
Smart Android GUI Testing Approaches

Yavuz Koroglu Alper Sen

Department of Computer Engineering
Bogazici University, Istanbul/Turkey

yavuz.koroglu@boun.edu.tr
depend.cmpe.boun.edu.tr

November 6, 2017

mailto:yavuz.koroglu@boun.edu.tr
depend.cmpe.boun.edu.tr

Overview

1 Motivation
Android Usage Today
Fully-Automated Testing

2 Android GUI Testing
Android Background
Activity Life-Cycle
States and Actions
Remote Control DEMO

3 Monkey
Description
Pros & Cons

Monkey DEMO
4 Other Tools
5 Measures of Performance

Crashes
Coverage

6 Our Studies
AndroFrame
Reinforcement Learning
Test Case Mutation

7 Conclusions and Remarks
Some Results
Future Work

Android Usage Today

We use phones 3 hours/day.

Android Usage Today

We use phones 3 hours/day.

We constantly get error
messages.

Android Usage Today

We use phones 3 hours/day.

We constantly get error
messages.

Android Usage Today

We use phones 3 hours/day.

We constantly get error
messages.

Android Usage Today

We use phones 3 hours/day.

We constantly get error
messages.

Fully-Automated Android GUI Testing

GUI Testing

Click buttons,

Fill textboxes,

Drag & drop,

Swipe,

Toggle WiFi etc.

Automation is a MUST

> 2.2M Applications in the
Android market.

Internal Structure of an Android Application (.APK File)

Structure Overview

1 Executable .DEX file,

2 AndroidManifest.xml, and

3 Other resources - pictures,
sounds etc.

AndroidManifest.xml

Activity Names,

Launchable Activities, and

Permissions.

.DEX File

Formed by Java classes.

Each class has methods.

Java Classes for Android

Class Categories

1 Activity: Represents different screens of the application.

Launchable Activity: The first activity of the application.

2 Service: Represents tasks that runs in background. Started
and stopped from activities.

3 Content Provider: Dynamically presents the information
provided by various services to the activity.

4 Broadcast Reciever: Triggered by external events (SMS,
GPS, clock timeout etc.) and activates specific code
segments. Activities do NOT trigger them.

5 Other Classes: All other classes that inherit
java.lang.Object.

Activity Life-Cycle

Properties of Activities

Defaults expected to
be overwritten.

Developers depend
on defaults.

Error-prone.

Services, Content Providers, and Broadcast Recievers

OS fires events.

BroadCast recievers and the
target activity recieve the
event.

Event recievers trigger
services and other activities.

Content providers are
intermediaries between
services and activities.

Execution of an Android Application

GUI State

Concatenation of the following:

1 Java Package Name,

2 Activity Name,

3 Contextual States (WiFi,
Orientation etc.),

4 GUI Components - Thier sizes,
labels, and accesibility.

Execution of an Android Application

GUI Action

Actions performed by a user: text, click, swipe etc.

List of GUI Actions

Tablo: List of all GUI Actions

Non-Contextual Param1 Param2 Param3 Param4 Param5
click x y - - -

longclick x y - - -
text x y string - -

swipe x1 y1 x2 y2 duration
menu - - - - -
back - - - - -

Contextual Parameter
connectivity on/off/toggle

bluetooth on/off/toggle
location gps/gps&network/off/toggle

planemode on/off/toggle
doze on/off/toggle

Special Param1 Param2 Param3 Param4 Param5
reinitialize package activity - - -

Automatic Remote Control of Android

Proceed to DEMO.

Monkey

What does Monkey do?

Randomly generates

1 System events and
2 GUI actions.

Comes with the Android OS.

Very fast, thousands of
actions in a second.

Monkey Pros/Cons

Pros

Speed

Many kinds of actions

Cons

Unrealistic input

Can’t go to deep into
the application.

Monkey Pros/Cons

→ menu

Pros

Speed

Many kinds of actions

Cons

Unrealistic input

Can’t go to deep into
the application.

Monkey Pros/Cons

→ click More

Pros

Speed

Many kinds of actions

Cons

Unrealistic input

Can’t go to deep into
the application.

Monkey Pros/Cons

→ click
show
arrow
view

Pros

Speed

Many kinds of actions

Cons

Unrealistic input

Can’t go to deep into
the application.

Monkey Pros/Cons

→ menu

Pros

Speed

Many kinds of actions

Cons

Unrealistic input

Can’t go to deep into
the application.

Monkey Pros/Cons

→ click cache view

Pros

Speed

Many kinds of actions

Cons

Unrealistic input

Can’t go to deep into
the application.

Monkey Pros/Cons

→

Monkey
CAN’T detect
the crash.
Too deep in
the app.

Pros

Speed

Many kinds of actions

Cons

Unrealistic input

Can’t go to deep into
the application.

Monkey DEMO

Proceed to DEMO.

Other Tools in the Literature

Publicly Available Tools

1 A3E : Targeted Exploration. Uses Static Activity Transition
Graph (SATG) to test yet unexplored activities or test the
activities that have a transition to unexplored activities.

2 DynoDroid : A random tester that gives bias towards
relevant events that trigger relevant methods.

3 SwiftHand : Learns a finite-transition model of the
Application Under Test (AUT) to minimize restarts.

4 PUMA : Introduces cosine similarity between GUI states.

5 Sapienz : Uses evolutionary algorithms to generate test
cases.

!! None of the tools detect as many crashes as Monkey.

Measures of Testing Tool Performance

Crashes

Number of Crashes Detected : The main goal of testing is
to detect as many crashes as possible.

Number of Distinct Crashes : Testing tools may abuse the
same crash for performance increase. Must count each crash
once.

How to compare crashes?

Get related Android system logs via built-in LogCat.

Assumption: Similar stack traces correspond to the same
crash.

Measures of Testing Tool Performance

Coverage

What if,

There is no crash, or

Testing tools have the same crash performance?

Then, measure how much of the application is covered.

High-Level Coverage

Activity Coverage (used)

Widget Coverage (not used)

Event Coverage (not used)

State Coverage (not used)

Low-Level Coverage

Class Coverage (not used)

Method Coverage (used)

Branch Coverage (used)

Statement Coverage (used)

AndroFrame

What is AndroFrame?

Fully automated,

Model learning, and

Black-box

Features

Extended Labeled
Transition System
(ELTS).

Action Decisions:
Machine-Learning
Based.

_

v1

 reinitialize

v1'

 text1

v1''

 text2

v2
 click

v1'''

 text1

v2'
 click

 text2

v2''
 click

v3

 click

 click

 click click

AndroFrame Example

Action: reinitialize com.tum.yahtzee MainActivity

_

v1

 reinitialize

AndroFrame Example

Action: click 200 390 (click play)

_

v1

 reinitialize

v2
 click

AndroFrame Example

Action: click 200 410 (click ok)

_

v1

 reinitialize

v2
 click
 click

AndroFrame Example

Action: text 200 270 12345 (text1)

_

v1

 reinitialize

 text1

v2
 click
 click

AndroFrame Example

Action: reinitialize com.tum.yahtzee MainActivity

_

v1

 reinitialize

 text1

v2
 click
 click

AndroFrame Example

Action: text 200 270 12345 (text1)

_

v1

 reinitialize

 text1

v2
 click
 click

AndroFrame Example

Action: text 200 330 12345 (text2)

_

v1

 reinitialize

 text1, text2

v2
 click
 click

AndroFrame Example

Action: click 200 390 (click play)

_

v1

 reinitialize

 text1, text2

v3

click

v2
 click
 click

AndroFrame Example

Action: click 200 390 (click play)

_

v1

 reinitalize

 text1

v1'

 text2

v2
 click

v3

click

 click

Reinforcement Learning

State and Action Abstractions

Reinforcement Learning

Q-Matrices as Expectation Distributions for Multiple Objectives

Test Case Mutation (TCM)

Case Study 1: Loop-Stressing

Pressing Coin button multiple times results in crash.

Test Case Mutation (TCM)

Case Study 2: Contextual-State Toggling

Turning bluetooth on and then clicking Find Devices reeulsts in
crash.

Test Case Mutation (TCM)

Case Study 3: Pause-Resume

Pausing and then resuming results in a crash.

Test Case Mutation (TCM)

Case Study 4: Change Text

Changing text results in a crash.

Test Case Mutation (TCM) Example

Some Results

A5+TCM5_wMin
A5+TCM5_woutMin

A10
A3E

DynoDroid
Monkey

PUMA
Sapienz

SwiftHand

Not Mutated

Mutated

0 5 10 15 20

0

6

5.2

8

12 + 2 = 14

9

4

12.6

12 + 6 = 18

Experimental Set

100 Applications from known F-Droid benchmarks.

Future Work

App-Agnostic Oracles

Automated oracles that find non-crashing problems in Android.

Pausing-Resuming not returning the same state.

Broken layout after double rotation.

Broken back button not going to previous state.

Feedback-Directed Monkey (FDMonkey) Testing

Monkey can’t go deep into the application.

Guide Monkey parameters using the coverage, crash and
other info.

Specification-Based Testing

It is not interesting to test some applications for crash.

Specification-Based Testing

Test for the output correctness via specifications

Thank You. Any Questions?

	Motivation
	Android Usage Today
	Fully-Automated Testing

	Android GUI Testing
	Android Background
	Activity Life-Cycle
	States and Actions
	Remote Control DEMO

	Monkey
	Description
	Pros & Cons
	Monkey DEMO

	Other Tools
	Measures of Performance
	Crashes
	Coverage

	Our Studies
	AndroFrame
	Reinforcement Learning
	Test Case Mutation

	Conclusions and Remarks
	Some Results
	Future Work

