V, v0, Z, ω, λ) : ELTS of all AUTs

β : V → S : State Labeling Function

α : Z → Σ : Action Labeling Function

εu ∈ [0, 1] : Epsilon Update Factor

L ∈ Z
+ : Maximum Number of Actions

γ ∈ [0, 1] : Discount Factor

Ensure:
�Q ∈ [0, 1]|S|×|Σ| : Transition Prioritization Matrix

1: �Q← 0, �N ← 0, ε← 1
2: for all M ∈MS do
3: j ← 0
4: v ← v0
5: rnd ← U [0, 1] � Generate uniform random

6: if rnd < ε then
7: z ← random z ∈ λ(v)
8: else
9: z ← z ∈ λ(v) s.t.

maxa �Q[β(v), a] = �Q[β(v), α(z)]
10: end if
11: repeat
12: v′ ← v′ ∈ V s.t (v, v′, z) ∈ ω
13: rnd ← U [0, 1] � Generate uniform random

14: if rnd < ε then
15: z′ ← random z′ ∈ λ(v′)
16: else
17: z′ ← z′ ∈ λ(v′) s.t.

maxa �Q[β(v′), a] = �Q[β(v′), α(z′)]
18: end if
19: s← β(v), s′ ← β(v′), a← α(z), a′ ← α(z′)
20: �N [s, a]← �N [s, a] + 1 � Update history

21: �Q[s, a]← �N [s, a]−1
(
o(v, z) + γ �Q[s′, a′]− �Q[s, a]

)

+ �Q[s, a] � Update �Q
22: �Q[s]← �Q[s]/

∑
a
�Q[s, a] � Normalize over rows

23: v ← v′, z ← z′, j ← j + 1
24: until (j ≥ L) ∨ v = crash ∨ v is terminal

25: ε′ ← ε · εu � Multiply the learning factor

26: end for
27: return �Q

B. Estimating the Transition Prioritization Matrix

We now show how to use a reinforcement learning tech-

nique called QLearning to estimate the transition prioritization

matrix �Qo used in Algorithm 3. This step occurs before the

exploration starts in an offline fashion.

In Machine Learning, finding shortest paths from the initial

state to a goal state in an unknown terrain or more is solved

via reinforcement learning [18]. One of the most common

reinforcement learning techniques is QLearning [11], which

has previously been used in GUI testing [13] as we described

earlier.

We formally present QLearning iteratively in Algorithm 4.
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Fig. 2. AUT Characteristics of Training Set, Test Set and F-Droid Bench-
marks

In line 2, we run the algorithm for each AUT one by one and

obtain a single transition prioritization matrix that includes the

contributions of all AUTs. The order of selecting models of

AUTs is random, and leads to the same Q-Matrix even after

five different runs of the algorithm. Initially, we start with
�Q as all zeros denoting that we have no apriori knowledge

that any abstract state-action pair would have a higher chance

of satisfying the objective o. The history matrix �N holds a

running count of occurrences of each abstract state-action pair

(s, a). Initially, �N is all zeros. Based on the comparison of

a random variable rnd and ε (the learning factor) in lines 6

and 14, we either randomly choose the next action as shown

in lines 7 and 15 or we pick the next action based on the

transition prioritization matrix �Q we learned so far in lines

9 and 17. Initially, we start with ε = 1, which denotes that

QLearning should do a fully random exploration for the first

AUT. At the end of each iteration, we update ε by multiplying

it with a constant εu ∈ [0, 1] in line 25. We limit the number

of actions in an iteration by a constant L ∈ Z
+ as seen in

line 24. We update the history matrix �N in line 20. We use a

constant γ ∈ [0, 1] as a discount factor in line 21 to decrease

the Q values as we get farther away from the objective. At

each iteration of QLearning after the first iteration, we use the
�Q, �N , and ε returned by the previous iteration while keeping

the other inputs the same. We picked the constants as γ = 0.9
and L = 10 by trial and error. We picked εu = 0.995 so that

the algorithm will have a small but nonzero ε even after it is

trained for all AUTs.

VI. EVALUATION

In this section, we evaluate our new exploration strategy

QBE when trained for increasing activity coverage (QBEa)

and when trained for detecting crashes (QBEc) by answering

two research questions:
RQ1: Activity Coverage: What is the performance of

QBEa compared to other black-box Android testing tools in

terms of activity coverage?
RQ2: Crash Detection: What is the performance of

QBEc compared to other black-box Android testing tools in

terms of detection of distinct crashes?
For evaluation, we implement Algorithms 1-4, as well as

the Depth-First and Random Exploration strategies in An-

droFrame, which is available online for reproducibility [19].

A. Experimental Environment
We performed experiments on an Intel x86 machine with

1TB harddisk, 8x1.6 GHz CPUs containing 8MB L3 cache

and running Ubuntu 12.04 operating system. We installed A3E,

Dynodroid, PUMA, SwiftHand, and Sapienz as the state-of-

the-art for Android testing tools. We use Android SDK version

25.2.4 and an Android 4.4.r5 x86 image on VirtualBox, since

this configuration is compatible with most of the testing tools.

The publicly available versions of Sapienz and Dynodroid are

designed to work with the standard Android Emulator [20]

and not the VirtualBox image. Hence, we used the Android

Emulator to execute Sapienz and Dynodroid.

We downloaded a total of 300 random AUTs from F-

Droid benchmark suite [12]. We formed a training set of 200
AUTs out of 300 with random selection. Then, we formed

our test set using the remaining 100 AUTs. We compare

the characteristics of our training and test sets in Figure 2.

Box plots show that both the training set and the test set

have similar characteristics in terms of application size (in

megabytes), number of instructions (in thousands), and number

of methods (in thousands).

We trained QBE using two objectives, increasing activity
coverage and crash detection on ELTS models of the training

set. We obtained ELTS models by executing Random Explo-

ration (RE) strategy of AndroFrame for 10 minutes for each

AUT in training set.

Our transition prioritization matrix (Q-Matrix) learning pro-

cess includes randomness and our results may be affected

by this randomness. Hence, we reexecuted the same training

process 5 times in order to verify that we obtain the same

Q-Matrix each time. In order to obtain the Q-Matrix, we

divide states into 5 abstract states according to the number

of enabled actions in the state using the functions on left side

of Equation 2 shown below. We propose these abstract states

by inspecting the mean and variance of the states that we

encounter while executing RE. Similarly, we divide actions

into 7 abstract actions as in Equation 2. We abstract the details

of the actions and group them together. For example, different

actions such as clearing a text and writing a very long text have

the same abstract action denoted as text. Note that we use these

abstraction functions as examples, and other functions can be

used as well.

β(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, |λ(v)| ≤ 1
2, |λ(v)| ≤ 3
3, |λ(v)| ≤ 8
4, |λ(v)| ≤ 15
5, |λ(v)| > 15

α(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, z is a menu
2, z is a back
3, z is a click
4, z is a longclick
5, z is a text
6, z is a swipe
7, z is a contextual

(2)

Based on abstraction functions in Equation 2, our transition
prioritization matrix, �Q is a 5 by 7 matrix. We present

our matrices for increasing activity coverage ( �Qa) and crash
detection ( �Qc) in Equations 3 and 4. Some values of these

matrices are interpretable such as longclicking action does not

contribute to activity coverage or crash detection, since the

fourth column is all zeros for both equations. Similarly, we

learn that clicking the menu action (hardware menu button)

when there are more than 15 enabled actions on a screen
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TABLE II
EXPERIMENTAL RESULTS TO ANSWER RQ1 AND RQ2

RQ1: Coverage RQ2: Crash
Tool Activity Instr. # Crashes
DFE 63 34 3

RE 58 30 3.2

QBEa 78 40 7.8

QBEc 65 32 12.6
A3E 41 17 8

DynoDroid 50 35 5.2

Monkey 60 30 9

PUMA 64 32 6

Sapienz 76 44 4

SwiftHand 40 19 0

contributes more to crash detection than to activity coverage,

since the probabilities are 0.33 in �Qc and 0.06 in �Qa.

�Qa =

⎡
⎢⎢⎢⎢⎣

0.11 0.09 0.40 0 0.10 0.30 0
0.13 0.44 0.26 0 0.12 0.05 0
0.06 0.66 0.16 0 0.13 0 0
0.17 0.25 0.40 0 0.09 0.09 0
0.06 0.28 0.52 0 0.09 0.05 0

⎤
⎥⎥⎥⎥⎦

(3)

�Qc =

⎡
⎢⎢⎢⎢⎣

0.04 0.18 0.33 0 0.12 0.33 0
0.19 0.18 0.12 0 0.44 0.07 0
0.13 0.43 0.15 0 0.07 0.23 0
0.17 0.18 0.48 0 0.18 0 0
0.33 0.26 0.13 0 0.23 0.04 0

⎤
⎥⎥⎥⎥⎦

(4)

We execute all testing tools for 10 minutes for each AUT

in the test set. We also repeat each execution 5 times, since

some degree of randomness is involved with our experimental

process due to using probabilities in Q-Matrices described

above. We evaluate all tools in terms of activity coverage and

crash detection. We also execute AndroFrame using configu-

rations Depth-First Exploration (DFE), Random Exploration

(RE), QLearning-Based Exploration with �Qa (QBEa), and

QLearning-Based Exploration with �Qc (QBEc).

B. RQ1: Activity Coverage

We collect activity and instruction coverages using ELLA

[21], a binary instrumentation tool for Android applications.

Note that ELLA normally only reports method coverage so

we extended it to obtain other coverages. We count the

covered activities by counting the covered classes that inherit

android.app.activity class. On top of the covered

units (instructions or activities), we also need to know the total

unit count of the application to calculate coverage. We stati-

cally extract all classes and instructions from the application

binary using the Redexer tool [22]. We extract the activities

using the same tool, by looking at the subset of all classes of

the application that inherit android.app.activity class.

Specifically, we first instrument all AUTs of the test set

using our modified ELLA tool. We collect instruction and

activity coverage of all 100 applications in our test set during

execution of each tool. Since we execute each tool 5 times,

for each AUT we obtain 500 coverage measurements, we
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Fig. 3. Box Plot of Skewness of the Test Set and Skewness Calculation

report the average of these measurements in Table II. Table II

shows that QBEa and Sapienz achieve higher coverage than

other tools. QBEa achieves the best activity coverage, whereas

Sapienz is better in instruction coverage.

We perform statistical tests to determine if activity coverage

difference between QBEa and Sapienz is statistically signifi-

cant. We have five measurements for each tool, where Sapienz

consistently had the same average activity coverage (76%), and

QBEa had noisy activity coverage results (77%, 78%, 79%,

79%, 78%). Since our sample size is small, we use Shapiro-

Wilk test for normality. Shapiro-Wilk test can not reject the

hypothesis that QBEa results have a normal distribution with

p-value = 0.314 and 95% confidence. Then, we perform a one-

sided t-test on QBEa results. The results show that we reject

the null hypothesis of QBEa results coming from a distribution

with a mean less than 76% with p-value = 0.002 and 95%

confidence. Power analysis shows that there is only a 0.003

probability of the claim that QBEa has a larger mean than

Sapienz is false. Since the tests show that QBEa is significantly

better than Sapienz (the tool with the closest activity coverage

to QBEa), we conclude that QBEa is also significantly better

than every other tool in our experiment without any further

statistical tests.

We investigate AUTs where QBEa has better activity cover-

age than Sapienz. QBEa has better activity coverage in 31% of

the applications, Sapienz has better activity coverage in 29%

of the applications, and both tools have the same coverage

in 40% of the applications. The size, instruction count, and

method count of applications where one tool performs better

than the other are similar to each other.

We investigate AUTs where Sapienz has higher instruction

coverage than QBEa. We look at the evenness of distribution

of code over activities of each AUT in our test set. We

first apply Box-Cox transformation to our sample distribution,

because we can not assume normality. Then, we calculate the

sample skewness of this transformed distribution by dividing

the third moment of the transformed distribution over the cube

of sample standard deviation. We take the absolute value of

the skewness. We show our calculations and the box plot of

the skewness in Figure 3. If skewness is far from zero, it

means that the code is distributed to activities unevenly. Figure

3 shows that 5 applications have unusually high skewness.

Our investigation of these applications shows that in all of

these applications, Sapienz has better instruction coverage. On
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Fig. 4. A Crashing Test Case of aagtl Application

average, Sapienz achieves 44% instruction coverage, whereas

QBEa achieves 29% coverage in these 5 applications. This

is because evolutionary algorithm of Sapienz is optimized

to increase instruction coverage, whereas QBEa is trained to

increase activity coverage.

We describe an example case where QBEa reaches more

activities, cz.hejl.chesswalk, a chess engine application. This

application has 10 activities, where QBEa reaches 9 and

Sapienz reaches 8 activities. The ninth activity that QBE

explores is a settings activity. Other testing tools fail to find

this activity. Exploration methodologies implemented in RE,

PUMA, Sapienz, Dynodroid, and Monkey can not reach the

settings activity in the given time, because reachability of

the settings activity requires a specific sequence of transitions

to be executed, which is hard to hit by random exploration

or genetic algorithms. Systematic exploration techniques im-

plemented in DFE and SwiftHand also fail to reach these

activities, since they have to exhaust many other sequences

before reaching these activities. Similarly, while QBEa is

focused on getting to a specific settings activity, Sapienz

plays the game more. Hence, since most of the instructions

concentrate on the game activity, Sapienz achieves higher

instruction coverage. This example leads us to believe that the

skewness of distribution of instructions over activities of an

application is a possible important characteristic for directing

test execution.

Figure II also shows that QBEc does not achieve as much

coverage as QBEa. Although a large difference between QBEa

and QBEc can be seen in activity coverage, the difference

in instruction coverage is small. Hence, we strongly believe

that training the QLearning algorithm for increasing activity

coverage is crucial to achieve high activity coverage. RE

coverage results are similar to Monkey results. This shows us

that our testing framework has no significant flaws compared

to Monkey, which also performs random exploration. A3E and

SwiftHand have the worst coverage. We believe one reason for

this is because the number of actions supported by A3E and

SwiftHand is small compared to other tools.

Overall, QBE achieves the highest activity coverage com-
pared to other tools, given that the QLearning algorithm
is trained for increasing activity coverage.

C. RQ2: Crash Detection

In this case our goal is to count distinct crashes detected

by each tool. For this purpose, we periodically check the

LogCat tool for fatal exceptions during execution. We count

all unique stack traces reported by all fatal exceptions. We

call this count the number of distinct crashes detected by a

tool. We execute each tool 5 times. Hence, we report means

of distinct crashes for each tool in Table II. We observe

that QBEc detects 12.6 crashes, followed by Monkey with

9 crashes and A3E with 8 crashes on average. QBEa detects

7.8 crashes on average which shows that it is also crucial to

train the QLearning algorithm for crash detection to maximize

the number of detected crashes. A3E is able to detect a high

number of crashes, despite its poor performance in coverage

which shows that high number of crashes is not necessarily

correlated with high coverage. Also, SwiftHand was not able

to detect any crashes in the given timeout.

We perform statistical tests to determine if crash detection

difference between QBEc and Monkey is statistically signif-

icant. Both tools have noisy results, so we perform Shapiro-

Wilk test for both. We can not reject the normality of Monkey’s

results (p-value = 0.3254) with 95% confidence. However,

we reject the normality of QBEc’s results (p-value = 0.046).

Hence, we performed a two-sample Wilcoxon test on the

results. The test shows that we reject the null hypothesis that

QBEc finds fewer crashes on average (p-value = 0.005). Since

the tests show that QBEc is significantly better than Monkey

(the tool with the closest number of crashes detected), we

conclude that QBEc is also significantly better than every other

tool in our experiment without any further statistical tests.

We investigate AUTs where QBEc has better crash detection

than Monkey. QBEc has better crash detection in 12% of the

applications and Monkey has better crash detection in 8% of

the applications. The size, instruction count, and method count

of applications where one tool performs better than the other

are similar to each other.

We investigate a crashing test case for aagtl application

generated by QBEc within 10 minutes in Figure 4. First, we

execute a menu action to open up the bottom pop-up menu.

Then, we click on More button to the bottom-right of the

screen. Then, we click on show arrow view from the list. Now,

a black screen with a circle on it appears. From here, we again

execute a menu action and click on cache view button. Only

after these operations, aagtl crashes. None of the other tools

(PUMA, SwiftHand, Sapienz, Monkey, DynoDroid), including

our other methodologies (QBEa, RE, DFE) could detect this

crash in 10 minutes. QBEc has a higher chance of finding

this crash because it gives higher priority to the menu action
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when there are lots of enabled actions on a screen as shown

in Equation 4.

Overall, QBE detects the largest number of distinct
crashes compared to other tools, given that the QLearning
algorithm is trained for crash detection.

VII. DISCUSSION

In this section, we discuss several design issues and threats

to validity. We describe weaknesses and reasons behind our

assumptions, design decisions, and experimental procedure.

A. Design Issues

We collect coverage using a a binary instrumentation tool

ELLA. This tool does not require the source code of the ap-

plication and also it can instrument large applications whereas

a coverage tool that uses source code instrumentation such

as EMMA cannot handle large applications [23]. We also

statically collect the total number of activities from binary

.dex files using Redexer tool, hence we can find even those

activities that are not specified in AndroidManifest.xml.

In Android GUI testing, activities are the main interfaces

presented to an end-user. Hence, activity coverage is a com-

monly used coverage metric in Android GUI testing [4]. We

note that GUI testing is orthogonal to unit testing which aims

to increase coverage at lower levels. That is, increasing activity

coverage and increasing code coverage are distinct training

objectives as expected.

Similar to DynoDroid [8], we also define crashes as fatal

exceptions and use this as a measure of fair crash comparison.

These exceptions correspond to the most severe faults in

Android. Also, we report the number of distinct crashes as a

measure of crash detection performance, which is a common

measure used in Sapienz [6] and DynoDroid [8].

We train our QLearning algorithm by using simple and

intuitive abstraction functions since using all properties of a

state would lead to a huge representation. It may be possible

to improve coverage and crash detection by using better

abstraction functions. In future, we plan to develop and test

sensitivity of results to our abstraction functions.

QBE assumes that there exists a general probability distri-

bution which applies to all AUTs. Hence, we perform offline
QLearning which comes up with a fixed probability distribu-

tion. Thanks to offline QLearning we do not require additional

runtime for updating the distribution during testing. It may

be argued that different AUTs may require very different

sequence of actions to satisfy the same objective (e.g. crash

detection or increasing activity coverage) and therefore the

general probability distribution may not be enough to explain

the patterns for many crashes and activities. In the future, we

plan to use online QLearning to also account for the AUT-

specific patterns.

In AndroFrame, we only consider well-behaving actions

(e.g. valid text inputs which we obtain from a manually created

dictionary). We will research new techniques to exploit bad-

behaving actions to improve crash detection as a future work.

B. Threats to Validity

Internal Validity of our observations hold, since the number

of crashes and the coverage measurements can only be affected

by the testing algorithm in our experimental environment. We

use the same methodology to measure crashes and activity

coverage for all testing tools, which makes a fair comparison

of testing tools. To increase fairness in our comparisons, we

forced Monkey to generate one event in two seconds as also

suggested in previous work [7], since this is the rate that

other testing tools generate events on average. Note that we

keep only the time budget fixed, not the event budget. Event

budget of Monkey is constant as a consequence of fixing

the delay between events and the total time of testing. F-

Droid benchmarks are commonly used in Android GUI Testing

studies [24], therefore our test and training sets are not prone

to selection bias.

External Validity of our observations also hold. We chose

our benchmarks randomly from F-Droid benchmark suite.

Randomness, diversity, and the high number of our bench-

marks suggest that the experimental results on these bench-

marks are externally generalizable. Our benchmark set is di-

verse with many applications from various domains including

news, entertainment, and contact book applications.

Construct Validity of our observations also hold. We take

screenshots of each activity during testing to verify the activity

is indeed covered. AndroFrame produces replayable test cases,

hence we verify crashes via replaying the test cases. We

were not able to automatically verify the crashes detected by

Monkey, PUMA, and SwiftHand, because they do not readily

produce replayable test cases.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed QLearning-Based Exploration

(QBE), a fully automated black-box testing methodology

that explores GUI actions using a well-known reinforcement

learning technique in machine learning, called QLearning.

Specifically, QBE learns from a set of existing applications

the kinds of actions that are most useful in order to reach

a particular objective such as detecting crashes or increasing

activity coverage. We implement QBE on top of AndroFrame,

which also performs automata learning to obtain a model of

the AUT and generates replayable test suites. We conducted

experiments on 100 applications from F-Droid benchmarks to

show the effectiveness of QBE. QBE performed better than

all compared black-box tools in terms of activity coverage

and number of distinct crashes detected.

As future work, we are going to improve our abstraction

functions for states and actions. We will direct our efforts

to implement online QLearning to increase the number of

detected crashes and coverage of our tool. We will also

research techniques to exploit bad-behaving actions in test case

generation to improve crash detection.
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