Fully Automated Compiler Testing of a Reasoning
Engine via Mutated Grammar Fuzzing

Yavuz Koroglu® Franz Wotawa?

IDepartment of Computer Engineering, Bogazici University, TURKEY
2|nstitute for Software Technology, Graz University of Technology, AUSTRIA

May 27, 2019, Montréal/CANADA
14th ACM/IEEE International Workshop on Automation of Software Test (AST)
41st ACM/IEEE International Conference on Software Engineering (ICSE)

1/21

Overview

Problem Overview

Our Reasoning Engine: ATMS
m DEMO |
m Compiler Errors

gFuzzer Overview
m Small Example: bc
m DEMO I

m Mutation Operators

Evaluation
m Test Generation Results
m DEMO Il

Future Work

@ Miscellaneous Information

2/21

Problem Overview

Main Problem

Develop a fully-automated (once started, requires no human
intervention) testing tool that

Generates,
Executes, and
Evaluates

tests for a reasoning engine.

Reasoning Engine

A system that takes
Axioms, observations,

and returns

Logical consequences (diagnoses)

3/21

Our Reasoning Engine: ATMS

_ Diagnoses
" (Consequences)

Reasoner

Compile
Success
Observations Assumptions
(Facts) o . o (Axioms) Reasoning
@ > Compiler - Model

Compile Failure

Figure: Assumption-based Truth Maintenance System (ATMS) Overview

Necessary Condition for Reasoning

Observations and axioms must be correctly compiled.

m Compiler testing is required.

4/21

Our Reasoning Engine: ATMS

_ Diagnoses

Reasoner
" (Consequences)

Compile
Observations Assumptions
(Facts) o . o (Axioms) Reasoning
@ > Compiler - Model

|

|

|

T

|

|

|

|

Success |
|

|

|

T

|

|

Compile Failure :
|

Figure: Assumption-based Truth Maintenance System (ATMS) Overview

Example (Reasoning Model) Example (Observation)
observation ~ assumption O RGeS
m hitGas A Running — moving m moving

m hitGas N\ Broken — notMoving
m moving A notMoving — L

4/21

Our Reasoning Engine: ATMS

_ Diagnoses
>
(Consequences)

Reasoner

Compile
Success
Observations Assumptions
(Facts) o . o (Axioms) Reasoning
@ > Compiler - Model

Compile Failure

Figure: Assumption-based Truth Maintenance System (ATMS) Overview

Example (Diagnoses)

D = {{Running}}

4/21

DEMO |

Proceed to DEMO

Compiler Errors

ATMS . . .
Actual Compile Failure | Consequence List

Reject Test Passed Type | Error

Accept Type Il Error Test Passed

Type | Errors (False Positives)

Compiler accepts an invalid input.

Type Il Errors (False Negatives)

Compiler rejects a valid input.

6/21

gFuzzer Overview

Test Generation Test Oracle

,,,,,,,, Test Execution

: : test YES §
AP -» gFuzzer | | input | 5 \ Test Passed
: : Pl ATMS output utputs

: Agree?
- = 77 d - p—]
Grammar >: mgFuzzer Ir test : outputh
: input] » CYK :

1 . ines. oF
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, » Recognizer | Dotted Lines, gFuzzer

Dashed Lines, mgFuzzer
Solid Lines, both

gFuzzer: Grammar Fuzzer

m Takes a context-free grammar (ATMS Grammar in this case).

m Generates random sentences (Valid test inputs).
m Executes generated tests.

m ATMS must always accept (Checks only Type Il Errors).

7/21

gFuzzer Overview

Test Generation Test Oracle
[test Test Execution YES

et

: : i - ATMS output Outputs

N Agree?

- - d ”o [R |
Grammar H mgFuzzer r test : outputh

: input b] »: CYK :

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, i Dotted Lines, gFuzzer
> Recognizer | Dashed Lines, mgFuzzer

Solid Lines, both

mgFuzzer: Mutated Grammar Fuzzer

Mutates the original grammar.

Generates random sentences (could be valid or invalid).

|

|

m Executes generated tests.

m Compares ATMS output with a CYK recognizer.
|

Checks for both Type | and Type Il Errors.

7/21

Small Example: bc

bc is a UNIX tool that evaluates arithmetic expressions.

What can we do with gFuzzer?

m Exact grammar is NOT known,

m Design a reasonable grammar and
m Discover functionalities.

m Manual generation of grammars?

m Infer a grammar from example test inputs.
m Fuzz the inferred grammar.

8/21

DEMO Il

Proceed to DEMO

Mutation Operators |

Terminal Replacement (TR)

Swaps two non-equal terminals.
(<A>:=a,:=b) = (<A>:= b, := a)

Example

(<Digit>::= 1, <Op>::=—) = (<Digit>::=—, <Op>::=1)

For simplicity, we assume Chomsky Reduced Form (CRF). In CRF,
there are only two types of rules:

<R>::=<Q><S> and
<R>:=1t

10/21

Mutation Operators |l

DEletion (DE)

Replaces all expansions of a rule with empty string.
<A>e G =<A>i=¢

Example

(<NonEmptyList>::=<Element><Rest>) =<NonEmptyList>::= ¢

For simplicity, we assume Chomsky Reduced Form (CRF). In CRF,
there are only two types of rules:

<R>:=<Q><S> and
<R>:=t

11/21

Mutation Operators IlI

DUplication (DU)

Duplicates a rule.
<A>:=<C>= (<A>i=<A’ ><A' > <A’ >:=<(C>)

Example

(<Add>:=<Term><PlusTerm>) = (<Add>:=<Add’ ><Add’ >)

For simplicity, we assume Chomsky Reduced Form (CRF). In CRF,
there are only two types of rules:

<R>:=<Q><S> and
<R>:=t

12/21

Mutation Operators IV

EXchange (EX)

Swaps the order of non-terminals.
(<A>:=<C>) = (<A>:=<C>)

Example

(<Add>::=<Term><PlusTerm>) = (<Add>::=<PlusTerm><Term>)

For simplicity, we assume Chomsky Reduced Form (CRF). In CRF,
there are only two types of rules:

<R>::=<Q><S> and
<R>:=1t

13/21

Mutation Operators V

Recursion Insertion (RI)

Enables infinite recursion on a random rule.
(<A>€ G) = (<A>=<A> | <A><A>)

Example

(<False>::= 1) = (<False>::= 1| <False><False>)

Note

For simplicity, we assume Chomsky Reduced Form (CRF). In CRF,
there are only two types of rules:

<R>:=<Q><S> and
<R>:=1t

14/21

Mutation Operators VI

Terminal Insertion (TI)

Inserts a random terminal to a random rule.
(<A>€ G) = (<A>=<A> x) or (<A>1=x <A>)

Example

(<False>::= 1) = (<False>:= —1)

For simplicity, we assume Chomsky Reduced Form (CRF). In CRF,
there are only two types of rules:

<R>::=<Q><S> and
<R>:=1t

15/21

Evaluation

m Execute both gfuzzer and mgFuzzer, each one week.
m Measure rule coverage.
m Measure code coverage.

m Collect failed tests.

Rule (Production) Coverage Criterion

m Each rule in the grammar must be expanded at least once.
m Expansion: Replacing a rule in the grammar with its terms.

m Common in compiler testing.

16/21

Test Generation Results

Failed | Passed Total Rule (%) | Code (%)
gFuzzer 0 1,490,388 | 1,490,388 100 67.6
mgFuzzer 2 1,024 1,026 100 75.9
Both 2 1,491,412 | 1,491,414 100 75.9
Failed Tests
x1,falsex2()x3->x2.
Test 1 Assumptionl.
Assumptionl,x2(false,x3)false.
Assumption3.
Test 72 Assumption2.
x1.

m mgfuzzer is considerably slower than gFuzzer.
m mgFuzzer clearly outperforms gFuzzer in code coverage.
m mgFuzzer finds an interesting error with fewer tests.

17/21

DEMO Il

Proceed to DEMO

Future Work

Test the Reasoner

Property-Based Testing
m Assume generic properties for reasoning models (e.g. For every
observation there must be at least one diagnosis)
m Generate tests by perturbing observations.
Coverage-Directed Testing

m Design novel coverage criteria (e.g. Every diagnosis must be
generated at least once)
m Generate tests by perturbing observations.

SAT-Based Testing
m Verify every diagnosis by using a SAT-solver.

19/21

Miscellaneous Information

m Tool: https://github.com/yavuzkoroglu/gfuzzer-release
m Contact:

yavuz.koroglu@boun.edu.tr or ykoerogl@ist.tugraz.at
wotawa@ist.tugraz.at

Acknowledgement

The research was supported by ECSEL JU under the project H2020
737469 AutoDrive. https://iktderzukunft.at/en/ bm@

Acknowledgement

The financial support by the Austrian Federal Ministry for Digital and
Economic Affairs and the National Foundation for Research,
Technology and Development is gratefully acknowledged.

20/21

https://github.com/yavuzkoroglu/gfuzzer-release
yavuz.koroglu@boun.edu.tr
ykoerogl@ist.tugraz.at
wotawa@ist.tugraz.at
https://iktderzukunft.at/en/

Thank You

	Problem Overview
	Our Reasoning Engine: ATMS
	DEMO I
	Compiler Errors

	gFuzzer Overview
	Small Example: bc
	DEMO II
	Mutation Operators

	Evaluation
	Test Generation Results
	DEMO III

	Future Work
	Miscellaneous Information

