
Defect Prediction on a Legacy Industrial
Software: A Case Study on Software with Few

Defects

Yavuz Koroglu1 Alper Sen1 Doruk Kutluay2

Akin Bayraktar2 Yalcin Tosun2 Murat Cinar2 Hasan Kaya2

1

Department of Computer Engineering

2

NETAS Telecommunications

Bogazici University, Turkey Istanbul, Turkey

yavuz.koroglu@boun.edu.tr

depend.cmpe.boun.edu.tr

Fourth Intl. Workshop on Conducting Emprical Studies in
Industry CESI 2016 - An ICSE 2016 Workshop

mailto:yavuz.koroglu@boun.edu.tr
depend.cmpe.boun.edu.tr

1 Introdction

2 Methodology
Metrics
Predictive Models
Fine Tuning
Defect Prediction

3 Discussion
Threats to Validity
Conclusion

4 References

5 Appendix

Motivation

Most software is shipped with defects.

Test the software to detect defects.

Scalability of testing is an issue.
According to a study in 2005, 79% of Microsoft developers are
dedicated to writing unit tests [10].

80:20 Rule

80% of defects reside in the 20% of the software.

Can we predict defective parts of the software to direct the
testing e↵ort?

Approach

Proposed Approach

Use several Machine Learning(ML) techniques used in
literature.

Naive Bayes [11], J48 Decision Tree [8], Random Forest [4, 9],
Logistic Regression [7], Ensemble methods etc.

Predict defective files.

Direct testing e↵ort defect-prone files.

Company Description

NETAS

#1 systems integration company in Turkey.

O↵ers networking, security, cloud, communication,
maintanence, defense, public safety and e-government
solutions.

First R&D company in Turkey (founded in 1967).

Legacy Software Description

Experius Project

A multimedia app server project for VoIP communications.

Mainly written in Java.

Maintained via,
Issue tracking tool JIRA and
Version control system ClearCase.

Large (⇠ 35K Java .class files).

Low defect density (4%).

Methodology

Collect Metrics

Learn Predictive Models

Fine Tune Metrics/Models

Predict Defects

1 Introdction

2 Methodology
Metrics
Predictive Models
Fine Tuning
Defect Prediction

3 Discussion
Threats to Validity
Conclusion

4 References

5 Appendix

Data

Each file of each version is tagged as defective or non-defective.

Each entry contains metrics collected from current and previous
versions of the file.

Training set for version 11.2 contains 144111 entries in total where
5923 entries (sum of previous versions) contain defects.

Collected Data

Version # Files # Defective % Defective
10.0 31758 1584 5%
10.1 32600 1725 5%
10.2 33332 1273 4%
10.3 34702 1920 5%
10.4 37554 1005 3%
11.2 37988 1295 3%

Collected Metrics

Definition

Measures of a Java .class file.

Related to the defect-proneness of the .class file.

Types of Metrics

1 Product Metrics: Collected from the .class file.

2 Process Metrics: Collected from previous versions of the file
via JIRA/ClearCase.

Product Metrics

Metric Description
1 WMC Weighted Method Count
2 DIT Depth of Inheritance Tree
3 NOC Number of Children
4 CBO Coupling Between Objects
5 RFC Response for Class
6 LCOM Lack of Cohesion in Methods
7 Ca A↵erent Couplings
8 Ce E↵erent Couplings
9 NPM Number of Public Methods
10 LCOM3 Lack of Cohesion in Methods
11 LOC Lines of Code
12 DAM Data Access Metric
13 MOA Measure of Aggregation
14 MFA Measure of Functional Abstraction
15 CAM Cohesion Among Methods of Class
16 IC Inheritance Coupling
17 CBM Coupling Between Methods
18 AMC Average Method Complexity

Product metrics are
collected via CKJM
Extended [3].

Metrics are collected from
binary (.class files).

Process Metrics

Process Metrics [7]

Metric Description
19 NDPV # Defects in the Previous Version
20 NML # Modified Lines
21 NDC # Distinct Commiters

Additional process metrics

Metric Description
22 PBC Previous version Bug Criticality(1-5)
23 ABC Average Bug Criticality(1-5)
24 PBF Previous version Bug Fixes
25 ABF Average Bug Fixes

Overview

25 metrics for each version of each file.

Defective entries are rare. Therefore we used SMOTE
(Synthetic Minority Oversampling TEchnique) to oversample
the defects [1].

SMOTE-Random Forest is known to work well with
imbalanced data [2].

We increase the number of defective entries by 20x to have
approximately equal number of instances for each class.

1 Introdction

2 Methodology
Metrics
Predictive Models
Fine Tuning
Defect Prediction

3 Discussion
Threats to Validity
Conclusion

4 References

5 Appendix

Candidate Predictive Models

Candidates

Random Forest

Logistic Regression

J48 Decision Tree

Naive Bayes

Candidate Selection Criteria

Found in literature and

Model training time should be small (an hour).

Training

Training is done using WEKA [5].

Changed hyperparameters to optimize.

Used di↵erent oversampling ratios to generate Receiver
Operating Characteristic (ROC) curve.

Area Under ROC Curve (AUC) is a measure of predictive
power.
We use AUC to choose best model.

Model Comparison

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate(Type I Error)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
si

tiv
e
 R

a
te

(R
e
ca

ll)

AUC=1.00,Perfect Model
AUC=0.75,RF+Logistic
AUC=0.73,Random-Forest
AUC=0.72,Logistic-Regression
AUC=0.67,Naive-Bayes
AUC=0.66,J48-Decision-Tree
AUC=0.50,Random Guess

Random Forest + Logistic Regression has the best
predictive power. Random Forest is faster with second best
predictive power.

1 Introdction

2 Methodology
Metrics
Predictive Models
Fine Tuning
Defect Prediction

3 Discussion
Threats to Validity
Conclusion

4 References

5 Appendix

Measuring Predictive Power

Confusion Matrix

predicted
0 1

actual
0 tn fp

1 fn tp

1: defective, 0: non-defective

Recall: tp/(fn + tp)

Precision: tp/(fp + tp)

Accuracy:
(tp + tn)/(tp + tn + fp + fn)

Prevalence:
(tp + fp)/(tp + tn + fp + fn)

Details

Recall is a measure of completeness.

Precision is a measure of quality.

Accuracy is a measure of predictive power.

Prevalence is a measure of size.

Tradeo↵ between parameters.

The company chose from several options we provided according to their needs.

1 Introdction

2 Methodology
Metrics
Predictive Models
Fine Tuning
Defect Prediction

3 Discussion
Threats to Validity
Conclusion

4 References

5 Appendix

Predict Defects in Version 11.2 via Random Forest

Confusion Matrix

predicted
0 1

actual
0 34242 2451
1 612 683

1: defective, 0:
non-defective

Recall: 0.527

Precision: 0.218

Accuracy: 0.919

Prevalence: 0.087

Prevalence: 8.7% of the Java files are marked as
defect-prone.

Precision: 21.8% of the defect-prone files contain actual
defects.

Recall: The 8.7% marked as defect-prone contains 52.7% of
all defects.

As a last note, our model has a high accuracy (91.9%).

Related Work

Malhotra [8]

Decision Trees and Random Forests trained on multiple
projects.

AUC values;
Between 0.66 and 1 for Random Forests.
Our AUC is 0.73.
Our model performs better compared to software with low
defect rate (below 5%).

Hall [6]

Multiple models.

Best Recall values on file level range from 0.40 and 0.65. Our
recall (0.527) is close to their mean.

Related Work

Gothra [4]

Multiple models.

Our best AUC (0.75) is better than 5/10 and comparable to
3/10 projects.

Tosun et al. [11]

Study on Turkish industry, uses Naive Bayes.

Exploits undersampling. Undersampling in our case ! Small
training set.

Defect rate of the underlying software is higher (Software with
up to 18% defectives).

Impact of Additional Metrics

Metric Description
22 PBC Previous version Bug Criticality(1-5)
23 ABC Average Bug Criticality(1-5)
24 PBF Previous Bug Fixes
25 ABF Average Bug Fixes

Impact of Additional Metrics

Intuition

Defect related metrics ! positive impact on predictive power.

Bug information for each version of each class file was readily
available.

Bug information must be related with defect-proneness.

Approach

Use feature selection techniques to rate the relevance of
additional metrics.

Train same model with and without additional metrics.

Metric Ranking

Top 10 metrics according to their individual information gain.
Rank Metric Description
1 NDC Number of Distinct Commiters
2 NDPV Number of Defects in Previous Version
3 PBF Previous version Bug Fixes
4 NML Number of Modified Lines
5 PBC Previous version Bug Criticality
6 ABF Average Bug Fixes
7 ABC Average Bug Criticality
8 DIT Depth in Inheritance Tree
9 Ca A↵erent Couplings
10 MOA Measure of Aggregation

Top 7 metrics are process metrics.

Additional Metrics Cont’d

With Additional Metrics

predicted
0 1

actual
0 34242 2451
1 612 683

Measure Value
Recall (R) 0.527

Precision (P) 0.218
Accuracy (A) 0.919

Positive Prevalence 0.087

Without Additional Metrics

predicted
0 1

actual
0 33793 2900
1 720 575

Measure Value
Recall (R) 0.444

Precision (P) 0.165
Accuracy (A) 0.905

Positive Prevalence 0.090

1 Introdction

2 Methodology
Metrics
Predictive Models
Fine Tuning
Defect Prediction

3 Discussion
Threats to Validity
Conclusion

4 References

5 Appendix

Threats to Validity

1 Inaccurate Metric Collection

2 Missing History due to Unhandled Refactorings

3 Result Granularity Issues

4 External Validity Issues

Inaccurate Metric Collection

Lines of Code (LOC) Problem

LOC metric counts the lines in binary (not source).

Correlation between binary LOC and source LOC.

Binary LOC is related to defect-proneness.

Number of Modified Lines (NML) Problem

We weren’t provided with NML information.

We approximated the value as the di↵erence between LOCs.

Missing History due to Unhandled Refactorings

Scenario

1 Java .class file X gets renamed to Y in new version.

2 Our metric extraction script CAN NOT find history of Y .

Problem Severity

16094 of 144111 Java files have no history.

Some of the files are genuinely new, some are not.

No way to distinguish such files.

Result Granularity and External Validity Issues

Result Granularity

The percentage of defect-prone files DOES NOT represent
percentage of defect-prone LOC.

We believe that our results su�cently approximates the
percentage of the project .

External Validity

We DO NOT claim that Random Forest with 25 metrics
should achieve the same predictive power in other software.

However, our results are similar to several related work [4, 8].

1 Introdction

2 Methodology
Metrics
Predictive Models
Fine Tuning
Defect Prediction

3 Discussion
Threats to Validity
Conclusion

4 References

5 Appendix

Conclusions

We successfully predicted defects of an industrial software
project.

Our method successfully predicts 52.7% of all defects by
suggesting 8.7% of the files with 91.9% overall accuracy.

We can customize the model according to needs(get more
recall at the cost of overall accuracy).

Feedback from the company indicates that we achieve similar
predictive performance on version 12.0.

Our model is ready to be integrated into the company’s
Continuous Integration (CI) pipeline.

In the future, we aim to train our model on multiple projects.

Thank You.

References I

[1] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and
W. Philip Kegelmeyer.
Smote: Synthetic minority over-sampling technique.
J. Artif. Int. Res., 16(1):321–357, June 2002.

[2] Chao Chen, Andy Liaw, and Leo Breiman.
Using Random Forest to Learn Imbalanced Data.
Technical report, Department of Statistics, University of
Berkeley, 2004.

[3] CKJM Extended, http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/.

References II

[4] Baljinder Ghotra, Shane McIntosh, and Ahmed E. Hassan.
Revisiting the impact of classification techniques on the
performance of defect prediction models.
In Proceedings of the 37th International Conference on

Software Engineering - Volume 1, ICSE ’15, 2015.

[5] Mark Hall, Eibe Frank, Geo↵rey Holmes, Bernhard Pfahringer,
Peter Reutemann, and Ian H. Witten.
The weka data mining software: An update.
SIGKDD Explor. Newsl., 11(1):10–18, November 2009.

[6] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and
Steve Counsell.
A systematic literature review on fault prediction performance
in software engineering.
IEEE Trans. Softw. Eng., 38(6):1276–1304, November 2012.

References III

[7] Lech Madeyski and Marian Jureczko.
Which process metrics can significantly improve defect
prediction models? an empirical study.
Software Quality Journal, 23(3):393–422, September 2015.

[8] Ruchika Malhotra.
A systematic review of machine learning techniques for
software fault prediction.
Appl. Soft Comput., 27(C):504–518, February 2015.

[9] Julie Moeyersoms, Enric Junqué de Fortuny, Karel Dejaeger,
Bart Baesens, and David Martens.
Comprehensible software fault and e↵ort prediction: A data
mining approach.
Journal of Systems and Software, 100:80–90, 2015.

References IV

[10] Xiao Qu and Brian Robinson.
A case study of concolic testing tools and their limitations.
In Proceedings of the 2011 International Symposium on

Empirical Software Engineering and Measurement, ESEM ’11,
2011.

[11] Ayşe Tosun, Ayşe Bener, Burak Turhan, and Tim Menzies.
Practical considerations in deploying statistical methods for
defect prediction: A case study within the turkish
telecommunications industry.
Inf. Softw. Technol., 52(11):1242–1257, November 2010.

Predict Bugs in Version 11.2 via Random Forest

-I100 -K5 -D3

0 1
0 34045 2648
1 599 696

R = 0.537
P = 0.208
A = 0.915

-I100 -K5 -D3 -C

0 1
0 30166 6527
1 465 830

R = 0.641
P = 0.113
A = 0.82

-I100 -K8 -D5

0 1
0 34242 2451
1 612 683

R = 0.527
P = 0.218
A = 0.919

-I100 -K8 -D5 -C

0 1
0 33226 3467
1 664 631

R = 0.487
P = 0.154
A = 0.885

Predict Bugs in Version 11.2 via J48 Decision Tree

-C 0.1

0 1
0 34138 2555
1 755 540

R = 0.417
P = 0.174
A = 0.913

-C 0.25

0 1
0 34137 2556
1 756 539

R = 0.416
P = 0.174
A = 0.913

-C 0.25 -R

0 1
0 33928 2765
1 782 513

R = 0.396
P = 0.156
A = 0.907

-C 0.1 -R

0 1
0 33899 2794
1 791 504

R = 0.389
P = 0.153
A = 0.906

Predict Bugs in Version 11.2 via Naive Bayes

Standard

0 1
0 34557 2136
1 735 560

R = 0.432
P = 0.208
A = 0.924

High Recall

0 1
0 33822 2871
1 655 640

R = 0.494
P = 0.182
A = 0.907

Highest Recall

0 1
0 32383 4310
1 588 707

R = 0.546
P = 0.141
A = 0.871

High Precision

0 1
0 35136 1557
1 813 482

R = 0.372
P = 0.236
A = 0.937

Versions 10.3 and 10.4

10.3

0 1
0 31191 1591
1 1108 812

R = 0.423
P = 0.338
A = 0.92

10.4

0 1
0 31708 4741
1 513 492

R = 0.489
P = 0.094
A = 0.86

Random Forest with 100 trees of 5 attributes and 3 depth has
been used.

Version 10.3 has a more reliable version history.

Version 10.2 is not predictable because there is not enough
history to learn a good model for it.

	Introdction
	Methodology
	Metrics
	Predictive Models
	Fine Tuning
	Defect Prediction

	Discussion
	Threats to Validity
	Conclusion

	References
	Appendix

