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Abstract—A reasoning engine infers logical consequences from
a set of fixed axioms and observations. However, before it can
make an inference, it must compile the axioms and observations
which are given in a predefined format. Any attempt to test
the correctness of a reasoning engine assumes that it compiles
inputs correctly, but that may not be the case. In this work,
we implement a mutated grammar fuzzer to automatically
generate tests for the compilation stage of Assumption-based
Truth Maintenance System (ATMS), a reasoning engine for
model-based diagnosis. We also implement a recognizer as an
oracle and automatically evaluate the correctness of compiler
output. We automatically generate, execute, and evaluate more
than a million tests in two weeks. We show that while tests
generated from the true grammar of ATMS find no faults, tests
generated from mutated grammars uncover an important fault
in the compiler. We also show that mutated grammars achieve
higher code coverage with fewer tests and the original grammar
cannot cover any code that is not covered by mutated grammars.
To the best of our knowledge, ours is the first work that provides
a practical implementation and evaluation of a mutated grammar
fuzzer. We make the implementation available online along with
small examples, tests generated for this paper, and steps to
reproduce our experiments.

Index Terms—compiler testing, fuzz testing, mutation testing,
grammar fuzzing

I. INTRODUCTION

Reasoning engines infer logical consequences from a set of
fixed axioms and observations. Reasoning engines are used in
many areas including automated diagnosis [1] and debugging
[2] to increase reliability. However, a reasoning engine may
increase the reliability of a system only if the reasoning engine
itself is reliable. Therefore, testing these engines is important
to ensure overall reliability.

Reliability of a reasoning engine is dependent on two
functions. First, a reliable reasoning engine must never infer
illogical consequences. Second, a reliable reasoning engine
must accept only valid inputs and reject all invalid inputs.
Therefore, we investigate reasoning engines by analyzing them
in two parts, compiler and reasoner. The compiler ensures that
only valid inputs are accepted and the reasoner ensures that
all consequences are logical.

In order to test the reasoner, we must first assume that the
compiler is reliable. We implement gFuzzer, a simple grammar
fuzzer, to test this assumption. gFuzzer takes a grammar
and automatically generates, executes, and evaluates valid test

inputs using that grammar. However, it only generates valid
test inputs. We must also test if the reasoning engine accepts
some invalid test inputs. In order to make the reasoning engine
wrongfully accept an invalid test input, we argue that the
invalid test input should be similar to a valid test input. There-
fore, we implement mgFuzzer on top of gFuzzer. mgFuzzer is
a grammar fuzzer that mutates the original grammar and then
fuzzes the mutated grammar, thus enabling invalid test input
generation. We propose six mutation operators for mgFuzzer.
We evaluate gFuzzer and mgFuzzer by generating tests on a
reasoning engine called Assumption-based Truth Maintenance
System (ATMS) and show that these mutation operators are
useful for finding faults in ATMS and achieve higher code
coverage than simple grammar fuzzing.

Main contributions of this paper are as follows.

1) We show the effectiveness of fuzzing mutated grammars
instead of fuzzing the original grammar. We generate
1,490,388 tests from the original grammar and find no
faults whereas we generate 1,026 tests from mutated
grammars and find an important fault in the compiler.
We show that mutated grammars achieve 8.5% higher
coverage and the original grammar cannot cover any
code that is not covered by mutated grammars.

2) We implement a fully automated approach that gen-
erates, executes, and evaluates tests, called gFuzzer.
gFuzzer can fuzz any given grammar in Backus-Naur
Form (BNF), execute generated tests on the compiler
under test, and evaluate test outputs as passed or failed.

3) We implement mgFuzzer on top of gFuzzer. mgFuzzer
mutates a grammar and generate tests from the mutated
grammar. To the best of our knowledge, ours is the
first work that provides a practical implementation and
evaluation of a mutated grammar fuzzer. We make the
implementation available online [3] along with small
examples, tests generated for this paper, and steps to
reproduce our experiments.

We organize the remaining of this paper as follows. We
describe ATMS and context-free grammars in Section II. We
describe our approach in Section III. We evaluate our approach
and describe faults reported by our implementation in Sec-
tion IV. We explain the challenges and issues in Section V.
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We discuss the related work in Section VI. We conclude
by summarizing our work and future avenues of research in
Section VII.

II. BACKGROUND

A. Assumption-based Truth Maintenance System (ATMS)
Classical logic (see e.g. [4] for an introduction) like proposi-

tional logic or first-order logic provides means for representing
knowledge about the world in an accurate way preventing from
ambiguous interpretations. When adding new facts or rules
to a logical formula or theory, we are always able to derive
the same or an increased amount of facts. This monotonicity
property of classical logic, however, leads to trouble when
dealing with common sense knowledge, i.e., formulae or rules
that are not always applicable. Let us consider the following
logical theory Th representing the behavior of two bulbs
connected in parallel with a battery. For such a scenario we
would expect that both bulbs are illuminated, and whenever
we see one of the bulbs transmitting light, there must be a
voltage available provided by the battery:

Th =

⎧⎨
⎩

voltage→ bulb1 light,
voltage→ bulb2 light,

(bulb1 light ∨ bulb2 light)→ voltage

⎫⎬
⎭

Now let us assume that we observe bulb1 glowing but bulb2
not, e.g., OBS = {bulb1 light,¬bulb2 light}. When bring-
ing together the observations and the theory, i.e., Th∪OBS,
the resulting logical formula becomes inconsistent allowing
us to derive anything. Because we are always interested in
consistent theories, we have to come up with a method that
allows removing inconsistencies, and the ATMS [5] provides
such means. The ATMS can handle assumptions, which we
write starting with a capitalized letter, directly. An assumption
is a proposition where its truth value is set by the ATMS
and not the theory itself. The ATMS always tries to make an
assumption true unless this leads to inconsistency. Let us have
a look at theory Th′ capturing again the battery-bulb circuit.
This time we say that the battery is delivering a voltage if it
is working as expected, e.g., OK bat is true. Each bulb can
only be illuminated if it is ok, and there is a voltage available.

Th′ =

⎧⎪⎨
⎪⎩

OK bat→ voltage,
(OK bulb1 ∧ voltage)→ bulb1 light,
(OK bulb2 ∧ voltage)→ bulb2 light,
(bulb1 light ∨ bulb2 light)→ voltage

⎫⎪⎬
⎪⎭

When combining the new theory with the observations
Th′ ∪ OBS the ATMS computes all sets of assumptions
leading to an inconsistency. Such a set is also called a conflict.
For Th′ ∪OBS the ATMS only returns {OK bulb2} stating
that bulb2 has to be broken.

The ATMS and similar methods allowing to retain consis-
tencies for logical formulae are of use for diagnosis [1], [6],
self-adaptive systems [7], and also debugging [2].

B. Context-Free Grammars in Chomsky Normal Form
Our reasoning engine, ATMS, accepts axioms and observa-

tions according to a Context-Free Grammar (CFG). Formally,
a CFG G = (V,Σ, R, S) is a 4-tuple where

• V is the set of non-terminal rules.
• Σ is the set of terminal symbols.
• R is a finite relation from V to (V ∪ Σ ∪ {ε})∗. It is

also called the rule set of the CFG. Each element of R is
called a production rule or rule in short. Each element in
the domain of R is called an expansion of a non-terminal.

• S ∈ V is the root.

Our grammar is in Chomsky Normal Form (CNF) so we can
develop a recognizer for it. CNF is the same as CFG, except
R is now a finite relation from V to (V × V )∪Σ∪ {ε}. This
ensures that every non-terminal has only three types of rules.
These are two consecutive non-terminals, a single terminal, or
an empty string (ε).

III. METHODOLOGY

Our aim in this section is to design and implement a fully
automated tool for testing the ATMS compiler. In order to fully
automate the testing process, all the following tasks must be
automated.

1) Test Generation
2) Test Execution
3) Test Oracle

Fig. 1 shows the overview of our approach. In the test
generation phase, we generate tests by giving the ATMS
Grammar to two generator tools, gFuzzer and mgFuzzer.
Dotted lines show the flow of gFuzzer while dashed lines show
the flow of mgFuzzer. Solid lines are used by both approaches.
In the test execution phase, we execute the generated test
inputs on ATMS. In the test oracle phase, we use a Cocke-
Younger-Kasami (CYK) Recognizer [8] to decide if the test
input should be accepted or rejected. If ATMS agrees, then
the test is passed, otherwise, the test is failed. Since gFuzzer
uses the original grammar, it always generates valid inputs and
therefore we only need the CYK recognizer for mgFuzzer.

A. Test Generation
Our aim in this part is to generate tests that check two types

of errors in a parser, Type I and Type II. Type I errors are cases
where the parser accepts an invalid input (false positive). Type
I errors can be exploited to force invalid inferences from the
reasoning engine. Type II errors are cases where the parser
rejects a valid input (false negative). Type II errors can cause
the reasoning engine not to function as it was intended to. We
implement two approaches, gFuzzer and mgFuzzer, to generate
tests for these errors.

1) Grammar Fuzzer (gFuzzer): Generates a random test
input from a given grammar. We show how gFuzzer works in
Algorithm 1. The CFG G is the input of this algorithm. First,
we initialize the test input t as S in Line 1. The test input
t is basically an n-tuple where each tuple is an element of
V ∪Σ ∪ {ε}. Initially, there is only one tuple, so we set n to
1 in Line 2. We denote the ith tuple as ti. For all tuples, if
the tuple is a non-terminal, we pick a random rule to expand
the non-terminal in Line 7. We denote the expansion of ti as
t′i. If ti is not a non-terminal, we set t′i to ti in Line 9. We
update t in Line 13. We use the short t′1,n notation to denote
the concatenation t′1 · . . . ·t′n. Note that each ti is an element of
V ∪Σ∪{ε} whereas each t′i is an element of (V ∪Σ∪{ε})m.
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Fig. 1. Overview of Our Approach

Algorithm 1 Grammar Fuzzer (gFuzzer)

Require: CFG G = (V,Σ, R, S)
Ensure: Test Input t ∈ (Σ ∪ {ε})∗

1: t← S � Start from the root
2: n← 1 � Initially, there is only one tuple
3: repeat
4: n′ ← 0
5: for i from 1 to n do � For all tuples in t
6: if ti ∈ V then
7: t′i ← random t′i s.t. (ti, t′i) ∈ R � Expand ti
8: else
9: t′i ← ti � Do not expand ti

10: end if
11: n′ ← n′ +m where t′i ∈ (V ∪ Σ ∪ {ε})m
12: end for
13: t← t′1,n � Update t
14: n← n′ � Update n
15: until t ∈ (Σ ∪ {ε})∗

This means that with each expansion, t grows, so we calculate
the new tuple count in Line 11 and update n accordingly in
Line 14. We repeat this process until there are no non-terminals
left in t.

We give the grammar of ATMS to gFuzzer so it generates
valid inputs. gFuzzer always generates valid inputs, so it only
checks Type II errors.

We need invalid inputs to test for Type I errors. ATMS
immediately rejects completely random strings, so we argue
that we should generate invalid inputs that look similar to
the valid ones in order to fool ATMS. Therefore, we develop
grammar mutation operators to perturb the original CFG so
that gFuzzer generates invalid inputs that look similar to the
valid ones.

Formally, a grammar mutation operator or mutation opera-
tor in short, is a partial function that takes a CFG and returns
a modified CFG. We denote it as δ(O) = G where δ is
the mutation operator function, O is the original CFG and G
is the mutated CFG. Mutation operators are partial functions
because there may be grammars for which a mutation operator
is inapplicable and therefore not defined.

2) Mutated Grammar Fuzzer (mgFuzzer): Generates a
random test input that is probably invalid. We show how
mgFuzzer works in Algorithm 2. There are two inputs, the

Algorithm 2 Mutated Grammar Fuzzer (mgFuzzer)

Require: CFG O = (V,Σ, R, S) and Mutation Set Δ
Ensure: Test Input t ∈ (Σ ∪ {ε})∗

1: δ ← random δ ∈ Δ s.t. δ(O) is defined
2: G← δ(O)
3: execute Algorithm 1

original CFG O and a mutation set Δ. A mutation set is a
set of mutation operators. First, we pick a random mutation
operator δ from Δ such that δ is defined on the original CFG
O. Then we apply the mutation operator δ on the original CFG
O and get the mutated CFG G. Then we execute Algorithm 1
with the mutated grammar G. Note that, for each test input,
we re-mutate the original grammar.

We define six mutation operators for mgFuzzer through
Algorithms 3-8. We based our mutation operators in Algo-
rithms 3-5 on previous work [9]. To the best of our knowledge,
all the remaining mutation operators are novel.

1) Terminal Replacement (δTR) : Swaps two terminals of
the grammar. Formally, it finds two rules (A, a), (B, b) ∈
R such that ∃i, j where ai, bj ∈ Σ and ai 	= bj . Then
in the mutated rule set R′, these rules are replaced with
(A, a1,i−1 · bj ·ai+1,n) and (B, b1,j−1 ·ai · bj+1,m). This
mutation operator is undefined for CFGs that has no such
a pair of rules.

2) Deletion (δDE) : Replaces all rules of a random non-
terminal other than the root symbol of a CFG with empty
string. Formally, it finds a non-terminal A ∈ V − {S}
and ensures that (A,ε ) ∈ R′ is the only rule of A in the
mutated CFG. This mutation operator is undefined for
CFGs where V = {S}.

3) Duplication (δDU) : Duplicates a rule. Formally, it ran-
domly picks a non-terminal A ∈ V . Then it creates a
new non-terminal A′ such that V ′ = V ∪ {A′} where
V ′ is the mutated set of non-terminals. In the mutated
rule set R′, all previous rules (A, p) ∈ R are replaced
with (A′, p) ∈ R′ and the new rule (A,A′ ·A′) ∈ R′ is
added. This operator is defined for all CFGs.

4) Exchange (δEX) : Finds a rule that has exactly two non-
terminals and nothing else. Then it swaps these non-
terminals. Formally, it finds a non-terminal A ∈ V such
that (A,B · C) ∈ R where B,C ∈ V and B 	= C.
Then in the mutated rule set R′, it replaces this rule
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Algorithm 3 Terminal Replacement

1: function δTR(O = (V,Σ, R, S))
2: ai ← random ai s.t. ∃(A, a) ∈ R, ∃i, ai ∈ Σ
3: bj ← random bj s.t. ∃(B, b) ∈ R, ∃j, bj ∈ Σ− {ai}
4: R′ ← R− {(A, a), (B, b)}
5: R′ ← R′ ∪ {(A, a1,i−1 · bj · ai+1,n)}
6: R′ ← R′ ∪ {(B, b1,j−1 · ai · bj+1,m)}
7: return G = (V,Σ, R′, S)
8: end function

Algorithm 4 Deletion

1: function δDE(O = (V,Σ, R, S))
2: A← random A ∈ V − {S}
3: R′ ← R− {(A, p)|∀p, (A, p) ∈ R} ∪ {(A,ε )}
4: return G = (V,Σ, R′, S)
5: end function

Algorithm 5 Duplication

1: function δDU(O = (V,Σ, R, S))
2: A← random A ∈ V
3: V ′ ← V ∪ {A′}
4: R′ ← R ∪ {(A′, p)|∀p, (A, p) ∈ R}
5: R′ ← R′ − {(A, p)|∀p, (A, p) ∈ R}
6: R′ ← R′ ∪ {(A,A′ ·A′)}
7: return G = (V ′,Σ, R′, S)
8: end function

with (A,C · B). This operator is undefined for CFGs
which do not contain non-terminals with a rule that has
two non-terminals.

5) Recursion Insertion (δRI) : Makes a rule recursive. For-
mally, it finds a rule (A, a) ∈ R and adds (A,A · a) to
the mutated rule set R′. This operator is defined for all
CFGs.

6) Terminal Insertion (δTI) : Randomly picks a rule and
inserts a terminal to the rule. Formally, it randomly picks
a rule (A, a) ∈ R. In the mutated rule set, the rule
is replaced with either (A, x · a) or (A, a · x) where
x ∈ {a,A,.,!,@,&,%,+,?,*,0,1,-,_,;}. This
mutation operator is defined for all CFGs and it is the
only mutation operator that modifies the set of terminals
Σ.

Test inputs generated by mgFuzzer are not always invalid.
Test inputs generated by mgFuzzer might not kill the mutation,
in other words, the test input may not be generated by a
mutated rule. Then the test input must be valid. Even if the
test input kills the mutation, it still might be accidentally valid.
Therefore, mgFuzzer generates tests for both Type I and Type
II errors.

B. Test Execution

ATMS originally takes inputs from a Graphical User Inter-
face (GUI). We modified the source code of ATMS so it now
accepts text input, parses the input and gives either a compile
failed message or all the inferred consequences as output. We

Algorithm 6 Exchange

1: function δEX(O = (V,Σ, R, S))
2: (A,B,C)←

random A,B,C ∈ V
s.t. B 	= C, (A,B · C) ∈ R

3: R′ ← R− {(A,B · C)}
4: R′ ← R′ ∪ {(A,C ·B)}
5: return G = (V,Σ, R′, S)
6: end function

Algorithm 7 Recursion Insertion

1: function δRI(O = (V,Σ, R, S))
2: (A, a)← random (A, a) ∈ R
3: R′ ← R ∪ {(A,A · a)}
4: return G = (V,Σ, R′, S)
5: end function

Algorithm 8 Terminal Insertion

1: function δTI(O = (V,Σ, R, S))
2: ΣTI ← {a,A,.,!,@,&,%,+,?,*,0,1,-,_,;}
3: A← random A ∈ V
4: x← random x ∈ ΣTI

5: R′ ← random R′ ∈ {R∪{(A,A·x)}, R∪{(A, x·A)}
6: Σ′ ← Σ ∪ ΣTI

7: return G = (V,Σ′, R′, S)
8: end function

TABLE I
CONFUSION MATRIX OF CYK RECOGNIZER AND ATMS OUTPUTS

Recognizer
ATMS Compile Failure Consequence List

Reject Test Passed Type I Error
Accept Type II Error Test Passed

feed the fuzzer output to the modified ATMS and feed the
modified ATMS output to the test oracle.

C. Test Oracle

Our aim in this part is to design an automated test oracle
that decides if the test is failed or passed. In our case, the
test is passed only if the input is parsed correctly. Test inputs
generated by gFuzzer are always valid, so the test is passed if
and only if ATMS does not produce compile failure message.
For inputs generated by mgFuzzer, we require a recognizer that
ultimately decides whether the test input should be accepted
by a given grammar or not.

We implement a Cocke-Younger-Kasami (CYK) Recognizer
[8], which is a generic bottom-up parser for context-free
grammars in Chomsky Normal Form. The CYK Recognizer
outputs either accept or reject whereas ATMS outputs either
a compile failure message or a list of consequences. Table I
shows how our automated oracle decides if the test is passed
or not by looking at the outputs of CYK Recognizer and
ATMS. The test is passed if and only if the two outputs agree,
otherwise, failed with either a Type I or Type II error.
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TABLE II
TEST GENERATION RESULTS FOR gFuzzer AND mgFuzzer IN ONE WEEK

Rule Code
Failed Passed Total Cov. (%) Cov. (%)

gFuzzer 0 1,490,388 1,490,388 100 67.6
mgFuzzer 2 1,024 1,026 100 75.9

Both 2 1,491,412 1,491,414 100 75.9

TABLE III
FAILED TEST INPUTS

Input #1
x1,falsex2()x3->x2.
Assumption1.

Input #2

Assumption1,x2(false,x3)false.
Assumption3.
Assumption2.
x1.

IV. EVALUATION

We executed gFuzzer and mgFuzzer on ATMS, each for one
week. We show the test results in Table II.

Even though we executed both tools for the same duration,
mgFuzzer generated much fewer test inputs than gFuzzer.
This slowdown is caused by the CYK Recognizer. The largest
test input created by mgFuzzer has 26544 statements, which
corresponds to more than 100K tokens. CYK Recognizer’s
time complexity is O(n3) where n denotes the number of
tokens. We also note that there can be multiple tokenizations
of the test input and in that case, CYK Recognizer has to
check all of them. Processing this input alone took slightly
less than a day with our implementation.

Although gFuzzer generated almost 1.5 million tests, it
did not find a single failed test input whereas mgFuzzer
generated two tests that reveal the same important fault in
the ATMS. We show these failed tests in Table III. Input
#1 is generated by Recursion Insertion while Input #2 is
generated by Deletion. We figured out that ATMS had a
Type I error that allowed a predicate immediately followed
by another if the first predicate ends with a paranthesis. For
these test inputs, ATMS reported unexpected consequences.
Unexpected consequences may trigger fail-safe behavior in no-
fail conditions. This is an important potential vulnerability for
safety-critical systems. For example, an autonomous vehicle
may be forced to pull over and stop, or worse, crash for no
reason.

We collected the cumulative rule coverages of gFuzzer and
mgFuzzer. Both tools achieved 100% rule coverage. Test suites
generated by our tools are at least equivalent in coverage to
a test suite generated by Purdom’s algorithm [10]. This is a
known baseline in compiler testing [11].

We also collected code coverages of the ATMS parser using
EclEmma [12]. Table II shows that gFuzzer achieved 67.6%
whereas mgFuzzer achieved 75.9% coverage. Furthermore,
when both tests suites are combined, we notice that the
coverage is still 75.9%. This shows us that gFuzzer could
not cover any code that is not covered by mgFuzzer. Overall,
our evaluation shows that mgFuzzer achieved 8.5% higher
coverage with fewer tests. Further investigation reveals that
the code that is not covered by our tools consists unused
constructors and methods unrelated to the compiler.

V. DISCUSSION

A. Challenges

Some aspects of practically generating tests with our ap-
proach proved to be challenging. Fig. 2 shows the grammars
we used during our study. These grammars are represented in
Backus-Naur Form (BNF) and furthermore we support regular
expressions as terminal symbols. This allowed us to state the
variable naming conventions of ATMS in a convenient manner.
During our initial attempts, CYK Recognizer did not recognize
some of the valid inputs because we were using the grammar
in Fig. 2a both for Test Generation and Test Oracle phases.
This a generative grammar designed to have the same variable
in the same test input multiple times which is expected from
a valid test input. However, mutation creates unrecognizable
variable names because the grammar did not include them.
We created the recognizer grammar in Fig. 2b in order to
deal with this issue. In the end, we had to prepare slightly
different grammars for the Test Generation and Test Oracle
phases which increased the manual effort for test generation
a little, but at least we did not interfere during the remainder
of the testing process.

It turned out that the original grammar was incomplete.
ATMS allowed Prolog style factual declarations such as ":-
rainy, wet." where there were no preconditions for being
rainy and wet, these are just facts. However, the original
grammar did not have such a rule and we had to add one
after our initial attempts. We also noticed that the percent sign
(%) denotes a comment, so our Terminal Insertion operator
sometimes just commented out lines and therefore generated
valid inputs which were not accepted by CYK Recognizer. We
did not fix the issue but marked those tests as passed. There
were eight such test cases in total.

ATMS normally accepts a fully empty string (ε), however,
we did not add this to the grammar. This is because if we had
added, for example, <start> ::= ε, half of the generated
test inputs would be fully empty since gFuzzer selects rules
completely randomly. We excluded this rule to generate more
meaningful tests.

B. Issues

Now, we explain some of the issues regarding our approach.
First, theoretically, there is a chance that Algorithm 1 never
terminates, because it may always expand a non-terminal to
more non-terminals. However, the probability is practically
zero and our tools did not halt during evaluation.

Second, we made a known optimization to CYK Recognizer
that assumes two alphanumeric words never appear next to
each other without a separator. This assumption allows us
to consume variable names as single tokens, instead of a
number of character tokens. Although this optimization made
CYK Recognizer significantly faster, we must keep in mind
to use grammars that obey this assumption in future testing
endeavors.

Third, we assumed that ATMS would not crash during
evaluation. In fact, ATMS did not crash during evaluation.
Still, we believe it is trivial to make the test oracle label the test
as failed whenever the tool crashes. We believe our approach
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<start>             ::= <first_rule> <start>
<first_rule>        ::= <rule> <rule_end>
<rule>              ::= <atom> <entailments> 
<rule>              ::= <implications> <atom> 
<rule>              ::= <implies> <atom> 
<rule>              ::= 'x[1|2|3]' 
<rule>              ::= 'Assumption[1|2|3]' 
<rule>              ::= 'false'
<entailments>       ::= <entails> <atom_list>
<implications>      ::= <atom_list> <implies>
<atom_list>         ::= <atom> <atom_list_rest> 
<atom_list>         ::= <id> <opt_args> 
<atom_list>         ::= 'x[1|2|3]' 
<atom_list>         ::= 'Assumption[1|2|3]' 
<atom_list>         ::= 'false'
<atom_list_rest>    ::= <separator> <atom_list>
<atom>              ::= <id> <opt_args> 
<atom>              ::= 'x[1|2|3]' 
<atom>              ::= 'Assumption[1|2|3]' 
<atom>              ::= 'false'
<opt_args>          ::= <open_par> <close_par>
<opt_args>          ::= <open_par> <args>
<args>              ::= <atom_list> <close_par>
<open_par>          ::= '('
<close_par>         ::= ')'
<id>                ::= 'x[1|2|3]' 
<id>                ::= 'Assumption[1|2|3]' 
<id>                ::= 'false'
<separator>         ::= ','
<entails>           ::= ':-'
<implies>           ::= '->'
<rule_end>          ::= '.\n'

(a) Generative Grammar

<start>             ::= <first_rule> <start>
<first_rule>        ::= <rule> <rule_end>
<rule>              ::= <atom> <entailments> 
<rule>              ::= <implications> <atom> 
<rule>              ::= <implies> <atom> 
<rule>              ::= '^[a-zA-Z]+[a-zA-Z0-9_]*$'

<entailments>       ::= <entails> <atom_list>
<implications>      ::= <atom_list> <implies>
<atom_list>         ::= <atom> <atom_list_rest> 
<atom_list>         ::= <id> <opt_args> 
<atom_list>         ::= '^[a-zA-Z]+[a-zA-Z0-9_]*$'

<atom_list_rest>    ::= <separator> <atom_list>
<atom>              ::= <id> <opt_args> 
<atom>              ::= '^[a-zA-Z]+[a-zA-Z0-9_]*$'

<opt_args>          ::= <open_par> <close_par> 
<opt_args>          ::= <open_par> <args>
<args>              ::= <atom_list> <close_par>
<open_par>          ::= '('
<close_par>         ::= ')'
<id>                ::= '^[a-zA-Z]+[a-zA-Z0-9_]*$'

<separator>         ::= ','
<entails>           ::= ':-'
<implies>           ::= '->'
<rule_end>          ::= '.\n'

(b) Recognizer Grammar

Fig. 2. ATMS Grammars for Test Generation and Test Oracle Phases

is applicable to other testing problems if the crash detection
support is added to the test oracle.

Fourth, for the sake of this study, we assume that gFuzzer,
mgFuzzer, and CYK Recognizer are all correctly implemented.
All these tools are available online [3].

Finally, rule coverage should never be thought as the de
facto measure for functionality coverage. We rather use it as a
baseline to show that the most basic functionalities are tested.

VI. RELATED WORK

Compilers are almost used anywhere and it is, therefore, no
surprise that validation and verification of compilers have been
in the focus of research. Early publications in this area include
Purdom [10] who introduced an algorithm for generating
input sentences for a parser. Kossatchev and Posypkin [11]
summarized previous work on compiler testing. There the
authors also discuss the different aspects to be considered
when testing compilers including parser but also optimizers
and other compiler-related parts. Chen et al. [13] compared
different compiler testing techniques with respect to their
ability to detect faults.

Athena [14] and Hermes [15] are tools that are able to
find deep bugs in C compilers. There are two key differences
between Athena/Hermes and mgFuzzer. First, Athena and Her-
mes directly mutate the test input whereas mgFuzzer mutates
the grammar. Second, Athena and Hermes always generate
valid test inputs and check only the semantics. mgFuzzer

generates both valid and invalid inputs and checks only the
syntax. From this perspective, mgFuzzer and Athena/Hermes
are complementary.

Palka et al. [16] show that complex compiler optimization
may introduce bugs. They propose a random generation tool
dedicated to finding bugs caused by compiler optimization.
Their tool is similar to gFuzzer without grammar mutation.

We mention that we generate large test inputs during
evaluation. If these test inputs are going to be reused later,
they have to be stored now and then reevaluated at the time
of re-testing. Large test inputs require a lot of storage space
and take a lot of time to evaluate due to CYK Recognizer.
Chen et al. [17] suggest that test case reduction may be used
to trim test inputs. This way, we can improve on both space
and time requirements of large test inputs. Another work by
Chen et al. [18] suggests test case prioritization. One simple
idea for our case would be to store CYK Recognizer outputs
along with test inputs. This improves on time but not on space.
During our evaluation, we generated our test inputs for the first
time so we did not implement these ideas.

Fuzz testing was found in 1990 by Miller, Frederiksen,
and So [19]. They applied simple fuzzing to UNIX utilities
and found crashes in 33% of them. Grammar fuzzing was
introduced in 2008 by Godefroid, Kiezun, and Levin [20].
Since then, many automated grammar-fuzzing tools were
implemented [21]–[24]. These tools were successful at finding
bugs in web browsers and JavaScript interpreters.
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Mutation testing traditionally refers to inserting mutations
into program code. In 2006, Offut, Amman, and Liu [9]
proposed mutating grammars. We take three of our mutation
operators, Terminal Replacement (δTR), Deletion (δDE), and
Duplication (δDU ) from their paper. To the best of our knowl-
edge, the other three mutation operators are novel.

Based on the proposition of Offut, Amman, and Liu, a
recent work of Arcaini, Gargantini, and Riccobene [25] pro-
poses a tool called MutRex that mutates a regular expression
to generate test inputs that check if the regular expression
represents the strings that it was intended to. To the best of
our knowledge, this work is the closest to our work. The main
difference is that they work on regular expressions whereas
our approach works on context-free grammars.

Note that our work should not be confused with grammar-
based mutation analysis [9]. Grammar-based mutation analysis
involves generating test inputs with a simple grammar fuzzer
and then using these inputs as the seed for mutation-based
analysis. The key difference is that the original test inputs are
mutated instead of the grammar.

To the best of our knowledge, ours is the first work
that provides a practical implementation and evaluation of a
mutated grammar fuzzer.

VII. CONCLUSION

We implemented a fully automated approach which gen-
erates, executes and evaluates tests for ATMS. We argued
that fuzzing mutated grammars is more effective than fuzzing
the original grammar since gFuzzer found no failed tests
after generating 1,490,388 tests whereas mgFuzzer found an
important fault in the compiler after generating only 1,026
tests. mgFuzzer achieved 8.5% higher coverage with fewer
tests and gFuzzer could not cover any code that is not
covered by mgFuzzer. We explained our approach in detail
and discussed challenges in implementing a practical mutated
grammar fuzzer. We made the implementation available online
[3] along with small examples, tests generated for this paper,
and steps to reproduce our experiments.

A complete tester for a reasoning engine should also check
if the reasoning engine is correct, in other words, check
whether the list of consequences is sound or not. In the future,
we aim to implement fully automated testing for the reasoner
by utilizing SAT solvers. We also aim to compare our mutated
grammar fuzzer with mutation-based analysis of grammars.
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