
Defect Prediction on a Legacy Industrial Software: A Case
Study on Software with Few Defects

Yavuz Koroglu
yavuz.koroglu@boun.edu.tr

Alper Sen
alper.sen@boun.edu.tr

Department of Computer Engineering
Bogazici University, Istanbul, Turkey

Doruk Kutluay
dkutluay@netas.com.tr

Akin Bayraktar
akinb@netas.com.tr

Yalcin Tosun
ytosun@netas.com.tr

Murat Cinar
muratc@netas.com.tr

Hasan Kaya
hasank@netas.com.tr

Netas Telecommunications
Istanbul, Turkey

ABSTRACT
Context: Building defect prediction models for software pro-
jects is helpful for reducing the effort in locating defects. In
this paper, we share our experiences in building a defect
prediction model for a large industrial software project. We
extract product and process metrics to build models and
show that we can build an accurate defect prediction model
even when 4% of the software is defective.
Objective: Our goal in this project is to integrate a defect
predictor into the continuous integration (CI) cycle of a large
software project and decrease the effort in testing.
Method: We present our approach in the form of an experi-
ence report. Specifically, we collected data from seven older
versions of the software project and used additional features
to predict defects of current versions. We compared sev-
eral classification techniques including Naive Bayes, Deci-
sion Trees, and Random Forest and resampled our training
data to present the company with the most accurate defect
predictor.
Results: Our results indicate that we can focus testing ef-
forts by guiding the test team to only 8% of the software
where 53% of actual defects can be found. Our model has
90% accuracy.
Conclusion: We produce a defect prediction model with
high accuracy for a software with defect rate of 4%. Our
model uses Random Forest, that which we show has more
predictive power than Naive Bayes, Logistic Regression and
Decision Trees in our case.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CESI ’16 Austin, Texas USA
c© 2016 ACM. ISBN 978-1-4503-4154-7/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2896839.2896843

CCS Concepts
•Software and its engineering → Maintaining soft-
ware; •Computing methodologies → Supervised learn-
ing by classification; Classification and regression trees;

Keywords
Defect Prediction; Experience Report; Process Metrics; Fea-
ture Selection; Random Forest

1. INTRODUCTION
The complexity of software systems is increasing with the

increasing demands of the industry. Hence, systematic anal-
ysis of the developed software before it reaches the customer
becomes a major challenge. In fact, most software is shipped
with defects in them. Testing is the most commonly used
approach for detecting defects, however the scalability of
traditional testing approaches poses a problem with the in-
creasing size of the software. Defect prediction models have
been successfully used to direct testing efforts to probable
causes of defects in the software. These models employ soft-
ware metrics such as product, process, as well as people.

We constructed a defect prediction model for a legacy soft-
ware for one of the leading systems integration companies in
Turkey, called Netas (previously Nortel Netas). The com-
pany employs test teams, however, due to limited time and
resources, test teams can not sufficiently test the software.
The company has an R&D facility since 1973, and the legacy
software used in this study is under development since 2012.
The legacy software is a VOIP telecommunications software
and contains around 35K Java classes. The company an-
nounces monthly releases and is planning to produce weekly
patches to the software while they move to a continuous in-
tegration system. Therefore, there is not enough time to
sufficiently test the whole project until the next patch.

We collected software product and process metrics accord-
ing to a previous study which investigates the inclusion of
process metrics on top of product metrics for defect pre-
diction. We also added four process metrics (Average Bug
Criticality, Average Bug Fixes, Previous Bug Criticality and

Previous Bug Fixes) on top of the already used process met-
rics. The relationship with older bug fixes and bug criticality
with defectiveness is intuitive since these metrics are directly
related to the previous defects of the Java class. We collected
these metrics for both the previous version and the average
of all older versions. We show that the additional metrics
increase the predictive ability of our model.

We share the following experiences in this paper. We
present our approach to mine metrics from the software and
show that they improve the predictive ability of our model.
Then, we compare different machine learning algorithms and
adjust their parameters to produce the best predictor for the
software. Our model guides the testing effort to only 8% of
the project where 53% of the defects reside.

Defect prediction is applied in wide variety of software
and is not new in Turkey. Tosun et al. [20] have developed
a defect prediction model based for a Turkish telecommuni-
cations company as we did. They use Naive Bayes, whereas
we compare Naive Bayes, Decision Tree, Logistic Regression
and Random Forests. Random Forests are previously used
directly in defect prediction, Chug and Dhall [5] utilize Ran-
dom Forests for defect prediction and report comparatively
better results for Random Forests over other models. The
metrics we used mostly come from studies of Madeyski and
Jureczko [13] and D’Ambros et al [7]. Malhotra presents re-
sults of defect prediction for software with few defects [14].
Our work can be viewed as a defect prediction study of a
software with few defects. We utilize both process and prod-
uct metrics and compare different models to come up with
the best performing defect prediction model for the legacy
software.

We explicitly define our goals aligned with the objectives
of the company in Section 2. We describe the main chal-
lenges and our approach in Section 3. We discuss the results
in Section 4. We explain the threats to validity in Section
5 and share our best practices and important mistakes in
Section 6. We describe similar work in Section 7. We con-
clude with future suggestions and a summary of our work in
Section 8.

2. GOALS
Our main objective in this project was to integrate a defect

predictor into the continuous integration (CI) process of a
large software project and decrease the testing effort. One
of the requirements for our project was that the test team
wanted to test only a small portion, that is 10%, of all Java
classes, and still be able to find a high percentage of the
defects. This will allow the company to make releases faster.

To guide the test team, our model should be able to clas-
sify Java classes as either Defective or Non-Defective. Pre-
dictive ability of such a classifier is measured from its Confu-
sion Matrix, where a confusion matrix is a table that is used
to describe the performance of a classifier on a set of test
data for which the true values are known. Such a confusion
matrix is given in Table 1 where 1 denotes defective and 0
denotes non-defective. Similarly, tp, fp, tn and fn denote
number of true positives, false positives, true negatives, and
false negatives, respectively.

The company challenged us to label 10% of all classes
in the legacy project as Defective. Therefore, the Positive
Prevalence ((tp + fp)/(tp + fp + tn + fn)) of our predictor
should be less than or equal to 10%.

Our second goal is to make test team find most of the

Table 1: Confusion Matrix for a Defect Predictor

predicted
0 1

actual
0 tn fp
1 fn tp

actual defects by inspecting this 10%. Therefore, the Recall
(tp/(tp + fn)) of our predictor should be as close to 1 as
possible. To achieve this, we should minimize false negatives
(fn).

We planned our work in three main phases:

• In the first phase, we collected metrics at class level for
all versions. We obtained the ground truth on defective
classes for each old version through the issue tracking
system.

• In the second phase, we used a machine learning tech-
nique to build a predictive model.

• In the third phase, we used the predictive model to
classify defects in a future release.

First, we analyze the predictive ability of our model on the
training set and predict the previous version, using the data
coming from all versions before the previous version. Then,
we use the best performing learning technique to learn from
all previous versions and predict the current release. We use
the results to guide the testing effort.

3. METHODOLOGY

3.1 Metrics
In defect prediction studies, several product and process

metrics are used. We give a brief description of these metrics
as well as the additional process metrics that we introduce.

3.1.1 Product Metrics
Product metrics are static code attributes that are specific

to a given version of the software. Several product metrics
have been explored in the literature for defect prediction
[13]. We used CKJM Extended [6, 17] to extract the prod-
uct metrics from the source code. The company provided
us with the product metrics given in Table 2 as the source
code of the project was not available to us. The detailed
description of these product metrics can be found in [15,
17].

3.1.2 Process Metrics
Process metrics are attributes related to the change of the

program unit throughout previous versions of the software
(a program unit is a Java class in our case). Madeyski and
Jureczko define process metrics which are known to improve
predictive ability when used with product metrics [13]. We
collected the process metrics shown in Table 3. Although
we were not able to correctly measure NML (i.e. number of
modified lines of a class between two releases) due to unavail-
ability of the required knowledge in JIRA and ClearCase
databases, we calculated the difference in LOC as a similar
measure. There is also a fourth metric NR (number of re-
visions) used in [13], however this was not readily available
from the version control tool that the company used.

Table 2: Collected Product Metrics

Metric Description
1 WMC Weighted Method Count
2 DIT Depth of Inheritance Tree
3 NOC Number of Children
4 CBO Coupling Between Objects
5 RFC Response for Class
6 LCOM Lack of Cohesion in Methods
7 Ca Afferent Couplings
8 Ce Efferent Couplings
9 NPM Number of Public Methods
10 LCOM3 Lack of Cohesion in Methods
11 LOC Lines of Code
12 DAM Data Access Metric
13 MOA Measure of Aggregation
14 MFA Measure of Functional Abstraction
15 CAM Cohesion Among Methods of Class
16 IC Inheritance Coupling
17 CBM Coupling Between Methods
18 AMC Average Method Complexity

Table 3: Known Process Metrics

Metric Description
1 NDPV Number of Defects in the Previous Version
2 NML Number of Modified Lines
3 NDC Number of Distinct Commiters

The company uses JIRA [11] as an issue tracking tool and
ClearCase [2] as a version control utility. From JIRA and
ClearCase data, it is possible to track modifications to Java
classes at each version using a metric extraction script. We
track the version history of a class using class and package
names.

Due to moving to a continuous integration platform, the
company decided to change around 20% of the packages
where Java classes reside. This created a challenge for cor-
rectly gathering process metrics, since the history of some
classes can not be matched with the classes and therefore it
is missing from our data set. The company provided par-
tial information for some of these changes. Although we
incorporated the refactoring information into our metric ex-
traction script, we did not eliminate all problems regarding
class refactorization.

3.1.3 Additional Process Metrics
Since the legacy software is quite mature with only 4% of

the classes as defective, we needed to increase the model ac-
curacy by introducing explanatory features. We introduced
four additional process metrics for this purpose in our study.
These metrics are about the criticality of bugs and the num-
ber of bug fixes for a given class. Another motivation for
introducing these metrics is that if the Java class contained
a high number of fixed defects with high criticality, then the
Java class should have a high defect density. Also, we be-
lieve that as developers fix a Java class, they may introduce
new defects, which increases defectiveness of the future re-
leases. We collect these additional metrics from JIRA and
ClearCase. We show usefulness of the additional metrics by
applying several feature selection methods and comparing
prediction models with and without these metrics in Sec-

Table 4: Additional Process Metrics

Metric Description
1 PBC Previous Bug Criticality(1-5)
2 ABC Average Bug Criticality(1-5)
3 PBF Previous Bug Fixes
4 ABF Average Bug Fixes

tion 4.3.
Table 4 shows these process metrics. In Table 4, first

and second rows refer to the criticality of the defect from 1
(non-critical) to 5 (most critical). Each JIRA issue contains
such a field denoting the criticality of the issue. Third and
fourth rows can be mined by counting the resolved issues
of previous versions of the Java class. Average means that
we take the average number of all previous version data and
Previous means we take data only from the last version prior
to the current.

3.2 Classifiers
After collecting the data, we require a classifier to learn

the previous versions and predict the defects in upcoming
release. There are several choices available. We know that
Naive Bayes, Logistic Regression, J48 Decision Tree and
Random Forest are used in defect prediction [16]. We also
used voting on two best classifiers to boost predictive ability.
We trained each model with different hyperparameters and
compared the Receiver Operational Characteristics (ROC)
of the classifiers as shown in Figure 1. A ROC curve is a
graphical plot that is created by plotting the true positive
rate (TPR) against the false positive rate (FPR) at various
threshold settings. We discuss details of our comparison in
Section 4.1.

As we discussed before, the software project contains very
few defects. Therefore our training set is highly imbalanced.
We followed the results of previous work regarding learn-
ing highly imbalanced data with Random Forests and used
Synthetic Minority Over-sampling TEchnique (SMOTE) [3]
to balance our training set as suggested in [4] and in [10].
SMOTE oversamples the instances belonging to minority
classes in the training set in order to make the class pri-
ors roughly equal to each other (i.e. make the training set
contain roughly equal number of instances for each class).
To make our classifier sensitive enough to defective units,
we oversampled the defective instances so that we have 20x
more defectives in our training set. After oversampling, class
priors of our training set becomes roughly equal.

3.3 Data
The company provided us with data from seven previous

releases of the software. They also provided the product
metrics of the last release. We used the JIRA entries of
older versions of the class to collect the process metrics since
process metrics are related to the history of the class. We
share the general information of our data set in Table 5. The
data set does not contain the number of defects of the last
version, since this information is not available to us yet.

To be able to measure the predictive ability of our clas-
sifier, we predict defects of version 11.2 and compare with
the actual defects found in version 11.2. Our training set to
predict defects in version 11.2 contains 144,111 entries (an
entry for each class of each version) from all 10.x versions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FPR(Type I Error)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P

R
(R

e
c
a

ll)

AUC=1.00,Perfect Model
AUC=0.75,RF+Logistic
AUC=0.73,Random-Forest
AUC=0.72,Logistic-Regression
AUC=0.66,J48-Decision-Tree
AUC=0.67,Naive-Bayes
AUC=0.50,Random Guess

Figure 1: Receiver Operational Characteristics Curve.

Table 5: Data Set

Version # Classes # Defective % Defective
10.0 31758 1584 5%
10.1 32600 1725 5%
10.2 33332 1273 4%
10.3 34702 1920 5%
10.4 37554 1005 3%
11.2 37988 1295 3%
12.0 36089 Not Available Not Available

where 5923 of these entries are defective. Each entry con-
tains 18 product and 7 process metrics and a boolean value
denoting defective/non-defective, in total 26 attributes.

4. RESULTS
We used WEKA tool [9] to train classifiers, apply fea-

ture selection techniques and produce prediction reports on
defective classes and confusion matrices. WEKA is a collec-
tion of machine learning algorithms for data mining tasks.
The algorithms can either be applied directly to a dataset or
called from a Java code. We applied different classification
techniques directly.

4.1 Comparison of Classifiers
Predictive ability of multiple classifiers can be compared

by measuring the Area Under Curve (AUC) of Receiver Op-
erational Characteristics (ROC) of each classifier [1]. ROC
is a curve on two dimensional space where x axis is False Pos-
itive Rate (i.e. fp/(fp + tn)) and y axis is the True Positive

Table 6: Confusion Matrix of Random Forest on
Version 11.2

0 1
0 34242 2451
1 612 683

Rate (i.e. tp/(tp + fn)). For each hyper-parameter setting,
we measure True Positive Rate and False Positive Rate of
the classifier. These measurements form points on the two
dimensional space. When we plot all measured points for the
classifier, we get the ROC curve. Then we calculate the area
under ROC curve (AUC) which is a measure of performance
of the classifier. A perfect classifier’s False Positive Rate is
zero and True Positive Rate is one, so the perfect classifier
is a point on ROC curve. A completely random classifier
would have equal true and false positive rates, therefore a
random classifier is a diagonal line on the ROC curve. We
expect any good classifier to be above the random curve and
close to the perfect point (0.0, 1.0). For different hyperpa-
rameters, we share our measurements in Figure 1.

An ensemble technique, voting between Random Forest
and Logistic Regression techniques produces the best AUC
value. However, since the ensemble model requires too much
time to learn and the company has to consider time limita-
tions, we discarded voting. We chose to use Random Forest
since it is faster and produces the second best AUC.

4.2 Overall Results
We present the confusion matrix produced by the Random

Table 7: Performance Measurements of Random
Forest

Measure Value
Recall (R) 0.527

Precision (P) 0.218
Accuracy (A) 0.919

Positive Prevalence 0.087

Forest on predictions of version 11.2 in Table 6. We present
Recall, Precision and Accuracy as a measure of our model’s
predictive ability. We use the Positive Prevalence to show
that we are in the boundaries of our goal. We present our
measurements in Table 7. We present the definitions of these
measures in Equations 1, 2, 3 and 4.

Recall(R) =
tp

tp + fn
(1)

Precision(P) =
tp

tp + fp
(2)

Accuracy(A) =
tp + tn

tp + fp + tn + fn
(3)

Positive Prevalence =
tp + fp

tp + fp + tn + fn
(4)

We state the following conclusions from the results:

• From Positive Prevalence, we conclude that we can
guide the test team to inspect only 8.7% of the project
classes.

• From Precision, we state that the test team is expected
to find defects in 21.8% of the predicted classes.

• From Recall, we state that the 8.7% of the project
contains 52.7% of the actual defects.

• As a last note, our model has a high overall accuracy
(90%).

4.3 Usefulness of Additional Metrics
In this section, we discuss usefulness of the four additional

metrics we use in Table 4, namely ABC, ABF, PBC and
PBF.

4.3.1 Feature Selection Results
We used feature selection techniques to select the most

useful subset of all metrics. We used the techniques called
GreedyStepwiseSearch and BestFirstSearch in both forward
and backward directions. We used CfsSubsetEval as at-
tribute evaluator. Table 8 shows the occurrence of ABC,
ABF, PBC and PBF metrics after each subset selection. We
can see that ABC and ABF exist in all most useful metric
subsets.

We ranked the attributes according to their information
gain using GainRatioAttributeEval evaluator. We present
the first 10 metrics after evaluation in Table 9. We can see
that PBF and PBC are ranked high. In conjunction with
the results given in Table 8, we believe that the contribution
of all new metrics is significant to our model.

4.3.2 Field Results
We trained our best classifier, Random Forest, without

our additional metrics to predict defects in version 11.2. We
present the resulting confusion matrix in Table 10 and the
performance measures in Table 11. Without the additional
metrics we get lower Precision, Recall and Accuracy values
and higher Positive Prevalence. With additional metrics, we
get 32.1% higher Precision, 18.7% higher Recall and 1.5%
higher Accuracy with 3.3% lower Positive Prevalence over
the results without the additional metrics. We calculated
these results using 5, for example we calculated the increase
in Precision as (0.218−0.165)/0.165 = 0.321. Therefore, we
conclude that the additional metrics impact defectiveness
and are useful for finding defects in the legacy software.

Relative Increase =
Current− Previous

Previous
(5)

5. THREATS TO VALIDITY
The correctness of the collected product metrics is an is-

sue. Since CKJM Extended calculates the LOC from the
bytecode, it may not reflect the correct number of lines of
source code. We assume there is a certain correlation be-
tween bytecode LOC and source LOC. Furthermore, even
if the bytecode LOC is different from the source LOC, we
believe that the binary LOC is still a reasonable metric for
defect prediction.

The correctness of the collected process metrics is also an
issue. Since we are tracking classes by class and package
names, in case of unhandled refactorings we assume that
the old class file is deleted and a new class is created from
scratch. This directly affects all process metrics collected
for that class. 16,094 of 144,111 Java classes in our data
set has no version history and therefore have all zeros as
their process attributes. Previous work suggests that if we
had a way to correctly track the refactored classes, we could
increase the recall and accuracy of our model [19].

We claim that we can guide the test effort to 8% of the
project. However, this claim is not entirely correct. If we
measure the total lines of code of the classes we predict as
defective, it may be well above or below 8% of total lines of
code of the project. Still, we believe that class-level gran-
ularity approximately reflects the decrease in the test team
effort.

We only used the legacy software of the company to train
and use our defect prediction model. Without conducting
experiments on different software, any result we discuss in
this paper may not be generalized.

6. LESSONS LEARNED
For companies that collect version histories and other data

for their projects, it is safe to conclude that the collected
data needs refinement before it can be used in defect predic-
tion.

The company we worked with uses SonarQube [18] to col-
lect product metrics. However, several complex SQL queries
are required to run on different versions of SonarQube to
gather all the product metrics used in this work. Therefore,
we suggested to use CKJM Extended as an alternative.

We learned that it is possible to track changes in classes
by just inspecting JIRA and ClearCase data. We were able
to incorporate the data and extra information given by the

Table 8: Occurrence of the Additional Metrics after Feature Selection

Selection Method Search Direction ABC ABF PBC PBF
BestFirst Forward

√ √

BestFirst Backward
√ √

GreedyStepwiseSearch Forward
√ √

GreedyStepwiseSearch Backward
√ √

Table 9: First Ten Metrics According to Their Indi-
vidual Information Gain

Rank Metric
1 NDC
2 NDPV
3 PBF
4 NML
5 PBC
6 ABF
7 ABC
8 DIT
9 Ca
10 MOA

Table 10: Confusion Matrix of Random Forest with-
out Additional Metrics

0 1
0 33793 2900
1 720 575

company to our model. This extra information allowed us to
easily obtain additional metrics (ABF, PBF, ABC, PBC).
We believe that it is essential to use any knowledge that
can increase predictive ability of trained models like these
additional metrics.

When faced with a highly imbalanced data, we learned
that oversampling allows more flexible models than using a
cost function.

The company also provided us with the weekly patch data
on top of the monthly release data. However, the new data
did not result in an improvement over the current model.
Therefore we believe that either patch data is irrelevant to
our dataset or the predictive ability is not increasing because
of the irregularities in the data. Hence we did not use them
in our experiments.

7. RELATED WORK
Moeyersoms et al. [16] use a rule extraction algorithm

called ALPA to produce comprehensible defect predictors.
They use Random Forests to generate trees and use the trees

Table 11: Performance Measurements of Random
Forest without Additional Metrics

Measure Value
Recall (R) 0.444

Precision (P) 0.165
Accuracy (A) 0.905

Positive Prevalence 0.09

for the rule extraction whereas we directly use a Random
Forest as the defect prediction model. They claim ALPA
model is more accurate than the previous models which work
directly on the data. Our model has roughly the same Ac-
curacy and Recall values with the best measured values of
ALPA model. We are not able to compare Precision since
they did not share that information.

Malhotra presents AUC values of many different defect
prediction models in a systematic review [14]. For cases
where actual defect rates are below 5%, our model has a
better AUC value than the reported methods.

Ghotra et al. [8] calculate AUC values of different clas-
sification techniques on many projects. In comparison with
their work, the AUC value of our defect prediction model
(0.73) stands better than J48 Decision Tree and comparable
to Naive Bayes and ensemble approaches involving Rotation
Forest.

Tosun et al. [20] use Naive Bayes as defect prediction
model in a case study of Turkish communications indus-
try. They use microsampling instead of oversampling. Mi-
crosampling reduces the amount of non-defective instances
so that it matches the amount of defective instances. In
our case, we discard microsampling since it produces a very
small training set.

Most of the metrics we use come from a study on the
process metrics by Madeyski and Jureczko [13]. They used
Stepwise Linear Regression to train their prediction model.
We add more process metrics on top of the proposed metrics
and we use Random Forest, since we are more interested in
the predictive ability of our model than the usefulness of
additional metrics.

Among the metrics D’Ambros et al. [7] use in their ex-
tensive study of bug prediction approaches, 10 of them were
common to our metrics (NML, DIT, WMC, RFC, CBO,
LCOM, Ca, Ce, NPM, PBF). They also use one of the ad-
ditional metrics we use, Previous Bug Fixes (PBF). They
report that using PBF performs better than the other prod-
uct and process metrics.

Regression Testing [21] is used to eliminate redundant test
cases and reduce test effort by decreasing the test suite size.
With our prediction model, the test team is guided to write
more tests for dangerous classes and fewer tests for the safe
ones. Therefore, we argue that the resulting test suite will
have less redundancy and decrease regression testing effort
[12].

8. CONCLUSIONS
Our defect prediction model enables the reduction of the

overall test effort. By inspecting only 8% of the software
project, we correctly predict 53% of all known defects in the
software. Our additional metrics increase both the Preci-
sion and the Recall of our model by 32% and 18% over the
results without additional metrics, respectively. We show
that by comparing AUC values, Random Forest produces

defect prediction models with better predictive ability than
other learning techniques such as Naive Bayes, Logistic Re-
gression, and Decision Trees. Our prediction model is in-
corporated into the continuous integration pipeline and is
starting to be used on a new version of the software. We
believe that the new results will increase confidence in our
defect prediction model. In the future we plan to implement
our model as an online algorithm, which learns with each
release. Also, we plan to replicate our study on different
companies and projects, to increase external validity.

9. REFERENCES
[1] E. Alpaydin. Introduction to Machine Learning. The

MIT Press, 3rd edition, 2014.

[2] ClearCase, http://www-
03.ibm.com/software/products/en/clearcase.

[3] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. Smote: Synthetic minority over-sampling
technique. J. Artif. Int. Res., 16(1):321–357, June
2002.

[4] C. Chen, A. Liaw, and L. Breiman. Using Random
Forest to Learn Imbalanced Data. Technical report,
Department of Statistics, University of Berkeley, 2004.

[5] A. Chug and S. Dhall. Software defect prediction
using supervised learning algorithm and unsupervised
learning algorithm. In Confluence 2013: The Next
Generation Information Technology Summit (4th
International Conference), pages 173–179. IET, 2013.

[6] CKJM Extended,
http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/.

[7] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating
defect prediction approaches: A benchmark and an
extensive comparison. Empirical Softw. Engg.,
17(4-5):531–577, Aug. 2012.

[8] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting
the impact of classification techniques on the
performance of defect prediction models. In
Proceedings of the 37th International Conference on
Software Engineering - Volume 1, ICSE ’15, 2015.

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, Nov. 2009.

[10] T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell. A systematic literature review on fault
prediction performance in software engineering. IEEE
Trans. Softw. Eng., 38(6):1276–1304, Nov. 2012.

[11] JIRA, https://www.atlassian.com/software/jira.

[12] Y. Kastro and A. B. Bener. A defect prediction
method for software versioning. Software Quality
Journal, 16(4):543–562, Dec. 2008.

[13] L. Madeyski and M. Jureczko. Which process metrics
can significantly improve defect prediction models? an
empirical study. Software Quality Journal,
23(3):393–422, Sept. 2015.

[14] R. Malhotra. A systematic review of machine learning
techniques for software fault prediction. Appl. Soft
Comput., 27(C):504–518, Feb. 2015.

[15] Description of Product Metrics,
http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/metric.html.

[16] J. Moeyersoms, E. J. de Fortuny, K. Dejaeger,
B. Baesens, and D. Martens. Comprehensible software

fault and effort prediction: A data mining approach.
Journal of Systems and Software, 100:80–90, 2015.

[17] D. Spinellis. Tool writing: A forgotten art? IEEE
Softw., 22(4):9–11, July 2005.

[18] SonarQube, http://www.sonarqube.org.

[19] C. Tantithamthavorn, S. McIntosh, A. E. Hassan,
A. Ihara, and K. Matsumoto. The impact of
mislabelling on the performance and interpretation of
defect prediction models. In Proceedings of the 37th
International Conference on Software Engineering -
Volume 1, ICSE ’15, 2015.

[20] A. Tosun, A. Bener, B. Turhan, and T. Menzies.
Practical considerations in deploying statistical
methods for defect prediction: A case study within the
turkish telecommunications industry. Inf. Softw.
Technol., 52(11):1242–1257, Nov. 2010.

[21] S. Yoo and M. Harman. Regression testing
minimization, selection and prioritization: A survey.
Softw. Test. Verif. Reliab., 22(2):67–120, Mar. 2012.

