
1/42

Reinforcement Learning-Driven Test Generation for
Android GUI Applications using Formal Specifications

Yavuz Koroglu
Ph.D. Candidate

E-Mail: yavuz.koroglu@boun.edu.tr
Web: https://www.cmpe.boun.edu.tr/~yavuz.koroglu/
Department of Computer Engineering
Bogazici University, Istanbul/Turkey

December 3, 2019

yavuz.koroglu@boun.edu.tr
https://www.cmpe.boun.edu.tr/~yavuz.koroglu/

2/42

Contents

1 Introduction
Android GUI Testing
Example Scenarios
Related Work
Specified Test Oracles
Reinforcement Learning
Summary
FARLEAD-Android
DEMO I

2 Specifications
What is a Spec?
DEMO II

3 Reinforcement Learning
Overview
Policy
Action Label Learning
Tails/Decisions
Reward Shaping

4 Evaluation
Experiments

5 Future Work
Gherkin Syntax
Bounded MTL

6 Miscellaneous Info

3/42

Motivation of Testing

Inadequate Testing may have a very high cost.
Knight Capital Group’s $440M bug.
Pentium FDIV Bug - $475M.
Morris Worm - $100K - $10M.

Adequate Testing requires time + effort.
Formal Methods:
+ Complete
- Not scalable

Testing:
- Incomplete tests
+ Scalable

Still, in Microsoft, 79% of the developers are dedicated to writing
unit tests.

Automated Test Generation
Decreases time and effort of testing while makes the approach
more complete.
Large body of work, but
Limited real-world usage.

4/42

Motivation of Android

Mobile GUI Applications are Ubiquitous

We use mobile phones often
(3 hours/day)
Mostly on mobile applications
(90% of the time spent)

Android Market is Growing

2.6 billion mobile phone users

Android has the Largest Share

82.8% of all apps are for Android

5/42

Problems in Mobile Market

App Fatigue
Too many apps for similar tasks.

Incomplete Apps
Some apps fail to perform their intended
tasks.

Fake Apps
Some apps are completely fake.

6/42

Recent Study on Fake Apps @ ICSE’19

7/42

Motivation

Solution: Testing
Functional Testing will reveal many incomplete and fake apps.

Test Automation
Currently, test automation tools (e.g. Appium) are common for
functional testing.

4 Helps Developers : To design functional tests.
6 Requires Manual Effort : The developer must

1 Generate (input data etc.),
2 Execute (must observe execution), and
3 Evaluate (check if the output agrees with expectations)

tests, all manually.

8/42

Motivation for Android GUI Testing

Current Situation

Millions of apps
Pressure on developers to continuously develop,
Need for functional testing.

Fragmentation
Many OS versions, many devices.
Portability issues.

Fake apps and unimplemented functions
Does the app implement its promised function?

Bug reports and customer feedback
Developer needs to verify.

An automated test generation tool would
Ease the burden on the developer.

9/42

Scenarios of Android GUI Testing I

Scenario #1: Verifying Bugs

A Notes application.
Allows drawing sketches.

A user reports an issue.
Black is missing from the color
palette.

Developer has to find
The buggy screen.

10/42

Scenarios of Android GUI Testing II

Scenario #2: Functional Testing

Developer recently added a function.
Playing against AI in a chess game.

Developer has to verify that
The AI indeed makes a move.

11/42

Scenarios of Android GUI Testing III

Scenario #3: Robustness Against Fragmentation

Developer has to verify that the chess AI works on
Different platforms (OS) and
Different devices.

Scenario #4: Non-functional Testing

Developer has to verify that
The chess AI makes a move in less than 3 seconds.

12/42

Related Work in Android Testing

Test Generation Engines for Android (Alphabetically Ordered)

1 4 A3E
2 4 ACTEve4

3 4 CrashScope
4 4 CrawlDroid
5 4 DroidBot
6 4 DynoDroid3

7 6 EvoDroid

8 6 LAND
9 6 MATE
10 4 MobiGUITAR
11 4 Monkey (Google)
12 6 MonkeyLAB2

13 6 ORBIT4

14 4 PUMA

15 6 QBE1

16 6 QUANTUM
17 6 Sapienz (Facebook)
18 4 Stoat
19 4 SwiftHand (UCB)
20 4 SwiftHand2
21 6 TCM1,2

4 publicly available (12) 6 unavailable (9)

1 Our previous work.
2 Requires an initial set of test cases.

3 Instruments Android OS.
4 Requires the source code.

13/42

Problems of Existing Test Generation
Engines

Focus on Fatal Exceptions Only

4 Very simple test oracle.
6 Ignore other bugs.

Focus on Structural Coverage

Code, method, activity etc.
6 NOT functional.

Tests may cover many activities but
Fail to test essential functions.

Example
Start a chess game but do NOT move.

14/42

Test Oracles

Definition
Says a test has passed or failed.

Implicit Test Oracle

4 Automated.
6 Implemented.
6 Not scalable.

14/42

Test Oracles

Definition
Says a test has passed or failed.

Implicit Test Oracle

4 Automated.
6 Implemented.
6 Not scalable.

Example

Fatal Exceptions.
Activity Coverage.

14/42

Test Oracles

Definition
Says a test has passed or failed.

Implicit Test Oracle

4 Automated.
6 Implemented.
6 Not scalable.

Example

Fatal Exceptions.
Activity Coverage.

Specified Test Oracle

6 Developer writes specs.
4 Monitorable.
4 Scalable.

14/42

Test Oracles

Definition
Says a test has passed or failed.

Implicit Test Oracle

4 Automated.
6 Implemented.
6 Not scalable.

Example

Fatal Exceptions.
Activity Coverage.

Specified Test Oracle

6 Developer writes specs.
4 Monitorable.
4 Scalable.

Moreover, a specified test oracle

is a formal specification.
4 Unambiguous.

15/42

Motivation for Reinforcement Learning
(RL)

High performance in
4 Resource management,
4 Traffic control,
4 Chess,
4 Atari...

Also,
4 Requires no labeled

data (unlike ANN).
4 Learns from

trial-and-error.
? Requires an interpreter

to generate rewards.

16/42

RL for Test Generation

Typically,
Trained until convergence,

Learns to perform a task
indefinitely.

Example
Standing robot (on the left)

Testing

Generate once and terminate.
Do NOT wait for convergence.

17/42

Summary

Need automated test generation for
functional testing and
bug verification.

Existing automated test generation engines are inadequate.
Introduced

specified test oracles and
reinforcement learning.

Emphasized
RL for testing ⇒ Do NOT wait for convergence.

18/42

FARLEAD-Android Overview

Fully Automated Reinforcement LEArning-Driven Specification-Based
Test Generator for Android

Developer

Application
Under Test
(AUT)

FARLEAD-Android

Android
Device action

rlearnerSpecification
Test

installed on

observation

Figure: FARLEAD-Android Overview

Takes

The app binary (.apk) and
A specification (spec)

Crawls the app

Monitors the spec.
Outputs a witness.

A replayable test.

19/42

DEMO I

Proceed to DEMO

20/42

Example Spec: Traversing Menus

→

click
239 669
−−−−−−→ back−−→

Example (Linear-time Temporal Logic, LTL, Spec)

φ =© ([act. ∼ Main] ∧ ([act. ∼ Main]U([act. ∼ About] ∧ ([act. ∼ About]U [act. ∼ Main]))))
Description: Main activity is open in the next state, then Main activity is open until About
activity is open, and then About activity is open until Main activity is open again.

21/42

DEMO II

Proceed to DEMO

22/42

The RL Agent (rlearner)

23/42

What does rlearner learn? (Policy)

s01.000

Click
"View Help"

0.500

Click
"OKAY"

0.500

Policy
is a markov chain.

23/42

What does rlearner learn? (Policy)

s01.000

Click
"View Help"

0.000

Click
"OKAY"

1.000

s11.000

Policy
is a markov chain.

24/42

Improvement #1: Action Label Learning

Ad #1 (Re)start ... Ad #2 ... Ad #3Click "X"

Else

Click "X"

Else Else

Main
Menu

Click "X"

Example Spec
φ =©([Ad #1] ∧©([Ad #2] ∧©([Ad #3] ∧©[Main])))

Description: In the next state,
1 Ad #1, next,
2 Ad #2, next,
3 Ad #3, and finally,
4 Main

Problem:
Ad #1 Click "X"−−−−−→ gets reward.
Click "X" did NOT get
reward for future states.

24/42

Improvement #1: Action Label Learning

Ad #1 (Re)start ... Ad #2 ... Ad #3Click "X"

Else

Click "X"

Else Else

Main
Menu

Click "X"

Example Spec
φ =©([Ad #1] ∧©([Ad #2] ∧©([Ad #3] ∧©[Main])))

Description: In the next state,
1 Ad #1, next,
2 Ad #2, next,
3 Ad #3, and finally,
4 Main

Solution:
Learn stateless action values.
Give reward to Click "X"−−−−−→ .
Initialize state-action values
with action values.

25/42

Improvement #2: Tails/Decisions

Lobby

 (Re)start

 Idle

Settings

Click
"Settings"

Game

Click
"Begin" Back

Set
"Skill=Hard"

Example Spec
φ = ♦([Skill = Hard]∧♦(Lobby∧♦Game))
Description: Eventually,

1 Set Skill to Hard, then
2 Go to Lobby, then
3 Start the Game.

What If?

The first test sets the Skill to Hard, then goes to Lobby, then Idle.
Settings Back−−−→ gets high reward.
Further episodes get STUCK at Lobby→Settings→Lobby.

25/42

Improvement #2: Tails/Decisions

Lobby

 (Re)start

 Idle

Settings

Click
"Settings"

Game

Click
"Begin" Back

Set
"Skill=Hard"

Example Spec
φ = ♦([Skill = Hard]∧♦(Lobby∧♦Game))
Description: Eventually,

1 Set Skill to Hard, then
2 Go to Lobby, then
3 Start the Game.

Solution: Tails/Decisions

Rewards depend on history.
Replace states S with tails S =

⋃h
i=0(A× S)h.

Replace actions A with decisions A = S × A.

25/42

Improvement #2: Tails/Decisions

Lobby

 (Re)start

 Idle

Settings

Click
"Settings"

Game

Click
"Begin" Back

Set
"Skill=Hard"

Example Spec
φ = ♦([Skill = Hard]∧♦(Lobby∧♦Game))
Description: Eventually,

1 Set Skill to Hard, then
2 Go to Lobby, then
3 Start the Game.

Example

Do NOT give reward to Settings Back−−−→ .
Give reward to Settings Skill=Hard−−−−−−→ Settings Back−−−→ .

26/42

How to Calculate Rewards?

Example

φ = p U q (p must be true until q becomes true)

s0
{q}

If q = >,
4 p U q = >.

Reward ← 1.

s0
{}

If p = q = ⊥,
6 p U q = ⊥.

Reward ← −1.

s0
{p} ...

If p = > (q = ⊥),
? p U q =?.

Reward ← 0.

27/42

LTL Monitoring with Reward Shaping

Main Idea
At every step,

New spec (φsk+1) ← modify the current spec (φsk).
Reward ← some distance metric.

k=0
{p}

k=1
{q} ...

φs0 = p U (q ∧©[q U p])
φs1 = q U p

? Reward ← 0?
? Intermediate rewards?

28/42

Reward Shaping

r =

 −1 φsk+1 = ¬>
|N(φsk)−N(φsk+1)|
N(φsk)+N(φsk+1) otherwise

where φsk is the spec in state sk , N is the reward metric function that
returns the number of atomic propositions in φ.

Example

φs0 = p U (q ∧©[q U p])
φs1 = q U p

r ← |N(φs0)−N(φs1)|
N(φs0)+N(φs1) = |4−2|

4+2 ≈ .33

29/42

Experimental Scenarios I

Experimental Setup

Two Android GUI Applications (Notes and ChessWalk),
Nine scenarios.

Scenario #1: ChessWalk - Function

Description: The user goes to the AboutActivity and returns
back.

Scenario #2: ChessWalk - Function

Description: The user goes to the SettingsActivity and returns
back.

30/42

Experimental Scenarios II

Scenario #3: ChessWalk - Function

Description: Pausing and resuming the application should not
change the screen.

Scenario #4: ChessWalk - Bug Report

Description: The application should prevent the device from
sleeping BUT it does NOT.

Scenario #5: ChessWalk - Function

Description: Changed settings should be remembered later.

31/42

Experimental Scenarios III

Scenario #6: ChessWalk - Function

Description: The user starts a game and make a move.

Scenario #7: ChessWalk - Bug Report

Description: Second game shows the moves of the first game.

Scenario #8: Notes - Bug Report

Description: Black is missing from a color palette.

Scenario #9: Notes - Bug Report

Description: Even if a note is canceled, it is still created.

32/42

Scenarios ⇒ LTL (Levels of Detail)

Level (a) – Declarative

Only propositions about,
4 states
6 action types
6 action details

Level (c) – Imperative

All propositions about,
4 states
4 action types
4 action details

Level (b) – Mixed

Only propositions about,
4 states
4 action types
6 action details

Note that, we expect
Test Generation

Slow in level (a).
Fast in level (c).

33/42

Scenarios ⇒ LTL (Levels of Detail)

Example (Declarative - Level a)

©([activity ∼ Main]U([activity ∼ About] ∧©([activity ∼ About]U [activity ∼ Main]))

Example (Mixed - Level b)

©(([act. ∼ Main] ∧ action = click)U([act. ∼ About] ∧©([action = back]U [act. ∼ Main]))

Example (Imperative - Level c)

©((([action = click] ∧ [actionDetail ∼ About]) ∧ [act. ∼ About]) ∧©([action = back]Uact. ∼ Main))

Imperative LTL

Write test cases in LTL.
4 Do NOT write Java/Kotlin.

4 Portable.
4 Maintainable.

34/42

Experimental Setup

Engines Under Experimentation

1 Random: Random exploration.
2 Monkey: Random exploration with built-in monkey actions.
3 QBEa: Q-Learning Based Exploration optimized for activity

coverage.
4 FARLEADa: FARLEAD-Android with Level (a) specs.
5 FARLEADb: FARLEAD-Android with Level (b) specs.
6 FARLEADc: FARLEAD-Android with Level (c) specs.

Re-implemented Other Engines in FARLEAD-Android

Need to monitor LTL specs.

35/42

Experimental Setup

For
Every engine (6 engines),

Every scenario (9 scenarios), and
Execute test generation 100 times, for
Maximum 500 episodes and
Maximum 4 or 6 steps (depending on scenario).

Execute on VirtualBox guest with
Android 4.4 OS
480x800 screen resolution

Virtual machine is advantageous over a physical device

4 Reproducibility. 4 Scalability. 4 Configurability.

Measure
Effectiveness and
Performance.

36/42

Effectiveness Results

Engine
Scenario 1 2 3 4 5 6 7 8 9 Total

Random 4 4 4 4 4 4 6
Monkey 4 4 4 3
QBEa 4 4 4 4 4

FARLEADa 4 4 4 4 4 4 4 7
FARLEADb 4 4 4 4 4 4 4 4 4 9
FARLEADc 4 4 4 4 4 4 4 4 4 9

A Test Generation Engine is effective
Only if it generates

A witness for the given scenario
At least once in

100 executions (50000 episodes max)

36/42

Effectiveness Results

Engine
Scenario 1 2 3 4 5 6 7 8 9 Total

Random 4 4 4 4 4 4 6
Monkey 4 4 4 3
QBEa 4 4 4 4 4

FARLEADa 4 4 4 4 4 4 4 7
FARLEADb 4 4 4 4 4 4 4 4 4 9
FARLEADc 4 4 4 4 4 4 4 4 4 9

Overall, FARLEAD-Android is

4 More effective than other engines.
More effective when mixed or imperative specs are used.

37/42

Number of Failures
R
an

d
om

M
on

ke
y

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
om

M
on

ke
y

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
om

F
A
R
L
E
A
D
b
/
c

R
an

d
om

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b
/
c

R
an

d
om

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
om

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

10

100 88

35

3

38

76 76

48

1 2 3 4 5 6 7 8 9

0

#
F
ai
lu
re
s

Total

A Test Generation Engine fails
Only if it cannot find

A witness for the given scenario
At least once in an execution (500 episodes)

37/42

Number of Failures
R
an

d
om

M
on

ke
y

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
om

M
on

ke
y

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
om

F
A
R
L
E
A
D
b
/
c

R
an

d
om

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b
/
c

R
an

d
om

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
om

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

10

100 88

35

3

38

76 76

48

1 2 3 4 5 6 7 8 9

0

#
F
ai
lu
re
s

Total

Overall, FARLEAD-Android is

4 Fails fewer times than other tools.
Does NOT fail when mixed or imperative specs are used.

38/42

Test Generation Times
R
an

d
om

M
on

ke
y

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
om

M
on

ke
y

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
om

F
A
R
L
E
A
D
b
/c

R
an

d
om

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b
/c

R
an

d
om

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
om

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

2
4
8

16
32
64
128
256
512
1024
2048
4096
8192

16384
32768
65536

1 2 3 4 5 6 7 8 9

0

T
im

e
(s
ec
on
d
s)

Average
Maximum

A Test Generation Engine Achieves Better Performance
Only if it terminates faster (generates a test).

38/42

Test Generation Times
R
an

d
om

M
on

ke
y

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
om

M
on

ke
y

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
om

F
A
R
L
E
A
D
b
/c

R
an

d
om

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b
/c

R
an

d
om

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
om

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

2
4
8

16
32
64
128
256
512
1024
2048
4096
8192

16384
32768
65536

1 2 3 4 5 6 7 8 9

0

T
im

e
(s
ec
on
d
s)

Average
Maximum

Overall, FARLEAD-Android is

4 Faster than other tools.
Becomes faster from declarative to imperative.

39/42

Number of Steps
R
an

d
om

M
on

ke
y

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
om

M
on

ke
y

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
o
m

F
A
R
L
E
A
D
b
/c

R
an

d
om

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b
/c

R
an

d
om

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

R
an

d
om

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

Q
B
E
a

F
A
R
L
E
A
D
a

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

F
A
R
L
E
A
D
b

F
A
R
L
E
A
D
c

2

4

8

16

32

64

128

256

512

1024

2048

4096

1 2 3 4 5 6 7 8 9

0

#
S
te
p
s

Average
Maximum

Typically, RL-LTL Engines

6 Require hundreds of thousands steps (wait until convergence).
4 FARLEAD-Android requires less than 4K steps.

40/42

Future Work #1:
Gherkin Syntax

What is Gherkin Syntax?
Describes UI test scenarios.

4 Customer friendly and used in practice.
4 Easy to derive from informal requirements.

Syntax
Given p (precondition)
When q (antecedent)
Then r (consequent)

Example
Given The activity is TextNote
When The save button is clicked
Then A Note is created

Convert to LTL

4 φ = (♦p) ∧© (p U [q ∧©♦r])
? Natural language ⇒ atomic propositions? (resolve ambiguity)

41/42

Future Work #2:
Bounded Metric Temporal Logic (BMTL)

Scenario #4: Non-functional Testing

Developer has to verify that
The chess AI makes a move in less than 3 seconds.

6 Impossible to describe in LTL.

Bounded Metric Temporal Logic
Describes

bounds on the number of steps and
constraints on the time required

Example

φ = > U [0,20]
[0,100]

(
userMoved ∧ [idle U{1}[0,3] computerMoved]

)

42/42

Miscellaneous Information

Related Paper

Y. Koroglu and A. Sen, Reinforcement Learning-Driven Test Generation for
Android GUI Applications using Formal Specifications, arXiv preprint, 2019.
https://arxiv.org/abs/1911.05403
Available in my webpage, see below.

Contact

https://www.cmpe.boun.edu.tr/~yavuz.koroglu/
yavuz.koroglu@boun.edu.tr
DependLAB @ BM 21

https://arxiv.org/abs/1911.05403
https://www.cmpe.boun.edu.tr/~yavuz.koroglu/
yavuz.koroglu@boun.edu.tr

	Introduction
	Android GUI Testing
	Example Scenarios
	Related Work
	Specified Test Oracles
	Reinforcement Learning
	Summary
	FARLEAD-Android
	DEMO I

	Specifications
	What is a Spec?
	DEMO II

	Reinforcement Learning
	Overview
	Policy
	Action Label Learning
	Tails/Decisions
	Reward Shaping

	Evaluation
	Experiments

	Future Work
	Gherkin Syntax
	Bounded MTL

	Miscellaneous Info

