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Motivation of Testing

m Inadequate Testing may have a very high cost.
m Knight Capital Group's $440M bug.
m Pentium FDIV Bug - $475M.
m Morris Worm - $100K - $10M.
m Adequate Testing requires time + effort.
m Formal Methods:
+ Complete
- Not scalable
m Testing:
- Incomplete tests
+ Scalable
m Still, in Microsoft, 79% of the developers are dedicated to writing
unit tests.
m Automated Test Generation
m Decreases time and effort of testing while makes the approach
more complete.
m Large body of work, but

m Limited real-world usage.
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Motivation of Android

I CAN STOP Mobile GUI Applications are Ubiquitous
OKING AT M

LOOKING AT MY
"GO HOURS ' &
m We use mobile phones often

AWESOME!

WHAT THEN? (3 hours/day)
T WAKE UP! m Mostly on mobile applications
(90% of the time spent)

Android Market is Growing

m 2.6 billion mobile phone users

Android has the Largest Share

m 82.8% of all apps are for Android
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Problems in Mobile Market

App Fatigue

Too many apps for similar tasks.

Incomplete Apps

Some apps fail to perform their intended
tasks.

Fake Apps

Some apps are completely fake.
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2019 IEEE/ACM 41st International Conference on Soﬂsware) Engineering: Software Engineering in Practice (ICSE-
EIP

A Large-Scale Empirical Study on Industrial
Fake Apps

Chongbin Tang*, Sen Chen*, Lingling Fan*, Lihua Xu', Yang Liu!, Zhushou Tang?, Liang Dou*
*East China Normal University, China TNew York University Shanghai, China
iNanyang Technological University, Singapore SPwnzen Infotech Inc., China

Abstract—While there have been various studies towards
Android apps and their development, there is limited discussion
of the broader class of apps that fall in the fake area. Fake
apps and their development are distinct from official apps and
belong to the mobile underground industry. Due to the lack of
knowledge of the mobile underground industry, fake apps, their
ecosystem and nature still remain in mystery.

To fill the blank, we conduct the first systematic and com-
prehensive empirical study on a large-scale set of fake apps.
Over 150,000 samples related to the top 50 popular apps are
collected for extensive measurement. In this paper, we present
discoveries from three different perspectives, namely fake sample
characteristics, quantitative study on fake samples and fake au-

of app searching and downloading is greatly affected by the
fake apps in real world.

Even worse, as the doorsill to develop an app has been set
low, the cost to develop a fake app is much lower than what it
takes to develop a desktop program, providing an ideal hotbed
for the underground industry to thrive on [3]. Moreover, the
flexibility of Android app implementation [4] contributes the
fake apps’ complexity.

Despite the ubiquity, little is known about fake apps and
their ecosystem — their common characteristics, the number
of fake apps at large, their production process and speed,
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Motivation

Solution: Testing

Functional Testing will reveal many incomplete and fake apps.

Test Automation
Currently, test automation tools (e.g. Appium) are common for
functional testing.

Helps Developers : To design functional tests.
El Requires Manual Effort : The developer must

Generate (input data etc.),
Execute (must observe execution), and
Evaluate (check if the output agrees with expectations)

tests, all manually.
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Current Situation

m Millions of apps

m Pressure on developers to continuously develop,
m Need for functional testing.

m Fragmentation

m Many OS versions, many devices.
m Portability issues.

m Fake apps and unimplemented functions

m Does the app implement its promised function?
m Bug reports and customer feedback

m Developer needs to verify.
m An automated test generation tool would

m Ease the burden on the developer.
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Scenario #1: Verifying Bugs

m A Notes application.
m Allows drawing sketches.

m A user reports an issue.

m Black is missing from the color
palette.

m Developer has to find
m The buggy screen.

9/42



Scenario #2: Functional Testing

m Developer recently added a function.
m Playing against Al in a chess game.
m Developer has to verify that
m The Al indeed makes a move.

Black moved Nf6.

s | A

A (] =
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Scenario #3: Robustness Against Fragmentation

m Developer has to verify that the chess Al works on

m Different platforms (OS) and
m Different devices.

Scenario #4: Non-functional Testing

m Developer has to verify that
m The chess Al makes a move in less than 3 seconds.
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Test Generation Engines for Android (Alphabetically Ordered)

v ASE E % LAND ® QBE!
v ACTEve* El % MATE T ¥ QUANTUM
v CrashScope 8 v MobiGUITAR % Sapienz (Facebook)
v CrawlDroid v Monkey (Google) B v Stoat
v DroidBot 2 % MonkeyLAB? € v SwiftHand (UCB)
[@ v DynoDroid? % ORBIT* B v SwiftHand2
% EvoDroid ¥ v PUMA ® TCM1:2
v publicly available (12) ® unavailable (9)
1 Qur previous work. 3 Instruments Android OS.
2 Requires an initial set of test cases. 4 Requires the source code.
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.l 870 08:51

Unfortunately, Gmail has
stopped.

Report

Problems of Existing Test Generation

Engines
Focus on Fatal Exceptions Only
Very simple test oracle.
E3 Ignore other bugs.
Focus on Structural Coverage

m Code, method, activity etc.
E3 NOT functional.

m Tests may cover many activities but
m Fail to test essential functions.

Example

Start a chess game but do NOT move.




Test Oracles

Says a test has passed or failed.

Implicit Test Oracle

Automated.
E3 Implemented.
E3 Not scalable.
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Test Oracles

Says a test has passed or failed.

Implicit Test Oracle

Automated.
E3 Implemented.
E3 Not scalable.

m Fatal Exceptions.
m Activity Coverage.
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Test Oracles

Definition

Says a test has passed or failed.

Implicit Test Oracle Specified Test Oracle

Automated. E3 Developer writes specs.
E3 Implemented. Monitorable.
E3 Not scalable. Scalable.

m Fatal Exceptions.

m Activity Coverage.
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Test Oracles

Says a test has passed or failed.

Implicit Test Oracle Specified Test Oracle

Automated. E3 Developer writes specs.
E3 Implemented. Monitorable.
E3 Not scalable. Scalable.
Moreover, a specified test oracle
m Fatal Exceptions. m is a formal specification.
m Activity Coverage. Unambiguous.
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Motivation for Reinforcement Learning

(RL)

High performance in
% Resource management,
) Traffic control,
Environment Chess,

Atari...
Also,

Rey,
ald . .
(4 Requires no labeled
’”terpretﬁ data (unlike ANN).
S ™ Learns from
% \L:',J trial-and-error.

Ly Requires an interpreter
to generate rewards.

Action

Agent

15/42



RL for Test Generation

Typically,

Trained until convergence,

m Learns to perform a task
indefinitely.

Standing robot (on the left)

m Generate once and terminate.

. . m Do NOT wait for convergence.
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Summary

m Need automated test generation for

m functional testing and

m bug verification.
m Existing automated test generation engines are inadequate.
m Introduced

m specified test oracles and
m reinforcement learning.

m Emphasized
m RL for testing = Do NOT wait for convergence.
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FARLEAD-Android Overview

Fully Automated Reinforcement LEArning-Driven Specification-Based
Test Generator for Android

installed on

Specification
Developer

FARLEAD-Android

Device | action

rlearner

Figure: FARLEAD-Android Overview

m The app binary (.apk) and
m A specification (spec)

Crawls the app

m Monitors the spec.

m Qutputs a witness.
m A replayable test.
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Proceed to DEMO
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ins, ideas, bug reports o any other
@amailcom

‘Thanks for using Chess Walk!

click
239 669

Example (Linear-time Temporal Logic, LTL, Spec)

¢ = O ([act. ~ Main] A ([act. ~ Main]U([act. ~ About] A ([act. ~ About]i[act. ~ Main]))))
Description: Main activity is open in the next state, then Main activity is open until About
activity is open, and then About activity is open until Main activity is open again.
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DEMO Il

Proceed to DEMO
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The RL Agent (rlearner)

NEW EPISODE

(Re)start app

One Step

EXECUTE ACTION |
Get new state
CALCULATE REWARD
From state-action pair
LEARN
From the reward

END OF STEP

else

else

SUCCESS or

FAIL or SUCCESS or

MAX STEPS MAX EPISODES STOP
NS
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g Welcome

With this app you can create and share
notes in the form of text, checklists,
memos and sketches.

View Help

Click
"View Help"

Policy

is a markov chain.
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<  Help

OVERVIEW

Welcome to the help page. This app lets
you take and manage notes without
compromising your privacy.

PRIVACY INFO

RECEIVE BOOT COMPLETED

is needed to reschedule the notifications
after a reboot

RECORD AUDIO

is needed to record audio notes; if this is
not granted, audio notes are unavailable.

WRITE EXTERNAL STORAGE

is needed to save notes to the internal
memory; if this is not granted, notes
cannot be saved externally.

Policy

is a markov chain.

Click
"View Help"
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Else Else Else

[\ [\
®ostart 44y ) _Click X" @ Click "X" @ Click "X"

Example Spec
¢ = O([Ad #1] A O([Ad #2] A O([Ad #3] A O[Main])))

Description: In the next state, Problem:
Ad #1, next, m Ad #1% gets reward.
Ad #2, next, m Click "X" did NOT get
Ad #3, and finally, reward for future states.
Main
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Improvement #1: Action Label Learning

Else Else Else

[\ [\
®ostart 44y ) _Click X" @ Click "X" @ Click "X"

Example Spec
¢ = O([Ad #1] A O([Ad #2] A O([Ad #3] A O[Main])))

Description: In the next state, Solution:
Ad #1, next, m Learn stateless action values.
Ad #2, next, = Give reward to Sk X",
Ad #3, and finally, m Initialize state-action values
Main with action values.
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Example Spec

¢ = O([Skill = Hard] A O(Lobby A 0Game))
Description: Eventually,

Click Set Skill to Hard, then
Go to Lobby, then
Start the Game.

What If7?

m The first test sets the Skill to Hard, then goes to Lobby, then Idle.

Click
"Settings"

[ Settingsm gets high reward.
m Further episodes get STUCK at Lobby—Settings—Lobby.
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Example Spec

¢ = O([Skill = Hard] A O(Lobby A 0Game))
Description: Eventually,

Click Set Skill to Hard, then
Go to Lobby, then
Start the Game.

Solution: Tails/Decisions

m Rewards depend on history.
= Replace states S with tails S = [J_(A x S)".

m Replace actions A with decisions A =S x A.

Click
"Settings"
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Improvement #2: Tails/Decisions

Example Spec

¢ = O([Skill = Hard] A O(Lobby A 0Game))
Description: Eventually,

ek Set Skill to Hard, then

Go to Lobby, then

Start the Game.

m Do NOT give reward to Settings% .

: : kill=Hard . Back
m Give reward to Settmgss'—ar> Settings——s .

Click
"Settings"

Set
"Skill=Hard"
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How to Calculate Rewards?

Example

m ¢ = pU q (p must be true until g becomes true)

ifg=T, fp=g=1, fp=T (¢g=1),

4rig=T. Briuqg=_1 Hriqg=
m Reward < 1. m Reward «+ —1. m Reward < 0.
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LTL Monitoring with Reward Shaping

Main ldea

At every step,
m New spec (¢, ,,) < modify the current spec (g, ).
m Reward < some distance metric.

m o, =pU(qANOlqgUp])

", =qlUp
Reward «+ 07

Intermediate rewards?
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Reward Shaping

o) Mol
r = N (Psk -N (Psk+1 .
W otherwise

where @ is the spec in state sx, N is the reward metric function that
returns the number of atomic propositions in .

m g, =pU(gAOlaUp])

", =qlUp
[N(9s0)—N(og)l — Ja—2| _ 33
N(og)+N(og) — 4+2 7
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Experimental Setup

m Two Android GUI Applications (Notes and ChessWalk),

m Nine scenarios.

Scenario #1: ChessWalk - Function

m Description: The user goes to the AboutActivity and returns
back.

Scenario #2: ChessWalk - Function

m Description: The user goes to the SettingsActivity and returns
back.
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Experimental Scenarios |l

Scenario #3: ChessWalk - Function

m Description: Pausing and resuming the application should not
change the screen.

Scenario #4: ChessWalk - Bug Report

m Description: The application should prevent the device from
sleeping BUT it does NOT.

Scenario #5: ChessWalk - Function

m Description: Changed settings should be remembered later.
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Experimental Scenarios IlI

Scenario #6: ChessWalk - Function

m Description: The user starts a game and make a move.

Scenario #7: ChessWalk - Bug Report

m Description: Second game shows the moves of the first game.

Scenario #8: Notes - Bug Report

m Description: Black is missing from a color palette.

Scenario #9: Notes - Bug Report

m Description: Even if a note is canceled, it is still created.
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Level (a) — Declarative Level (b) — Mixed

Only propositions about, Only propositions about,
states states

B3 action types action types

E3 action details E3 action details

All propositions about, Test Generation

states m Slow in level (a).
action types m Fast in level (c).

action details
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Scenarios = LTL (Levels of Detail)

Example (Declarative - Level a)

O([activity ~ Main]U([activity ~ About] A O([activity ~ About]i/[activity ~ Main]))

Example (Mixed - Level b)

O(([act. ~ Main] A action = click)U([act. ~ About] A O([action = back][act. ~ Main]))

Example (Imperative - Level c)

O((([action = click] A [actionDetail ~ About]) A [act. ~ About]) A O([action = back]/act. ~ Main))

Imperative LTL

m Write test cases in LTL.
Do NOT write Java/Kotlin.

Portable.
Maintainable.
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Experimental Setup

Engines Under Experimentation

Random: Random exploration.
Monkey: Random exploration with built-in monkey actions.

QBEa: Q-Learning Based Exploration optimized for activity
coverage.

A FARLEADa: FARLEAD-Android with Level (a) specs.
FARLEADb: FARLEAD-Android with Level (b) specs.
@ FARLEADc: FARLEAD-Android with Level (c) specs.

Re-implemented Other Engines in FARLEAD-Android

m Need to monitor LTL specs.
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Experimental Setup

For
m Every engine (6 engines),
m Every scenario (9 scenarios), and

m Execute test generation 100 times, for
m Maximum 500 episodes and
B Maximum 4 or 6 steps (depending on scenario).

m Execute on VirtualBox guest with
m Android 4.4 OS
m 480x800 screen resolution

m Virtual machine is advantageous over a physical device
Reproducibility. | Scalability. | Configurability.

m Measure

m Effectiveness and

m Performance.
35/42



Effectiveness Results

. Scenario | ;5 3 4 5 6 7 8 9 | Total
Engine

Random | v vV vV VvV VvV V 6

Monkey | v/ ¢ v 3

QBEa | v Vv v v 4

FARLEADa | v v v Vv Vv V 7
FARLEADb |v v VvV vV VvV V Vv VvV V 9
FARLEADc |v vV VvV vV VvV V Vv VvV V 9

A Test Generation Engine is effective

Only if it generates

m A witness for the given scenario
m At least once in
m 100 executions (50000 episodes max)
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Effectiveness Results

. Scenario 6 7 8 9 | Total
Engine

Random
Monkey
QBEa
FARLEADa
FARLEADb
FARLEADc

Overall, FARLEAD-Android is

More effective than other engines.

AN

ANASA VA YA NI,
ANANAN

AN NA NA NA N N
ANANAN

ANASA VAR N
ANANAY

ANANA YA

OO NP W

v v
4 v

m More effective when mixed or imperative specs are used.

36/42



(2]
(O]
et
=
'
L
G
o
—
(D]
o)
£
>
=

100

=)

sonyeq #

2AVATIVA
qQavaTaIva

SAVATIVA
QavaTava
BAVATIVA
Kati(e]

2AVATIVA
QavaTaIva
RAVATIVA

2AVATIVA
QavaTaIva
RAVATIVA
wopuey

2AVATIVA

CAVATIVA
wopuey

o/aavaTava
wopuey

SAVATIVA
avATIV
eQVATIV
eagd
Louopy
wopuey

AVATIVA

4

4
‘©
G
(]
=
o11]
=
L
c
.2
)
(]
—
(]
c
(]
O
i)
3
T
<

Only if it cannot find

itness for the given scenario

" Aw

m At least once in an execution (500 episodes)
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m Does NOT fail when mixed or imperative specs are used.
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A Test Generation Engine Achi

Only if it terminates faster (generates a test).
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Test Generation Times

2AVATIVA
QavaTavda

2AVATIVA
QavaTavda

qAavATIVA
eAVATIVA
Kcte(}
wopuey

/4aAVHTIVA
eAVATIVA

2/AavVATIVA

wopuey
2AVATIVA

VATIVA
CAVATIVL

=

~

80

<
<
Ll
—
(02
T

Overall

4 Faster than other tools.

m Becomes faster from declarative to imperative.
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Typically,

E3 Require hundreds of thousands steps (wait until convergence).

FARLEAD-Android requires less than 4K steps.
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Future Work #1:

Gherkin Syntax

What is Gherkin Syntax?

Describes Ul test scenarios.
Customer friendly and used in practice.
Easy to derive from informal requirements.

Given p (precondition) Given The activity is TextNote
When q (antecedent) When The save button is clicked
Then r (consequent) Then A Note is created

Convert to LTL

¢=(0P)AO(pU[gAOOr])
Natural language = atomic propositions? (resolve ambiguity)
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Future Work #2:
Bounded Metric Temporal Logic (BMTL)

Scenario #4: Non-functional Testing

m Developer has to verify that
m The chess Al makes a move in less than 3 seconds.

Ed Impossible to describe in LTL.

Bounded Metric Temporal Logic

Describes

m bounds on the number of steps and
m constraints on the time required

Example

mp=T Ll[[gjlzg(])] (userMoved A [idle Z/{[{Ol’g] computerMoved])
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Miscellaneous Information

Related Paper

[d Y. Koroglu and A. Sen, Reinforcement Learning-Driven Test Generation for
Android GUI Applications using Formal Specifications, arXiv preprint, 2019.

@ https://arxiv.org/abs/1911.05403

Available in my webpage, see below.

@ https://www.cmpe.boun.edu.tr/~yavuz.koroglu/
& yavuz.koroglu@boun.edu.tr

¢k DependLAB @ BM 21
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