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Abstract. GUI testing of mobile applications gradually became a very
important topic in the last decade with the growing mobile application
market. We propose Test Case Mutation (TCM) which mutates existing
test cases to produce richer test cases. These mutated test cases detect
crashes that are not previously detected by existing test cases. TCM dif-
fers from the well-known Mutation Testing (MT) where mutations are
inserted in the source code of an Application Under Test (AUT) to mea-
sure the quality of test cases. Whereas in TCM, we modify existing test
cases and obtain new ones to increase the number of detected crashes.
Android applications take the largest portion of the mobile application
market. Hence, we evaluate TCM on Android by replaying mutated test
cases of randomly selected 100 AUTs from F-Droid benchmarks. We show
that TCM is effective at detecting new crashes in a given time budget.

1 Introduction

As of April 2016, there are over 2.6 billion smartphone users worldwide and
this number is expected to go up [1]. There is an increasing focus on mobile
application testing starting from the last decade in top testing conferences and
journals [2]. Android applications have the largest share in the mobile application
market, where 82.8% of all mobile applications are designed for Android [1].
Therefore, we focus on Android GUI Testing in this paper.

The main idea of TCM is to mutate existing test cases to produce richer
test cases in order to increase the number of detected crashes. We first iden-
tify typical crash patterns that exist in Android applications. Then, we develop
mutation operators based on these crash patterns. Typically mutation operators
are applied to the source code of applications. However, in our work we apply
them to test cases.

Typical crash patterns in Android are Unhandled Exceptions, External
Errors, Resource Unavailability, Semantic Errors, and Network-Based Crashes
[3]. We describe one case study for each crash pattern. We define six novel muta-
tion operators (Loop-Stressing, Pause-Resume, Change Text, Toggle Contextual
State, Remove Delays, and Faster Swipe) and relate them to these five crash
patterns.
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Fig. 1. TCM overview

We implement TCM on top of AndroFrame
[4], a fully automated Android GUI testing
tool. We give an overview of TCM in Fig. 1.
First, we generate a test suite for the Appli-
cation Under Test (AUT) using AndroFrame.
AndroFrame obtains an AUT Model which is
represented as an Extended Labeled Transi-
tion System (ELTS). We then minimize the
Generated Test Suite using the AUT Model in
order to reduce test execution costs (Test Suite
Minimization). We apply Test Case Muta-
tion (TCM) on the Minimized Test Suite
and obtain a Mutated Test Suite. We use
AndroFrame to execute the Mutated Test
Suite and collect Test Results.

We state our contributions as follows:

1. Test Case Mutation Operators. We define six mutation operators on Android
test cases to uncover new crashes. Our mutation operators are based on typi-
cal Android crash patterns described in the literature [3]. All of the mutation
operators are novel with the exception of changing text inputs. To the best
of our knowledge, ours is the first work to use mutation-based test case gen-
eration to detect different crash patterns in Android.

2. Test Case Mutation (TCM) Algorithm. We describe a novel algorithm to
generate new test cases from existing ones to detect more crashes.

3. Test Suite Minimization Algorithm. We propose a coverage-based minimiza-
tion algorithm to increase the effectiveness of TCM.

4. Case Studies. We relate known Android crash patterns to our mutation oper-
ators using case studies from F-Droid benchmarks.

5. Experiments. We evaluate TCM for crash detection of 100 AUTs down-
loaded from F-Droid benchmarks. We investigate how coverage and number
of detected crashes change with respect to time.

2 Background

In this section, we first describe the basics of the Android GUI to facilitate the
understanding of our paper.

Android GUI is based on activities, events, and crashes. An activity is a
container for a set of GUI components. These GUI components can be seen on the
Android screen. Each GUI component has properties that describe boundaries
of the component in pixels (x1, y1, x2, y2) and how the user can interact with
the component (enabled, clickable, longclickable, scrollable, password). Each GUI
component also has a type property from which we can understand whether
the component accepts text input. A GUI component accepts text input if its
password property is true or its type is EditText.
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Table 1. List of GUI actions

Non-contextual Param1 Param2 Param3 Param4 Param5

Click x y - - -

Longclick x y - - -

Text x y string - -

Swipe x1 y1 x2 y2 duration

Menu - - - - -

Back - - - - -

Contextual Parameter

Connectivity on/off/toggle

Bluetooth on/off/toggle

Location gps/gps&network/off/toggle

Planemode on/off/toggle

Doze on/off/toggle

Special Param1 Param2 Param3 Param4 Param5

Reinitialize Package Activity - - -

The Android system and the user can interact with GUI components using
events. We divide events in two categories, system events and GUI events
(actions). We show the list of GUI actions that we use in Table 1, which covers
more actions then are typically used in the literature. Note that GUI actions
in Table 1 are possible inputs from the user whereas system events are not.
We group actions into three categories; non-contextual, contextual, and special.
Non-contextual actions correspond to actions that are triggered by user gestures.
Click and longclick take two parameters, x and y coordinates to click on. Text
takes three parameters, x and y for coordinates and string to describe what to
write. Swipe takes five parameters. The first four parameters describe the start-
ing and the ending coordinates. The fifth parameter is used to adjust the speed
of swipe. Menu and back actions have no parameters. These actions just click to
the menu and back buttons of the mobile device, respectively. Contextual actions
correspond to the user changing the contextual state of the AUT. Contextual
state is the concatenation of the global attributes of the mobile device (internet
connectivity, bluetooth, location, planemode, sleeping). The connectivity action
adjusts the internet connectivity of the mobile device (adjusts wifi or mobile
data according to which is available for the mobile device). Bluetooth, location,
and planemode are straightforward. The doze action taps the power button of
the mobile device and puts the device to sleep or wakes it. We use the doze
action to pause and resume the AUT. Our only special action is reinitialize,
which reinstalls and starts an AUT. System events are system generated events,
e.g. battery level, receiving SMS, clock/timer.



TCM: Test Case Mutation to Improve Crash Detection in Android 267

We report a crash whenever a fatal exception is recorded in Android logs
similar to previous work [3,5]. Crashes often result with the AUT terminating
with or without any warning. Some crashes do not visually affect the execution,
but the AUT halts as a result.

We use the Extended Labeled Transition System (ELTS) [6] as a model for
the AUT. Formally, an ELTS M = (V, v0, Z, ω, λ) is a 5-tuple, where

– V is a set of states (vertices),
– v0 ∈ V is the initial state,
– Z is the set of all actions (input alphabet),
– ω : V × V × Z is the state transition relation, and
– λ : V → ℘(Z) is a state labeling function, where ∀v ∈ V, λ(v) ⊆ Z denotes

the set of actions enabled at state v.

We define a GUI state, or simply a state v to be the concatenation of the (1)
package name (a name representing the AUT), (2) activity name, (3) contextual
state, and (4) GUI components.

Each state v has a set of enabled actions λ(v), extracted from its set of GUI
components. We say that a GUI action, or simply an action z ∈ λ(v) is enabled
at state v iff we can deduce that z interacts with at least one GUI component
in v.

A transition is a 3-tuple, (start-state, end-state, action), shortly denoted by
(vs, ve, z). We extend the standard transition and define a delayed transition as
a 4-tuple, (start-state, end-state, action, delay in seconds), shortly denoted by
(vs, ve, z, d). We do this to later change the duration of transitions via mutation.
We define an execution trace, or simply a trace t, as a sequence of delayed transi-
tions. An example trace can be given as t = (v1, v2, z1, d1), (v2, v3, z2, d2), . . . , (vn,
vn+1, zn, dn) where n is the length of the trace.

We say that a trace t is a test case if the first state of the trace is the initial
state v0 (the GUI state when the AUT is started). A test suite TS is a set of test
cases. AndroFrame generates these test suites. Then, TCM applies minimization
and mutation to generate new test suites.

3 Android Crash Patterns and Mutation Operators

In this section, we first describe typical crash patterns for Android applications
based on related work in the literature [3]. We give a list of the crash patterns
in Table 2 and describe them below.

3.1 Android Crash Patterns

C1. Unhandled Exceptions. An AUT may crash due to misuse of libraries
or GUI components, e.g. overuse of a third party library (stressing) may cause
the third party library to crash.
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C2. External Errors. An AUT may communicate with external applications.
This communication requires either permissions or valid Inter Process Commu-
nication (IPC) for Android. There are three types of IPC in Android; intents,
binders, and shared memory. Intents are used to send messages between appli-
cations. These messages are called bundles. Binders are used to invoke methods
of other applications. An AUT may crash with an external error due to (1) the
AUT attempts to communicate with another application without sufficient per-
missions, (2) the AUT receives an intent with an invalid bundle from another
application, (3) the AUT sends an intent with an invalid bundle and fails to
receive an answer due to a crash in the other application, (4) another applica-
tion uses a binder with illegal arguments, (5) the AUT uses a binder on another
application with illegal arguments and fails to receive the return value due to
a crash in the other application, or (6) shared memory of the AUT is freed by
another application.

Table 2. Relating crash patterns and mutation operators

Crash patterns Mutation operators

C1. Unhandled Exceptions M1, M3, M6

C2. External Errors M1, M4, M5, M6

C3. Resource Unavailability M2, M5

C4. Semantic Errors M3

C5. Network-Based Crashes M4, M5, M6

C3. Resource Unavailability. In Android, an AUT may be paused at any
time by executing an onPause() method. This method is very brief and does
not necessarily afford enough time to perform save operations. The onPause()
method may terminate prematurely if its operations take too much time, causing
a resource unavailability problem that may crash the AUT when it is resumed.
Another problem is that an AUT may use one or more system resources such
as memory and sensor handlers (e.g. orientation) during execution. When the
AUT is paused, it releases system resources. The AUT may crash if it is unable
to allocate these resources back when it is resumed.

C4. Semantic Errors. An AUT may crash if it fails to handle certain inputs
given by the user. For example, AUT may crash instead of generating a warning
if some textbox is left empty, or contains an unexpected text.

C5. Network-Based Crashes. An AUT may connect with remote servers or
peers via bluetooth or wifi. The AUT may crash and terminate if it does not
handle the cases where the server is unreachable, the connectivity is disabled, or
the communicated data causes an error in the AUT.
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3.2 Mutation Operators

We now define the set of Android mutation operators that we developed. We
denote these operators by Δ. We describe these mutation operators, then relate
them to the crash patterns above, and summarize these relations in Table 2.

Definition 1. A mutation operator δ is a function which takes a test case t and
returns a new test case t′. We denote a mutation as t′ = δ(t).

M1. Loop-Stressing (δLS). t′ = δLS(t) reexecutes all looping actions of a test
case t multiple times with d′ second delay. An action zi of a delayed transition
ti = (vi, vi+1, zi, di) in t is looping iff vi+1 = vi. Let tj...k denote the subsequence
of actions between jth and kth indices of test case t, inclusively. Then,

δLS(t) = tls1 · tls2 · . . . · tlsn where tlsi =

⎧
⎨

⎩

ti vi �= vi+1

t′i · t′i · . . . · t′i︸ ︷︷ ︸
m times

vi = vi+1 (1)

Here n is the length of test case t and t′i = (vi, vi+1, zi, d
′). We pick d′ = 1 to avoid

double-click, which may be programmed as a separate action than single click.
We pick m = 9. We have two motivations for choosing m = 9. First, in our case
studies, we did not encounter a crash when m < 9. Second, although we detect
the same crash when m > 9, we want to keep m as small as possible to keep
test cases small. Loop-stressing may lead to an unhandled exception (C1) due to
stressing the third party libraries by invoking them repeatedly. Loop-stressing
may also lead to an external error (C2) if it stresses another application until it
crashes.

M2. Pause-Resume (δPR). t′ = δPR(t) adds two consecutive doze actions
between all transitions of the test case t. Let tpr

i = (vi, doze off, 2)·(vi, doze on, 2).
Then,

δPR(t) = tpr
1 · t1 · tpr

2 · t2 · . . . · tpr
n · tn (2)

Pause-resume may trigger a crash due to resource unavailability (C3).

M3. Change Text (δCT). We assume that existing test cases contain well-
behaving text inputs to explore the AUT as much as possible. To increase the
number of detected crashes, we modify the contents of the texts.

t′ = δCT(t) first picks one random abnormal text manipulation operation and
applies it to a random textentry action of the existing test case t. Abnormal text
manipulation operations can be emptytext, dottext, and longtext where empty-
text deletes the text, dottext enters a singe dot character, and longtext enters a
random string of length >200.

Let zct
i denote a random abnormal text manipulation action where zi is a

text action and dct
i denotes the new delay required to completely execute zct

i .
We define t′ = δCT(t) on test cases as follows:

δCT(t) =
{

t �zi = textentry
t1...i−1 · tct

i · ti+1...n otherwise (3)
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where n is the length of t and tct
i = (vi, vi+1, z

ct
i , dct

i ). An AUT may crash because
the corresponding onTextChange() method of the AUT throws an unhandled
exception (C1). The AUT may also crash if the content of the text is an unex-
pected kind of input, which causes a semantic error later (C3).

M4. Toggle Contextual State (δTCS). Existing test suites typically lack con-
textual actions where the condition of the contextual state is crucial to generate
the crash. Therefore, we introduce contextual state toggling with t′ = δTCS(t)
which is defined as follows.

δTCS(t) = t1 · ttcs
1 · t2 · ttcs

2 · . . . · tn · ttcs
n (4)

where n is the length of test case t and ttcs
i is a contextual action transition

(vi+1, vi+1, z
tcs, d′). ztcs corresponds to a random contextual toggle action. We

pick d′ = 10 s for each contextual action since Android may take a long time
before it stabilizes after the change of contextual state. Toggling the contextual
states of the AUT may result in an external error (C2), or a network-based crash
if the connection failures are not handled correctly (C5).

M5. Remove Delays (δRD). t′ = δRD(t) takes a test case t and sets all of its
delays to 0. When reproduced, the events of t′ will be in the same order with t,
but sent to the AUT at the earliest possible time.

δRD(t) = (v1, v2, z1, 0) · (v2, v3, z2, 0) · . . . · (vn, vn+1, zn, 0) (5)

If the AUT is communicating with another application, removing delays may
cause the requests to crash the other application. If this case is not handled
in the AUT, the AUT crashes due to external errors (C2). If the AUT’s back-
ground process is affected by the GUI actions, removing delays may cause the
background process to crash due to resource unavailability (C3). If the GUI
actions trigger network requests, having no delays may cause a network-based
crash (C5).

M6. Faster Swipe (δFS). t′ = δFS(t) increases the speed of all swipe actions
of a test case t. Let zfs

i denote a faster version of zi, where zi is a swipe action.
Then, we define δFS on test cases with at least one swipe action as follows.

δFS(t) = tfs
1 · tfs

2 · . . . · tfs
n (6)

where n is the length of test case t and

tfs
i =

{
(vi, vi+1, zi, di) zi is NOT a swipe
(vi, vi+1, z

fs
i , di) otherwise

If the information presented by the AUT is downloaded from a network or
another application, swiping too fast may cause a network-based crash (C3) due
to the network being unable to provide the necessary data or an external error
(C2). If the AUT is a game, swiping too fast may cause the AUT to throw an
unhandled exception (C1).
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Algorithm 1. Test Suite Minimization Algorithm
Require:

TS : A test suite for the AUT
M : AUT Model

Ensure:
TS′ : Minimized Test Suite

1: TS′ ← ∅
2: for t ∈ {t : t ∈ TS ∧ t does not crash} do � Iterate over non-crashing test cases
3: if covM (TS′ ∪ {t}) > covω(TS′) then � Take only the test cases that increase coverage
4: t′ ← argmin

i
t1...i s.t. covM (TS′ ∪ {t1...i}) = covM (TS′ ∪ {t}) � Shorten the test case

5: TS′ ← TS′ ∪ {t′} � Add the shortened test case to the Minimized Test Suite
6: end if
7: end for

Algorithm 2. Test Case Mutation (TCM) Algorithm
Require:

TS : A Test Suite
X : Timeout of the New Test Suite
Δ: Set of Mutation Operators

Ensure:
TS′ : New Test Suite

1: TS′ ← {}
2: x ← 0
3: repeat
4: t ← random t ∈ TS � Pick a random test case
5: δ ← random δ ∈ Δ s.t. t 	= δ(t) � Pick a mutation operator that changes the test case
6: t′ ← δ(t) � Apply the mutation operator to the test case
7: TS′ ← TS′ ∪ {t′} � Add the mutated test case to the New Test Suite
8: x ← x +

∑
(vs,ve,z,d)∈t′ d � Calculate the total delay

9: until x > X � Repeat until the total delay is above the given timeout

4 Test Suite Minimization and Test Case Mutation

Before mutating the existing test cases in a test suite TS, we first minimize TS.
In order to minimize a test suite TS, we first define an edge coverage function
covω(TS) over the AUT model M as follows:

covM (TS) =
# of unique transitions covered in the AUT Model M by TS

# of all transitions in the AUT Model M
(7)

We present our Test Suite Minimization approach in Algorithm 1. We iterate
over all non-crashing test cases of the original test suite TS in line 2. We use
non-crashing test cases in Algorithm 1 because our goal is to generate crashes
from non-crashing via mutation. We check if the test case t increases the edge
coverage in line 3. If t increases the edge coverage, we shorten the test case t from
its end by deleting transitions that are not contributing to the edge coverage and
add the shortened test case t′ to the minimized test suite.

We present our Test Case Mutation approach in Algorithm 2. We pick a
random test case t from given TS in line 4. Then, we pick a random mutation
operator δ that changes t in line 5. We mutate t with δ and add the mutated
test case t′ to TS′ until the total delay of TS′ exceeds the given timeout X.
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Test Case A
1 v1 reinit 10
2 v1 v2 click 1
3 v2 v1 back 1
4 v1 v2 click 1
5 v2 v1 back 1

Test Case B
1 v1 reinit 8
2 v1 v3 menu 2
3 v3 CRASH menu 1

Test Case C
1 v1 reinit 9
2 v1 v1 back 0
3 v1 v2 click 1
4 v2 v3 click 2
5 v3 CRASH menu 2

Test Case D
1 v1 reinit 15
2 v1 v1 back 0
3 v1 v2 click 2
4 v2 v1 back 1
5 v1 v3 menu 3

(a) Test Cases (b) AUT Model

Mutated 1
1 v1 reinit 15
2 v1 v1 back 1
3 v1 v1 back 1
4 v1 v1 back 1
5 v1 v1 back 1
6 v1 v1 back 1
7 v1 v1 back 1
8 v1 v1 back 1
9 v1 v1 back 1

10 v1 v1 back 1
11 v1 v1 back 0
12 v1 v2 click 2
13 v2 v1 back 1
14 v1 v3 menu 3

Mutated 2
1 v1 reinit 15
2 v1 doze off 2
3 v1 doze on 2
4 v1 v1 back 0
5 v1 doze off 2
6 v1 doze on 2
7 v1 v2 click 2
8 v2 doze off 2
9 v2 doze on 2

10 v2 v1 back 1
11 v1 doze off 2
12 v1 doze on 2
13 v1 v3 menu 3

(c) Mutated Test Cases

Fig. 2. Motivating example (mutations are denoted as bold)

5 Motivating Example

Figures 2a and b show a test suite and an AUT model, respectively. We generate
this test suite and the AUT model by executing AndroFrame for one minute on
an example AUT. We execute AndroFrame for just one minute, because that is
enough to generate test cases for this example. We limit the maximum number
of transitions per test case to five to keep the test cases small in this motivating
example for ease of presentation. The test suite has four test cases; A, B, C, and
D. Each row of test cases describes a delayed transition. The click action has
coordinates, but we abstract this information for the sake of simplicity.

Among the four test cases reported by AndroFrame, we take only the non-
crashing test cases, A and D. In our example, we include D since it increases
the edge coverage and we exclude A since all of A’s transitions are also D’s
transitions, i.e. A is subsumed by D. Then, we attempt to minimize test case
D without reducing the edge coverage. In our example, we don’t remove any
transitions from D because all transitions in D contribute to the edge coverage.
We then generate mutated test cases by randomly applying mutation operators
to D one by one until we reach one minute timeout. Figure 2c shows an example
mutated test suite. Test case Mutated 1 takes D and exercises the back button
for multiple times to stress the loop at state v1. Test case Mutated 2 clicks the
hardware power button twice (doze off, doze on) between each transition. This
operation pauses and resumes the AUT in our test devices. We then execute all
mutated test cases on the AUT. Our example AUT in fact crashes when the loop
on v1 is reexecuted more than eight times and also crashes when the AUT is
paused in state v2. When executed, our mutated test cases reveal these crashes
both at their ninth transition, doubling the number of detected crashes.
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Fig. 3. Number of total distinct crashes detected across time

6 Evaluation

In this section, we evaluate TCM via experiments and case studies. We show
that, through experiments, we improve crash detection. We then show, with
case studies, how we detect crash patterns.

6.1 Experiments

We selected 100 AUTs (excluding the case studies described later) from F-Droid
benchmarks [7] for experiments. To evaluate the improvement in crash detection,
we first execute AndroFrame, Sapienz, PUMA, Monkey, and A3E for 20 min each
on these applications with no mutations enabled on test cases. Then we execute
TCM with 10 min for AndroFrame to generate test cases and 10 min to mutate
the generated test cases and replay them to detect more crashes. AndroFrame
requires the maximum length of a test case as a parameter. We used its default
parameter, 80 transitions maximum per test case.

Figure 3 shows the number of total distinct crashes detected by each tool
across time. Whenever a crash occurs, the Android system logs the resulting
stack trace. We say that two crashes are distinct if stack traces of these crashes
are different.

Our results show that AndroFrame detects more crashes than any other tool
from very early on. TCM detects the same number of crashes with AndroFrame
for the first 10 min (600 s). During that time, AndroFrame detects 15 crashes. In
the last 10 min, TCM detects 14 more crashes whereas AndroFrame detects only
3 more crashes. As a result TCM detects 29 crashes in total whereas AndroFrame
detects 18 crashes in total. As a last note, all other tools including AndroFrame
seem to stabilize after 20 min whereas TCM finds many crashes near timeout.
This shows us that TCM may find even more crashes when timeout is longer.
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(a) Execution of Test Case t (b) Execution of Test Case t′ = δCT(t)

Fig. 4. An example crash found only by TCM

Overall, TCM finds 14 more crashes than AndroFrame and 17 more crashes than
Sapienz, the best among other tools.

We also investigate how much each mutation operator contributes to the
number of detected crashes. Our observations reveal that M1 (δLS) detects one
crash, M2 (δPR) detects four crashes, M3 (δCT) detects two crashes, M4 (δTCS)
detects two crashes, M5 (δRD) detects four crashes, and M6 (δFS) detects one
crash. These crashes add up to 14, which is the number of crashes detected by
TCM in the last 10 min. This result shows that while all mutation operators
contribute to the crash detection, M2 and M5 have the largest contribution.

We present and explain one crash that is found only by TCM in Fig. 4.
Figure 4a shows an instance where AndroFrame generates and executes a test
case t on the Yahtzee application. Note that t does not lead to a crash, but only
a warning message. Figure 4b shows the instance where TCM mutates t and
executes the mutated test case t′. When t′ is executed, the application crashes
and terminates. We note that this crash was not found by any other tool. Mao
et al. [8] also report that Sapienz and Dynodroid did not find any crashes in this
application.

6.2 Case Studies

In this section, we verify that the aforementioned crash patterns exist via case
studies, one case study for each crash pattern. These studies verify that all of
our crash patterns are observable in Android platform. These case studies help
us develop and fine-tune our mutation operators.

Case Study 1. Figure 5a shows a crashing activity of the SoundBoard appli-
cation included in F-Droid benchmarks. Basically, the coin and tube buttons
activate a third party library, AudioFlinger, to produce sound when tapped.
AndroFrame generates test cases which tap these buttons. These test cases pro-
duce no crashes. Then, we mutate the test cases with TCM. When we apply
loop-stressing (M1) on any of these buttons, AudioFlinger crashes due to overuse.
AudioFlinger produces a fatal exception (C1) in Android logs. This crash does
not cause an abnormal termination, but it causes the AUT to stop functioning
(the AUT stops producing sounds until it is restarted).
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(a) C1 (b) C2 (c) Resource Unavailability (C3) Example

(d) Semantic Error (C4) Example (e) Network-Based Crash (C5) Example

C1: Unhandled Exception (C1) Example

C2: External Error (C2) Example

Fig. 5. Case studies 1–5

Case Study 2. Figure 5b shows a crashing activity of the a2dpVol appli-
cation included in F-Droid benchmarks, where AndroFrame fails to generate
crashing test cases. We mutate these test cases with TCM. When we activate
bluetooth (M4), tapping find devices button produces a crash in the external
android.bluetooth.IBluetooth application due to a missing method (C2) and the
AUT terminates.

Case Study 3. Figure 5c shows a crashing activity of the importcontacts appli-
cation included in F-Droid benchmarks. The AUT handles the case that it fails
to import contacts, as we show in the leftmost screen. Pausing the AUT at this
screen causes the background process to abort and free its allocated memory
(we show the related screen in the middle). However, the paused activity is not
destroyed. If the user tries to resume this activity, the AUT crashes as we show in
the rightmost screen, since the memory was freed before. TCM applies a pause-
resume mutation (M2) and triggers this resource unavailability crash (C3).

Case Study 4. Figure 5d shows a crashing activity of the aCal application
included in F-Droid benchmarks. AndroFrame generates test cases with well-
behaving text inputs. These test cases produce no crashes. Then, we mutate the
test cases with TCM. When we apply change text (M3) on the last text box and
then tap the configure button, this produces a semantic error (C4). The AUT
crashes and terminates.
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Case Study 5. Figure 5e shows a crashing activity of the Mirrored application
included in F-Droid benchmarks. When wifi is turned off, the AUT goes into
offline mode and does not crash as shown in the leftmost screen. When we toggle
wifi (M4), the AUT retrieves several articles as shown in the middle, but crashes
when it fails to retrieve article contents due to a network-based crash (C5) as
shown in the rightmost screen.

7 Discussion

Although TCM is conceptually applicable to different GUI platforms, e.g. iOS
or a desktop computer, there are three key challenges. First, our crash patterns
are not guaranteed to exist or be observable in different platforms. Second, our
mutation operators may not be applicable to those platforms, e.g. swipe may
not be available as a gesture. Third, either an AUT model may be impossible to
obtain or a replayable test case may be impossible to generate in those platforms.
When all these challenges are addressed, we believe TCM should be applicable
to not just Android, but other platforms as well.

TCM mutates test cases after they are generated. We could apply mutated
inputs immediately during test generation. However, this requires us to alter the
test generation process which may not be possible if a third party test generation
tool is used. Our approach is conceptually applicable to any test generation tool
without altering the test generation tool.

We use an edge coverage criterion to minimize a given test suite. Because
of this the original test suite covers potentially more paths than the minimized
test suite and therefore explores the same edge in different contexts. Without
minimization, test cases in the test suite are too many and too large to generate
enough mutations to observe crashes in given timeout. Therefore, we argue that
by minimizing the test suite we improve the crash detection performance of TCM
at the cost of the test suite’s completeness in terms of a higher coverage criterion
than edge coverage.

Although TCM detects crashes, it does not detect all possible bug patterns.
Qin et al. [9] thoroughly classifies all bugs in Android. According to this classi-
fication, there are two types of bugs in Android, Bohrbugs and Mandelbugs. A
Bohrbug is a bug whose reachability and propagation are simple. A Mandelbug
is a bug whose reachability and propagation are complicated. Qin et al. further
categorize Mandelbugs as Aging Related Bugs (ARB) and Non-Aging Related
Mandelbugs (NAM). Qin et al. also define five subtypes for NAM and six sub-
types for ARB. TCM detects only the first two subtypes of NAM, TIM and SEQ.
TIM and SEQ are the only kinds of bugs which are triggered by user inputs. If
a bug is TIM, the error is caused by the timing of inputs. If a bug is SEQ, the
error is caused by the sequencing of inputs.

We note two key points on the crash patterns of TCM. First, testing tools
we compare TCM with only detect SEQ bugs. TCM introduces the detection
of TIM bugs in addition to SEQ bugs. Second, Azim et al. [3] further divides
SEQ and TIM bugs into six crash patterns. We base our crash patterns on these



TCM: Test Case Mutation to Improve Crash Detection in Android 277

crash patterns. We present both external errors and permission violations as
one crash pattern since permission violations occur as attempts to communicate
with external applications with insufficient permissions. As a result, we obtain
five crash patterns.

We did not encounter any crash patterns other than the five crash patterns
that we describe in Sect. 3. However, it is still possible to observe other crash
patterns with our mutation operators due to emerging crash patterns caused by
the fragmentation and fast development of the Android platform.

Our mutation operators insert multiple transitions to the test case, creating
an issue of locating the fault inducing transition. Given that the mutated test
case detects a crash, fault localization can be achieved using a variant of delta
debugging [10].

We use regular expressions on the Android logs to detect crashes. In the
experiment, we only detected FATAL EXCEPTION labeled errors as done in
previous work [3,5], ignoring Application Not Responding (ANR) and other
errors described by Carino and Andrews [11]. Although we believe that TCM
would still detect more crashes than pure AndroFrame (fatal exception is the
most common crash in Android), we will improve our crash detection procedure
as a future work to give more accurate results.

We randomly selected 100 Android applications from the well-known F-Droid
benchmarks also used by other testing tools [7]. We show that these applications
have similar characteristics with the rest of F-Droid applications in our previous
work.

8 Related Work

Test Case Mutation (TCM) differs from the well-known Mutation Testing (MT)
[12] where mutations are inserted in the source code of an AUT to measure the
quality of existing test cases. Whereas in TCM, we update existing test cases
to increase the number of detected crashes. Oliveria et al. [13] are the first to
suggest using Mutation Testing (MT) for GUIs. Deng et al. [14] define several
source code level mutation operators for Android applications to measure the
quality of existing test suites.

The concept of Test Case Mutation is not new. In Android GUI Testing,
Sapienz [8] and EvoDroid [15] are Android testing tools that use evolution-
ary algorithms, and therefore mutation operators. Sapienz shuffles the orders of
the events, whereas EvoDroid mutates the test case in two ways: (1) EvoDroid
transforms text inputs and (2) EvoDroid either injects, swaps, or removes events.
TCM mutates not only text inputs, but also introduces 5 more novel mutation
operators. Furthermore, Sapienz and EvoDroid use their mutation operators
for both exploration and crash detection whereas we specialize TCM’s muta-
tion operators for crash detection only. In Standard GUI Testing, MuCRASH
[16] uses test case mutation via defining special mutation operators on test
cases, where the operators are defined at the source code level. They use TCM
for crash reproduction, whereas ours is the first work that uses TCM to dis-
cover new crashes. Directed Test Suite Augmentation (DTSA) introduced by
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Xu et al. in 2010 [17] also mutates existing test cases but for the goal of achiev-
ing a target branch coverage.

We implement TCM on AndroFrame [4]. AndroFrame is one of the state-of-
the-art Android GUI Testing tools. AndroFrame finds more crashes than other
available alternatives in the literature such as A3E and Sapienz. These tools
generate replayable test cases as well. They provide the necessary utilities to
replay their generated test cases. We can mutate these test cases but most of
our mutations won’t be applicable for two reasons. First, A3E and Sapienz do
not learn a model from which we can extract looping actions. Second, A3E
and Sapienz do not support contextual state toggling. Implementing all of our
mutations on top of these tools is possible, but requires a significant amount of
engineering effort. Therefore we implement TCM on top of AndroFrame.

Other black-box testing tools in the literature include A3E [18], SwiftHand
[6], PUMA [19], DynoDroid [20], Sapienz [8], EvoDroid [15], CrashScope [5] and
MobiGUITAR [21]. From these applications, only EvoDroid, CrashScope, and
MobiGUITAR are publicly unavailable.

Monkey is a simple random generation-based fuzz tester for Android. Mon-
key detects the largest number of crashes among other black-box testing tools.
Generation-based fuzz testing is a popular approach in Android GUI Testing,
which basically generates random or unexpected inputs. Fuzzing could be com-
pletely random as in Monkey, or more intelligent by detecting relevant events
as in Dynodroid [20]. TCM can be viewed as a mutation-based fuzz testing
tool, where we modify existing test cases rather than generating test cases from
scratch. TCM can be implemented on top of Monkey or DynoDroid to improve
crash detection of these tools.

Baek and Bae [22] define a comparison criterion for Android GUI states.
AndroFrame uses the maximum comparison level described in this work, which
makes our models as fine-grained as possible for black-box testing.

9 Conclusion

In this study, we developed a novel test case mutation technique that allows us
to increase detection of crashes in Android applications. We defined six muta-
tion operators for GUI test cases and relate them to commonly occurring crash
patterns in Android applications. We obtained test cases through a state-of-the-
art Android GUI testing tool, called AndroFrame. We showed with several case
studies that our mutation operators are able to uncover new crashes.

As a future work, we plan to study a broader set of GUI actions, such as
rotation and doubleclick. We will improve our mutation algorithm by sampling
mutation operators from a probability distribution based on crash rates rather
than a uniform distribution. We will find the most optimal timings for executing
the test generator and TCM, rather than dividing the available time into two
equal halves. We will further investigate Android crash patterns.
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