
1/21

Fully Automated Compiler Testing of a Reasoning
Engine via Mutated Grammar Fuzzing

Yavuz Koroglu1 Franz Wotawa2

1Department of Computer Engineering, Bogazici University, TURKEY
2Institute for Software Technology, Graz University of Technology, AUSTRIA

May 27, 2019, Montréal/CANADA
14th ACM/IEEE International Workshop on Automation of Software Test (AST)

41st ACM/IEEE International Conference on Software Engineering (ICSE)

2/21

Overview

1 Problem Overview
2 Our Reasoning Engine: ATMS

DEMO I
Compiler Errors

3 gFuzzer Overview
Small Example: bc
DEMO II
Mutation Operators

4 Evaluation
Test Generation Results
DEMO III

5 Future Work
6 Miscellaneous Information

3/21

Problem Overview

Main Problem
Develop a fully-automated (once started, requires no human
intervention) testing tool that

1 Generates,
2 Executes, and
3 Evaluates

tests for a reasoning engine.

Reasoning Engine
A system that takes

<< Axioms, observations,
and returns

>> Logical consequences (diagnoses)

4/21

Our Reasoning Engine: ATMS

Assumption-Based Truth Maintenance System

Sensors Compiler
Observations

(Facts)

Reasoner

Compile
Success

Diagnoses
(Consequences)

Compile Failure

Reasoning
Model

Assumptions
(Axioms)

Figure: Assumption-based Truth Maintenance System (ATMS) Overview

Necessary Condition for Reasoning
Observations and axioms must be correctly compiled.

Compiler testing is required.

4/21

Our Reasoning Engine: ATMS

Assumption-Based Truth Maintenance System

Sensors Compiler
Observations

(Facts)

Reasoner

Compile
Success

Diagnoses
(Consequences)

Compile Failure

Reasoning
Model

Assumptions
(Axioms)

Figure: Assumption-based Truth Maintenance System (ATMS) Overview

Example (Reasoning Model)

observation︷ ︸︸ ︷
hitGas ∧

assumption︷ ︸︸ ︷
Running → moving

hitGas ∧ Broken → notMoving
moving ∧ notMoving → ⊥

Example (Observation)

hitGas
moving

4/21

Our Reasoning Engine: ATMS

Assumption-Based Truth Maintenance System

Sensors Compiler
Observations

(Facts)

Reasoner

Compile
Success

Diagnoses
(Consequences)

Compile Failure

Reasoning
Model

Assumptions
(Axioms)

Figure: Assumption-based Truth Maintenance System (ATMS) Overview

Example (Diagnoses)

D = {{Running}}

5/21

DEMO I

Proceed to DEMO

6/21

Compiler Errors

Actual
ATMS Compile Failure Consequence List

Reject Test Passed Type I Error
Accept Type II Error Test Passed

Type I Errors (False Positives)

Compiler accepts an invalid input.

Type II Errors (False Negatives)

Compiler rejects a valid input.

7/21

gFuzzer Overview

Test Oracle
Test Execution

Test Generation

ATMS
Grammar

gFuzzer

mgFuzzer

CYK
Recognizer

ATMS

test
input

test
input

Outputs
Agree?

output
Test PassedYES

Test Failed
NO

output

Dotted Lines, gFuzzer
Dashed Lines, mgFuzzer

Solid Lines, both

gFuzzer: Grammar Fuzzer

Takes a context-free grammar (ATMS Grammar in this case).
Generates random sentences (Valid test inputs).
Executes generated tests.
ATMS must always accept (Checks only Type II Errors).

7/21

gFuzzer Overview

Test Oracle
Test Execution

Test Generation

ATMS
Grammar

gFuzzer

mgFuzzer

CYK
Recognizer

ATMS

test
input

test
input

Outputs
Agree?

output
Test PassedYES

Test Failed
NO

output

Dotted Lines, gFuzzer
Dashed Lines, mgFuzzer

Solid Lines, both

mgFuzzer: Mutated Grammar Fuzzer

Mutates the original grammar.
Generates random sentences (could be valid or invalid).
Executes generated tests.
Compares ATMS output with a CYK recognizer.
Checks for both Type I and Type II Errors.

8/21

Small Example: bc

bc
bc is a UNIX tool that evaluates arithmetic expressions.

What can we do with gFuzzer?

Exact grammar is NOT known,
Design a reasonable grammar and
Discover functionalities.

Manual generation of grammars?
Infer a grammar from example test inputs.
Fuzz the inferred grammar.

9/21

DEMO II

Proceed to DEMO

10/21

Mutation Operators I

Terminal Replacement (TR)

Swaps two non-equal terminals.
(<A>::= a, ::= b) ⇒ (<A>::= b, ::= a)

Example
(<Digit>::= 1, <Op>::=→) ⇒ (<Digit>::=→, <Op>::= 1)

Note
For simplicity, we assume Chomsky Reduced Form (CRF). In CRF,
there are only two types of rules:

1 <R>::=<Q><S> and
2 <R>::= t

11/21

Mutation Operators II

DEletion (DE)

Replaces all expansions of a rule with empty string.
<A>∈ G ⇒<A>::= ε

Example
(<NonEmptyList>::=<Element><Rest>) ⇒<NonEmptyList>::= ε

Note
For simplicity, we assume Chomsky Reduced Form (CRF). In CRF,
there are only two types of rules:

1 <R>::=<Q><S> and
2 <R>::= t

12/21

Mutation Operators III

DUplication (DU)

Duplicates a rule.
<A>::=<C>⇒ (<A>::=<A′ ><A′ >, <A′ >::=<C>)

Example
(<Add>::=<Term><PlusTerm>) ⇒ (<Add>::=<Add′ ><Add′ >)

Note
For simplicity, we assume Chomsky Reduced Form (CRF). In CRF,
there are only two types of rules:

1 <R>::=<Q><S> and
2 <R>::= t

13/21

Mutation Operators IV

EXchange (EX)

Swaps the order of non-terminals.
(<A>::=<C>) ⇒ (<A>::=<C>)

Example
(<Add>::=<Term><PlusTerm>) ⇒ (<Add>::=<PlusTerm><Term>)

Note
For simplicity, we assume Chomsky Reduced Form (CRF). In CRF,
there are only two types of rules:

1 <R>::=<Q><S> and
2 <R>::= t

14/21

Mutation Operators V

Recursion Insertion (RI)

Enables infinite recursion on a random rule.
(<A>∈ G) ⇒ (<A>::=<A> | <A><A>)

Example
(<False>::= ⊥) ⇒ (<False>::= ⊥| <False><False>)

Note
For simplicity, we assume Chomsky Reduced Form (CRF). In CRF,
there are only two types of rules:

1 <R>::=<Q><S> and
2 <R>::= t

15/21

Mutation Operators VI

Terminal Insertion (TI)

Inserts a random terminal to a random rule.
(<A>∈ G) ⇒ (<A>::=<A> x) or (<A>::= x <A>)

Example
(<False>::= ⊥) ⇒ (<False>::= ¬⊥)

Note
For simplicity, we assume Chomsky Reduced Form (CRF). In CRF,
there are only two types of rules:

1 <R>::=<Q><S> and
2 <R>::= t

16/21

Evaluation

Method

Execute both gFuzzer and mgFuzzer, each one week.
Measure rule coverage.
Measure code coverage.
Collect failed tests.

Rule (Production) Coverage Criterion

Each rule in the grammar must be expanded at least once.
Expansion: Replacing a rule in the grammar with its terms.
Common in compiler testing.

17/21

Test Generation Results

Failed Passed Total Rule (%) Code (%)
gFuzzer 0 1,490,388 1,490,388 100 67.6

mgFuzzer 2 1,024 1,026 100 75.9
Both 2 1,491,412 1,491,414 100 75.9

Failed Tests

Test #1 x1,falsex2()x3->x2.
Assumption1.

Test #2

Assumption1,x2(false,x3)false.
Assumption3.
Assumption2.
x1.

mgFuzzer is considerably slower than gFuzzer.
mgFuzzer clearly outperforms gFuzzer in code coverage.
mgFuzzer finds an interesting error with fewer tests.

18/21

DEMO III

Proceed to DEMO

19/21

Future Work

Test the Reasoner

1 Property-Based Testing
Assume generic properties for reasoning models (e.g. For every
observation there must be at least one diagnosis)
Generate tests by perturbing observations.

2 Coverage-Directed Testing
Design novel coverage criteria (e.g. Every diagnosis must be
generated at least once)
Generate tests by perturbing observations.

3 SAT-Based Testing
Verify every diagnosis by using a SAT-solver.

20/21

Miscellaneous Information

Tool: https://github.com/yavuzkoroglu/gfuzzer-release
Contact:

1 yavuz.koroglu@boun.edu.tr or ykoerogl@ist.tugraz.at
2 wotawa@ist.tugraz.at

Acknowledgement
The research was supported by ECSEL JU under the project H2020
737469 AutoDrive. https://iktderzukunft.at/en/

Acknowledgement
The financial support by the Austrian Federal Ministry for Digital and
Economic Affairs and the National Foundation for Research,
Technology and Development is gratefully acknowledged.

https://github.com/yavuzkoroglu/gfuzzer-release
yavuz.koroglu@boun.edu.tr
ykoerogl@ist.tugraz.at
wotawa@ist.tugraz.at
https://iktderzukunft.at/en/

21/21

Thank You

	Problem Overview
	Our Reasoning Engine: ATMS
	DEMO I
	Compiler Errors

	gFuzzer Overview
	Small Example: bc
	DEMO II
	Mutation Operators

	Evaluation
	Test Generation Results
	DEMO III

	Future Work
	Miscellaneous Information

