
1/22

QBE: QLearning-Based Exploration of
Android Applications
Presenter: Yavuz Koroglu

Ozlem Muslu, Ceyda Ulker,
Yunus Mete, Tolga Tanriverdi,

Yavuz Koroglu and Alper Sen and Yunus Donmez

Dependable Systems Group (DSG) NETAS Telecommunications
Bogazici University, Istanbul, Turkey Istanbul, Turkey
http://depend.cmpe.boun.edu.tr http://www.netas.com.tr/en/home-page/
{yavuz.koroglu,alper.sen}@boun.edu.tr yunusm@netas.com.tr

11th IEEE Conference on Software Testing, Validation and Verification (ICST’18)

http://depend.cmpe.boun.edu.tr
http://www.netas.com.tr/en/home-page/
mailto:yavuz.koroglu@boun.edu.tr,alper.sen@boun.edu.tr
mailto:yunusm@netas.com.tr

2/22

Overview

1 Introduction

2 A Real Crash Example

3 QLearning-Based Exploration (QBE)

4 An Illustrative Example of QLearning

5 Evaluation

6 Conclusions and Future Work

3/22

Motivation

Mobile GUI Applications are Ubiquitous

We use mobile phones often
(3 hours/day)

Mostly on mobile applications
(90% of the time spent)

Android Market is Growing

2.6 billion mobile phone users

Android has the Largest Share

82.8% of all apps are for Android

4/22

Publicly Available Automated Android GUI Testing Tools

Monkey

A3E

SwiftHand

PUMA

DynoDroid

Sapienz

Monkey

Outperforms other tools in terms of

Coverage

Crashes

5/22

Monkey

Monkey

Developed by Google

Generates random

1 System events and
2 GUI actions

Built-in (comes with the
Android OS)

6/22

Pros/Cons of Monkey

Advantages

High Variety of Events
(Sensor, Navigation, System Events, Basic Gestures)

High Event Rate
(thousands of events per second)

Disadvantages

Reproducibility Issues (Poor Verifiability)

Misses Deep Crashes and Deep Activities

7/22

A Real Crash Found by None of the Other Tools

→ A GPS application.
→ Previous Actions: (1) reinitialize
→ Next Action: menu

7/22

A Real Crash Found by None of the Other Tools

→ A GPS application.
→ Previous Actions:
(1) reinitialize, (2) menu
→ Next Action: click More

7/22

A Real Crash Found by None of the Other Tools

→ A GPS application.
→ Previous Actions:
(1) reinitialize, (2) menu, (3) click More
→ Next Action: click show arrow view

7/22

A Real Crash Found by None of the Other Tools

→ A GPS application.
→ Previous Actions:
(1) reinitialize, (2) menu, (3) click More, (4) click show

arrow view

→ Next Action: menu

7/22

A Real Crash Found by None of the Other Tools

→ A GPS application.
→ Previous Actions:
(1) reinitialize, (2) menu, (3) click More, (4) click show

arrow view, (5) menu

→ Next Action: click cache view

7/22

A Real Crash Found by None of the Other Tools

→ A GPS application.
→ Previous Actions:
(1) reinitialize, (2) menu, (3) click More, (4) click show

arrow view, (5) menu, (6) click cache view

→ CRASH
→Monkey: Probability of generating these
actions in this order is very low.
→ Others: It takes a long time to system-
atically exhaust all possibilities.

8/22

QLearning-Based Exploration (QBE) Overview

Training Set
(Applications)

AndroFrame (Random)

Training Set (Models)

Test Set
(Applications)

QLearner

AndroFrame
(QBE)

Test Results +
GUI Model

Q-Matrix

Figure: QLearning-Based Exploration
(QBE) Overview

Main Idea

To learn the best actions in
similar states.

Main Flow

1 Explore the training set
(with random exploration)

2 Generate GUI Models

3 Learn the best transitions

4 Direct the testing process
(use the learned model)

9/22

Model-Based GUI Testing of Android Applications

In general,

Most applications do NOT have a model

Learn the application model dynamically

The model is an Extended Labeled Transition System
(ELTS) where

1 Nodes are GUI states.
2 Edges are transitions via GUI actions.

10/22

GUI State

1 Java Package Name

2 Activity Name
(An activity roughly corresponds to an
Android screen)

3 Contextual Attributes
(WiFi, Orientation etc.)

4 GUI Components (widgets)
on the screen

11/22

GUI Action

User-triggered events: text, click, swipe etc.

︸ ︷︷ ︸
text

︸ ︷︷ ︸
click

︸ ︷︷ ︸
swipe

12/22

AndroFrame: Automated Test Generation Framework

What is AndroFrame?

It is a

Fully-automated,

Black-box,

Modular,

Automata Learning

replayable test case
generation framework.

Important

We build QBE
on top of AndroFrame.

_

v1

 reinitialize

v1'

 text1

v1''

 text2

v2
 click

v1'''

 text2

v2'
 click

 text1

v2''
 click

v3

 click

 click

 click click

Figure: Example Model of the Yahtzee App

13/22

QLearner

Main Idea

QLearner observes

1 The current state and
2 The latest reward

QLearner decides on

1 An action

13/22

QLearner

Main Idea

QLearner observes

1 The current state and
2 The latest reward

QLearner decides on

1 An action

Q-Matrix

A matrix of values where

Rows are states and

Columns are actions.

Q-Value

Cells in the Q-Matrix.

Associated with a state-action
pair.

Expectancy of the action
getting a reward in the next
state.

13/22

QLearner

Main Idea

QLearner observes

1 The current state and
2 The latest reward

QLearner decides on

1 An action

Example

click text

s1 1 0

s2 0 0

s3 0.17 0.83

Important

All rows add up to 1
(except unvisited states)

At s1, always click

At s2, no knowledge (all 0s)

At s3, mostly text

13/22

QLearner

Main Idea

QLearner observes

1 The current state and
2 The latest reward

QLearner decides on

1 An action

Initially, ~Q = 0.

Choose
Action
from ~Q

Perform
Action

Measure
Reward

Update ~Q

14/22

QLearning: Standard Updates

~Q[s, a]︸ ︷︷ ︸
Next

Q-Matrix

← ~Q[s, a]︸ ︷︷ ︸
Previous
Q-Matrix

+ ~N[s, a]−1︸ ︷︷ ︸
History
Matrix

o(v , z)︸ ︷︷ ︸
Objective
Function

+ γ ~Q[s ′, a′]︸ ︷︷ ︸
Future

Expectancy

− ~Q[s, a]︸ ︷︷ ︸
Previous
Q-Matrix


Definitions

History Matrix: A running count of previous updates on
each ~Q[s, a].

Objective Function: Denotes the reward. 1 if the goal is
satisfied, 0 otherwise.

Future Expectancy: Allows future rewards to be
propagated along an execution path.

Discount Factor (γ): A value btw 0 and 1 to decrease the
future expectancy as the path gets longer.

15/22

Illustrative Example: How QLearning Works

_

v1

 reinitialize

v1'

 text1

v1''

 text2

v2
 click

v1'''

 text2

v2'
 click

 text1

v2''
 click

CRASH

 click

 click

 click click

Figure: GUI Model of the Yahtzee App

Without Abstraction

7 application states
(excluding ” ” and ”CRASH”)

11 state-action pairs
(excluding ”reinitialize”)

Would be too large in real
scenarios.

Similar States

Cosine Similarity > 0.95

1 v1, v1′, v1′′, v1′′′ and
2 v2, v2′, v2′′

15/22

Illustrative Example: How QLearning Works

_

v1

 reinitialize

v1'

 text1

v1''

 text2

v2
 click

v1'''

 text2

v2'
 click

 text1

v2''
 click

CRASH

 click

 click

 click click

Figure: GUI Model of the Yahtzee App

Let’s Abstract

States (2 state types)

1 s1 = {v1, v1′, v1′′, v1′′′}
2 s2 = {v2, v2′, v2′′}

Actions (2 action types)

1 click
2 text

We get a 2 by 2 matrix: ~Q[s, a]

15/22

Illustrative Example: How QLearning Works

_

v1

 reinitialize

v1'

 text1

v1''

 text2

v2
 click

v1'''

 text2

v2'
 click

 text1

v2''
 click

CRASH

 click

 click

 click click

Figure: GUI Model of the Yahtzee App

Initial Q-Matrix

click text

s1 0 0

s2 0 0

The only way to update Q-values is
to

Get a reward

15/22

Illustrative Example: How QLearning Works

_

v1

 reinitialize

v1'

 text1

v1''

 text2

v2
 click

v1'''

 text2

v2'
 click

 text1

v2''
 click

CRASH

 click

 click

 click click

Figure: GUI Model of the Yahtzee App

New Q-Matrix

click text

s1 0 0

s2 0 0

Test Case: v1, v2, v1, v1′′, v2′′

No rewards, no updates.

15/22

Illustrative Example: How QLearning Works

_

v1

 reinitialize

v1'

 text1

v1''

 text2

v2
 click

v1'''

 text2

v2'
 click

 text1

v2''
 click

CRASH

 click

 click

 click click

Figure: GUI Model of the Yahtzee App

New Q-Matrix

click text

s1 1 0

s2 0 0

Test Case: v1, v1′′, v1′′′,CRASH

Learns the last transition first.

15/22

Illustrative Example: How QLearning Works

_

v1

 reinitialize

v1'

 text1

v1''

 text2

v2
 click

v1'''

 text2

v2'
 click

 text1

v2''
 click

CRASH

 click

 click

 click click

Figure: GUI Model of the Yahtzee App

New Q-Matrix

click text

s1 .53 .47

s2 0 0

Test Case: v1, v1′′, v1′′′,CRASH
(again)

Now, v1′′ → v1′′′ also gets
Q-value, due to future value.

15/22

Illustrative Example: How QLearning Works

_

v1

 reinitialize

v1'

 text1

v1''

 text2

v2
 click

v1'''

 text2

v2'
 click

 text1

v2''
 click

CRASH

 click

 click

 click click

Figure: GUI Model of the Yahtzee App

Converged Q-Matrix

click text

s1 .57 .43

s2 1 0

At all s2 states (v2, v2′, v2′′),
QBE always clicks.

16/22

Reward (Objective) Function

Two reward functions
(v : Current State, z : GUI Action, v ′: Next State)

1. Crash Detection

o(v , z) =

{
1 v ′ is a CRASH state
0 otherwise

(1)

2. Activity Coverage Increase

o(v , z) =

{
1 v ′ belongs to a new Activity
0 otherwise

(2)

17/22

Common Evaluation Criteria

Number of Distinct Crashes

Parse the Android logs (Common technique)

Stack traces for exceptions are also in these logs

Do NOT count the same stack trace more than once

Activity Coverage

A high level metric that is necessary to claim a high coverage
of functionality (# Explored Activities / # All Activities)

Instruction Coverage

A low level metric that shows the amount of code utilization
(# Explored Instructions / # All Instructions)

18/22

Experimental Setup

14 x Android-x86 VirtualBox guests (with Android 4.4.r5)

300 Android applications randomly selected from F-Droid
benchmarks

200 training and 100 test applications

10 minutes for each application.

Implemented 4 Strategies in AndroFrame,

1 Random Exploration (RE)
2 Depth-First Exploration (DFE)
3 Activity-Based QBE (QBEa)

- Reward function is Activity Coverage Increase.
4 Crash-Based QBE (QBEc)

- Reward function is Crash Detection.

19/22

Experimental Results

Table: Experimental Results over 10 minutes

Tool
Activity

(%)

Instr.

(%)
#Crashes

A
n

d
ro

F
ra

m
e Activity-Based QBE (QBEa) 78 40 7.8

Crash-Based QBE (QBEc) 65 32 12.6

Depth-First Exploration (DFE) 63 34 3

Random Exploration (RE) 58 30 3.2

O
th

er
s

DynoDroid 50 35 5.2

A3E 41 17 8

Monkey 60 30 9

PUMA 64 32 6

Sapienz 76 44 4

SwiftHand 40 19 0

QBEa has the best activity coverage.

19/22

Experimental Results

Table: Experimental Results over 10 minutes

Tool
Activity

(%)

Instr.

(%)
#Crashes

A
n

d
ro

F
ra

m
e Activity-Based QBE (QBEa) 78 40 7.8

Crash-Based QBE (QBEc) 65 32 12.6

Depth-First Exploration (DFE) 63 34 3

Random Exploration (RE) 58 30 3.2

O
th

er
s

DynoDroid 50 35 5.2

A3E 41 17 8

Monkey 60 30 9

PUMA 64 32 6

Sapienz 76 44 4

SwiftHand 40 19 0

Sapienz has better code coverage.

19/22

Experimental Results

Table: Experimental Results over 10 minutes

Tool
Activity

(%)

Instr.

(%)
#Crashes

A
n

d
ro

F
ra

m
e Activity-Based QBE (QBEa) 78 40 7.8

Crash-Based QBE (QBEc) 65 32 12.6

Depth-First Exploration (DFE) 63 34 3

Random Exploration (RE) 58 30 3.2

O
th

er
s

DynoDroid 50 35 5.2

A3E 41 17 8

Monkey 60 30 9

PUMA 64 32 6

Sapienz 76 44 4

SwiftHand 40 19 0

QBEc detects the highest number of crashes.

19/22

Experimental Results

Table: Experimental Results over 10 minutes

Tool
Activity

(%)

Instr.

(%)
#Crashes

A
n

d
ro

F
ra

m
e Activity-Based QBE (QBEa) 78 40 7.8

Crash-Based QBE (QBEc) 65 32 12.6

Depth-First Exploration (DFE) 63 34 3

Random Exploration (RE) 58 30 3.2

O
th

er
s

DynoDroid 50 35 5.2

A3E 41 17 8

Monkey 60 30 9

PUMA 64 32 6

Sapienz 76 44 4

SwiftHand 40 19 0

QBE is successful at coverage and crash detection

20/22

Conclusions and Future Work

Conclusions

QLearning-Based Exploration (QBE) for
Model Based GUI Testing of Android Applications

Experiments on 100 applications. QBE

1 Achieves the highest activity coverage and
2 Finds the most distinct crashes.

Future Work

More reward functions, e.g. code coverage increase.

Improve abstraction functions.

Online QLearning for app-specific patterns.

Use other Machine Learning techniques to improve testing.

21/22

TCM: Test Case Mutation to Improve Crash Detection in
Android, Published @ FASE’18

An Automatically Generated Test Case

→ →

21/22

TCM: Test Case Mutation to Improve Crash Detection in
Android, Published @ FASE’18

Mutated Test Case

→ →

Thank You! Any Questions?

1/5

Appendix A: Recent Results Across Time

0 200 400 600 800 1000 1200

0
5

10
15

20
25

30

Time (sec)

C

ra
sh

es

ANDROFRAME : 18 crashes
SAPIENZ : 12 crashes
MONKEY : 10 crashes
PUMA : 6 crashes
A3E : 4 crashes

Shows that AndroFrame finds distinct crashes from very early on.

2/5

Appendix B: Table of GUI Actions

Table: List of GUI Actions for our Automated Testing Tool

Non-contextual Param1 Param2 Param3 Param4 Param5
click x y - - -

longclick x y - - -
text x y string - -

swipe x1 y1 x2 y2 duration
menu - - - - -
back - - - - -

Contextual Parameters
connectivity on/off/toggle

bluetooth on/off/toggle
location gps/gps&network/off/toggle

planemode on/off/toggle
doze on/off/toggle

Special Param1 Param2 Param3 Param4 Param5
reinit package activity - - -

3/5

Appendix C: Automatic Generation of GUI Models Example

Action: reinitialize com.tum.yahtzee MainActivity

_

v1

 reinitialize

3/5

Appendix C: Automatic Generation of GUI Models Example

Action: click 200 390 (click play)

_

v1

 reinitialize

v2
 click

3/5

Appendix C: Automatic Generation of GUI Models Example

Action: click 200 410 (click ok)

_

v1

 reinitialize

v2
 click
 click

3/5

Appendix C: Automatic Generation of GUI Models Example

Action: text 200 270 12345 (text1)

_

v1

 reinitialize

 text1

v2
 click
 click

3/5

Appendix C: Automatic Generation of GUI Models Example

Action: reinitialize com.tum.yahtzee MainActivity

_

v1

 reinitialize

 text1

v2
 click
 click

3/5

Appendix C: Automatic Generation of GUI Models Example

Action: text 200 270 12345 (text1)

_

v1

 reinitialize

 text1

v2
 click
 click

3/5

Appendix C: Automatic Generation of GUI Models Example

Action: text 200 330 12345 (text2)

_

v1

 reinitialize

 text1, text2

v2
 click
 click

3/5

Appendix C: Automatic Generation of GUI Models Example

Action: click 200 390 (click play)

_

v1

 reinitialize

 text1, text2

v3

click

v2
 click
 click

3/5

Appendix C: Automatic Generation of GUI Models Example

Action: click 200 390 (click play)

_

v1

 reinitalize

 text1

v1'

 text2

v2
 click

v3

click

 click

4/5

Appendix D: Abstraction Functions in the Paper

β(v) =


1, |λ(v)| ≤ 1
2, |λ(v)| ≤ 3
3, |λ(v)| ≤ 8
4, |λ(v)| ≤ 15
5, |λ(v)| > 15

α(z) =



1, z is a menu
2, z is a back
3, z is a click
4, z is a longclick
5, z is a text
6, z is a swipe
7, z is a contextual

(3)

λ(v) denotes the set of enabled actions in the state v .

β(v) and α(z) abstract states and actions, respectively.

These abstraction functions are simple and arbitrary. They are
open to improvement.

5/5

Appendix E: Benchmark Characteristics

Training Test

0
5

10
15

20
25

SI
ZE

 (M
B)

Training Test

0
50

10
0

15
0

20
0

25
0

KI
ns

tru
ct

io
ns

Training Test

0
5

10
15

20

KM
et

ho
ds

Figure: Characteristics of Training and Test Sets

Between

0.01-25 MB, 1000-250000 instructions, and 10-20000 methods

	Introduction
	Motivation
	Public Tools
	Monkey
	Pros/Cons of Monkey

	A Real Crash Example
	QLearning-Based Exploration (QBE)
	Overview
	Model-Based GUI Testing
	States and Actions
	AndroFrame
	QLearning
	Standard Updates in QLearning

	An Illustrative Example of QLearning
	Evaluation
	Common Evaluation Criteria
	Experimental Setup
	Experimental Results

	Conclusions and Future Work
	Test Case Mutation

	Appendix

