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Constraint-Based Testing (CBT)

Definition

If a testing technique uses a constraint solver to generate test
cases, it is called Constraint-Based Testing (CBT).

Automated Unit Test Generation

Black-Box Testing

Random Testing (RT)

Adaptive Random Testing (ART)

Model-Based Testing (MBT)

White-Box (Structural) Testing

Search-Based Testing (SBT)

Constraint-Based Testing (CBT)

Symbolic Execution

Concolic Testing



Constraint-Based Testing (Overview)

The term coined in 1991 by Offut and DeMillo.

Symbolic Execution (dates back to 1975),

Considered impractical, lack of powerful constraint solvers.

Revival in the last two decades,

Availablity of powerful constraint solvers (Yices, Z3 etc.),
Concolic testing is proposed.

Constraint solving bottleneck,

Scalability issues.
Constraint solving optimizations (Concolic Unit Testing Engine
(CUTE) offers three optimizations).

Did not completely solve the issue.



Our Motivation

What did we aim?

Design a modification on the current constraint solving
methodology which

Decreases the burden on the constraint solver,

Still gets the same coverage as the previous CBT approaches
and

Allows new heuristics and optimizations to be
implemented.



Our Motivation

What did we see?

CBT approaches make few large queries to the constraint solver.

Instead, make thousands of small queries.

In model checking domain, IC3 uses this strategy.
(SAT-Based Model Checking Without Unrolling, Aaron R. Bradley, VMCAI2011)

Can we better utilize constraint solvers in CBT?



Concolic Testing

Also called Dynamic Symbolic Execution (DSE).

Combines concrete and symbolic execution.

The idea dates back to 2005 (CUTE and DART).

We implement our approach on top of Concolic Testing.



Example: Greatest Common Divisor (GCD)

1 i n t gcd ( i n t a , i n t b ) {
2 i f ( a <= 0) { // L0
3 return ERROR; // L1
4 }
5 i f ( b <= 0) { // L2
6 return ERROR; // L3
7 }
8 whi le ( a != b ) { // L4
9 i f ( a > b ) { // L5

10 a = a − b ; // L6
11 } e l s e {
12 b = b − a ; // L7
13 }
14 }
15 return a ; // L8
16 }



Test GCD using Concolic Testing

1) Generate random inputs: let a = 4, b = 0.
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Test GCD using Concolic Testing

2) gcd(4,0) traverses the following execution path: L0 → L2 → L3.
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Test GCD using Concolic Testing

3) Gather π0 = (a > 0) ∧ (b ≤ 0) during execution.
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Test GCD using Concolic Testing

4) π0 is a full path constraint.
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Test GCD using Concolic Testing

5) Full path constraint is the conjunction of all path conditions on
an execution path.
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Test GCD using Concolic Testing

6) Generate φ1 = (a > 0) ∧ (b > 0).
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Test GCD using Concolic Testing

7) Let CS(φ1) be a = 4 and b = 6.
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Test GCD using Concolic Testing

8) gcd(4,6) traverses
L0 → L2 → L4 → L5 → L7 → L4 → L5 → L6 → L4 → L8.
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Test GCD using Concolic Testing

9) Gather π1 = (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a 6=
b − a) ∧ (a > b − a) ∧ (a− [b − a] = b − a).
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Test GCD using Concolic Testing

10) Solved only a small constraint (φ1) to get an input which
satisfies a large constraint (π1).

L0

L1

ERROR

L2

L3

ERROR

L4

L6

a← a− b

L7

b← b− a

L5

L8

a

a ≤ 0

a > 0

b ≤ 0

b > 0

a = b

a 6= b

a > b

a ≤ b



Test GCD using Concolic Testing

11) After a few iterations constraints get very large.

L0

L1

ERROR

L2

L3

ERROR

L4

L6

a← a− b

L7

b← b− a

L5

L8

a

a ≤ 0

a > 0

b ≤ 0

b > 0

a = b

a 6= b

a > b

a ≤ b



Test GCD using Concolic Testing

12) Generate φ2 = (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a 6=
b − a) ∧ (a > b − a) ∧ (a− [b − a] 6= b − a).

L0

L1

ERROR

L2

L3

ERROR

L4

L6

a← a− b

L7

b← b− a

L5

L8

a

a ≤ 0

a > 0

b ≤ 0

b > 0

a = b

a 6= b

a > b

a ≤ b



Test GCD using Concolic Testing

13) Let CS(φ2) = a = 5, b = 6.
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Test GCD using Concolic Testing

14) gcd(5,6) traverses L0 → L2 → L4 → L5 → L7 → L4 → L5 →
L6 → L4 → L5 → L6 → L4 → . . .

L0

L1

ERROR

L2

L3

ERROR

L4

L6

a← a− b

L7

b← b− a

L5

L8

a

a ≤ 0

a > 0

b ≤ 0

b > 0

a = b

a 6= b

a > b

a ≤ b



Previous Constraint Solving Optimizations

One of the first concolic testers, CUTE,

Proposes three optimizations for constraint solving:
1) Fast Unsatisfiability Check.
2) Common Sub-Constraints Elimination.
3) Incremental Solving.



(OPT1) Fast Unsatisfiability Check

Main Idea

Check if a path condition is syntactically the negation of
any preceding ones in the full path constraint.
e.g. π = . . . ∧ (a = b) ∧ . . . ∧ (a 6= b) ∧ . . .
If it is, the full path constraint is decided to be infeasible
without solving.

OPT1,

Reduces the number of constraint solver queries by 60-95% in
general.

Reduction in the GCD example: 0%.



(OPT2) Common Sub-Constraints Elimination

Main Idea

Identify and eliminate common sub-constraints.

OPT2,

Reduces common sub-constraints by 64-90% in general.

Reduction in the GCD example: 0%.



(OPT3) Incremental Solving

Main Idea

Remember that π0 = (a > 0) ∧ (b ≤ 0) and
φ1 = (a > 0) ∧ (b > 0) from the GCD example.

π0 and φ1 only differ by one condition.

Let the conjunction of all conditions on φ1 that depend on
(b > 0) be φ1

′ = (b > 0).

Let the solver fix a to its previous value and find a solution for
φ1

′ instead of φ1.

OPT3,

On average, |φ′| ≈ |φ|/8 in general.

On the GCD example: No significant improvement.



Partial Path Constraints (φ)

Definition

Any overapproximation of the Full Path Constraint π is called a
Partial Path Constraint (φ).

Example

Let π = (a > 0) ∧ (b ≤ 0).

Then, the possible partial path constraints are

φ0 = T ,
φ1 = (a > 0),
φ2 = (b ≤ 0) and
φ3 = (a > 0) ∧ (b ≤ 0).



Motivation of Partial Path Constraints

There are subsumed path conditions.

1 In the GCD example, φ2 contains both p = (a 6= b − a) and
q = (a > b − a).

2 Trivially, q → p.

3 So, p is redundant.

4 We should eliminate redundant path conditions.



Partial Path Constraints Cont’d

Consider π = (a > 0) ∧ (b > 0) ∧ (a = b).

Let φ = (a = b).

Probability of CS(φ) also satisfies π is 0.25.

For φ′ = (b > 0) ∧ (a = b), probability becomes 0.50.

Danger!

Usage of partial path constraints may cause path divergence.

Therefore, some feasible execution paths may not get
executed (incompleteness).



Incremental Partial Path Constraints (IPPC)

Main Idea

Same as concolic testing.

We replace the constraint solver call with IPPC.

IPPC tries a small partial path constraint.

Learns larger φ and tries again until the answer is found.



Incremental Partial Path Constraints (IPPC)

Algorithm

1 Start from a partial path constraint φ where π → φ.

2 Generate test input i that satisfy φ.

3 If φ is infeasible, then π must be infeasible.

4 Else if i satisfies π, return i .

5 Find out the first path condition cd which i does not satisfy.

6 Let φ← φ ∧ cd .

7 Goto 2.

cd is called the Cause of Divergence.

Steps 5-6-7 occurs only if generated i causes a path
divergence.



Determining Initial φ: Most Basic Strategy

Motivation

We negate only one condition on the previously satisfied full path
constraint.

Approach

Take the negated condition as the initial φ.

Advantage

Incremental Solving optimization (OPT3) has more chance to
satisfy π by fixing some of the inputs.



Example Returned: GCD

1) Consider π = (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a 6=
b − a) ∧ (a > b − a) ∧ (a− [b − a] 6= b − a) (φ2 of the previous
example).
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Example Returned: GCD

1) Consider π = (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a 6=
b − a) ∧ (a > b − a) ∧ (a− [b − a] 6= b − a) (φ2 of the previous
example).
2) Let us solve this constraint using IPPC instead of a CS call.
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Example Returned: GCD

1) Consider π = (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a 6=
b − a) ∧ (a > b − a) ∧ (a− [b − a] 6= b − a) (φ2 of the previous
example).
3) φ1 = (a− [b − a] 6= b − a).
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Example Returned: GCD

1) Consider π = (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a 6=
b − a) ∧ (a > b − a) ∧ (a− [b − a] 6= b − a) (φ2 of the previous
example).
4) Yices in incremental mode generates a = 2, b = 3 for CS(φ1).
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Example Returned: GCD

1) Consider π = (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a 6=
b − a) ∧ (a > b − a) ∧ (a− [b − a] 6= b − a) (φ2 of the previous
example).
5) (a, b) = (2, 3) does NOT satisfy π due to c1d = (a 6= b− a).
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Example Returned: GCD

1) Consider π = (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a 6=
b − a) ∧ (a > b − a) ∧ (a− [b − a] 6= b − a) (φ2 of the previous
example).
6) φ2 = φ1 ∧ c1d = (a− [b − a] 6= b − a) ∧ (a 6= b − a).
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Example Returned: GCD

1) Consider π = (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a 6=
b − a) ∧ (a > b − a) ∧ (a− [b − a] 6= b − a) (φ2 of the previous
example).
7) Yices generates a = 4, b = 6 for CS(φ2) which satisfies the π.
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Example Returned: GCD

1) Consider π = (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a 6=
b − a) ∧ (a > b − a) ∧ (a− [b − a] 6= b − a) (φ2 of the previous
example).
8) Standard concolic tester solves 1 path constraint of size 7.
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Example Returned: GCD

1) Consider π = (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a 6=
b − a) ∧ (a > b − a) ∧ (a− [b − a] 6= b − a) (φ2 of the previous
example).
9) IPPC solves 2 path constraints of sizes 1 and 2.
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Example Returned: GCD

1) Consider π = (a > 0) ∧ (b > 0) ∧ (a 6= b) ∧ (a ≤ b) ∧ (a 6=
b − a) ∧ (a > b − a) ∧ (a− [b − a] 6= b − a) (φ2 of the previous
example).
10) More smaller queries vs. Few larger queries
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Experimental Environment

The Environment

Virtual Linux guest with 1024MB memory and one CPU,

MacBook Pro host with an Intel Core i7 2.9 GHz GPU and
8GB Memory.

The Framework

CREST, is a known concolic testing framework developed by J.
Burnim.

Source code available.

It uses Yices.

It implements different concolic testing strategies.



Benchmarks

List of benchmarks used in the experiments are as follows:
UUT KLOC #vars
gcd 0.05 2

bsort 0.05 30
sqrt 0.06 1

prime 0.1 1
factor 0.2 1

replace 0.5 20
ptokens 0.6 40

grep 15 10



Benchmarks

All conditions are guaranteed to be correctly solvable by Yices.
UUT KLOC #vars
gcd 0.05 2

bsort 0.05 30
sqrt 0.06 1

prime 0.1 1
factor 0.2 1

replace 0.5 20
ptokens 0.6 40

grep 15 10



Benchmarks

Benchmarks are in different sizes.
UUT KLOC #vars
gcd 0.05 2

bsort 0.05 30
sqrt 0.06 1

prime 0.1 1
factor 0.2 1

replace 0.5 20
ptokens 0.6 40

grep 15 10



Benchmarks

We made 10 executions for each configuration.
UUT KLOC #vars
gcd 0.05 2

bsort 0.05 30
sqrt 0.06 1

prime 0.1 1
factor 0.2 1

replace 0.5 20
ptokens 0.6 40

grep 15 10



Benchmarks

We measured branch coverage via a script which uses gcov.
UUT KLOC #vars
gcd 0.05 2

bsort 0.05 30
sqrt 0.06 1

prime 0.1 1
factor 0.2 1

replace 0.5 20
ptokens 0.6 40

grep 15 10



Benchmarks

Standard Concolic Testing and IPPC achieves the same coverage in
N iterations.

UUT KLOC #vars
gcd 0.05 2

bsort 0.05 30
sqrt 0.06 1

prime 0.1 1
factor 0.2 1

replace 0.5 20
ptokens 0.6 40

grep 15 10



IPPC Speedup over Standard Concolic Testing (DFS)

IPPC has smaller constraints by a factor of 60.

UUT
Avg Const. Size Ratio Speedup

(DFS / IPPC) (tDFS/tIPPC)

replace 4.4 0.6x
bsort 20.8 0.79x
sqrt 21.3 1.25x
grep 31.8 0.83x

ptokens 48.4 1.7x
gcd 97.5 2.77x

prime 115.6 9.1x
factor 137.3 9.8x

avg 59.6 3.35x



IPPC Speedup over Standard Concolic Testing (DFS)

IPPC has a speedup of 3.35 on average.

UUT
Avg Const. Size Ratio Speedup

(DFS / IPPC) (tDFS/tIPPC)

replace 4.4 0.6x
bsort 20.8 0.79x
sqrt 21.3 1.25x
grep 31.8 0.83x

ptokens 48.4 1.7x
gcd 97.5 2.77x

prime 115.6 9.1x
factor 137.3 9.8x

avg 59.6 3.35x



Relationship btw. Infeasible Constraints and Speedup

IPPC has better speedup when the UUT has more infeasibilities.
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Conclusion

In this work, we desgined a modification which,

Eliminates the need for solving large constraints,
Largest path constraint sizes found during the experiments:

1 IPPC: 157
2 DFS: 2922

Works better if the UUT has many infeasible paths and

Is flexible.

We also,

Gave motivational examples and background for our work.

Strongly suggested a relationship between speedup and
infeasibility.

Did experiments on the benchmarks.



Future Work

Caching

KLEE utilizes caching as a performance improving
optimization.

We use partial path constraints,

Therefore we can have both-way caching:
Inputs have a corresponding full path constraint (input → path
constraint, reduces UUT execution)
Full path constraints are mapped to inputs. (path constraint
→ input, reduces CS execution)



Future Work

Independent Path Conditions as the Initial φ

Using a greedy algorithm, find a set of independent path
conditions.

Conjunct all the independent conditions to get the Initial φ.

Maybe we can decrease the total CS calls if we use this initial
φ.



Future Work

Implementation on Different Frameworks and More Benchmarks

We should find more benchmarks (currently there are 8
benchmarks),

We should implement IPPC on top of different CBT
approaches,



Thank You. Any Questions?
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