
1

Processes 

Threads

Interprocess Communication



2

Processes – Defined

� The process is the OS’s abstraction for 
execution

� the unit of execution

� a unit of scheduling 

� the dynamic execution context

� Process is often called a job, task, or 
sequential process



3

Processes – Contents

� A process in Unix or Windows comprises (at least):
� an address space – usually protected and virtual – mapped 

into memory
� the code for the running program
� the data for the running program
� an execution stack and stack pointer (SP)
� the program counter (PC)
� a set of processor registers – general purpose and status
� a set of system resources

� files, network connections, privileges, …



4

Processes – Address Space

0x00000000

0xFFFFFFFF

Virtual

address space

program code

(text)

static data

heap

(dynamically allocated)

stack

(dynamically allocated)

PC

SP



5

Processes in the OS – Representation

� A process is identified by its Process ID (PID) 

� In the OS, processes are represented by 
entries in a Process Table (PT)

� PID “points to” a PT entry

� PT entry = Process Control Block (PCB)

� PCB is a large data structure that contains or 
points to all info about the process



6

PCB

� Typical PCB contains:

� execution state

� PC, SP & processor registers – stored when 
process is made inactive

� memory management info

� Privileges and owner info

� scheduling priority

� resource info

� accounting info



7

Process – starting and ending

� Processes are created …

� When the system boots

� By another process

� By user

� By batch manager

� Processes terminate when …

� Normally – exit

� Voluntarily on an error

� Involuntarily on an error

� Terminated (killed) by the actions a user or a process



8

Processes – Switching

� When a process is running, its hardware 
state is in the CPU – PC, SP, processor 
registers

� When the OS suspends running a process, it 
saves the hardware state in the PCB

� Context switch is the act of switching the 
CPU from one process to another 
� timesharing systems may do 100s or 1000s of 

switches/sec

� takes 1-100 microseconds on today’s hardware



9

States

� Process has an execution state

� ready: waiting to be assigned to CPU

� running: executing on the CPU

� waiting: waiting for an event, e.g. I/O

Waiting

Running

Ready

New

Dispatch

Interrupt

I/O Wait

I/O Complete

Exit



10

State Queues

� The OS maintains a collection of process state
queues

� typically one queue for each state – e.g., ready, waiting, …

� each PCB is put onto a state queue according to its current 
state

� as a process changes state, its PCB is unlinked from one 
queue, and linked to another

� Process state and the queues change in response 
to events – interrupts, traps



11

Process Creation

� Unix/Linux

� Create a new (child) process – fork();

� Allocates new PCB

� Clones the calling process (almost)

� Copy of parent process address space

� Copies resources in kernel (e.g. files)

� Places PCB on Ready queue

� Return from fork() call

� 0 for child

� child PID for parent



12

Processes – Address Space

0x00000000

0xFFFFFFFF

Virtual

address space

code

(text)

static data

heap

(dynamically allocated)

Kernel Code and Data

PC

SP

User Space

stack

(dynamically allocated)

Kernel Space



13

Example of fork( )

int main(int argc, char **argv)

{

char *name = argv[0];

int child_pid = fork();

if (child_pid == 0) {

printf(“Child of %s is %d\n”,

name, child_pid);

return 0;

} else {

printf(“My child is %d\n”, child_pid);

return 0;

} 

}

_______________________________
% ./forktest
Child of forktest is 0
My child is 486

Child

Parent



14

Another example

#include <stdio.h>

main(int argc, char *argv[])
/* argc -- number of arguments */
/* argv -- an array of strings */

{
int pid;
int i;

/* print out the arguments */
printf("There are %d 
arguments:\n", argc);

for (i = 0; i < argc; i++)
printf("%s\n", argv[i]);

if ((pid = fork()) < 0) {
fprintf(stderr, "Fork error\n");
exit(1);

}
else if (pid == 0) { /* child process */

for (i = 0; i < 5; i++)
printf("child (%d) : %s\n", 

getpid(), argv[2]);
exit(0);

}
else {

/* parent */
for (i = 0; i < 5; i++)

printf("parent (%d): %s\n", 
getpid(), argv[1]);

exit(0);
}

}



15

Result?

� > gcc -o ptest ptest.c
� > ./ptest x y
� output:
There are 3 arguments:
ptest
x
y
parent (690): x
parent (690): x
child (7686) : y
parent (690): x
child (7686) : y
parent (690): x
child (7686) : y
parent (690): x
child (7686) : y
child (7686) : y



16

New Programs 

� Starting another program

� Unix – int exec (char *prog, char **argv)

� Check privileges and file type

� Loads program “prog” into address space

� Initializes context – e.g. passes arguments (*argv)

� Place PCB on ready queue

� Windows/NT – combines fork & exec
� CreateProcess ( 10 arguments )

� Not a parent child relationship

� Note – privileges required to create a new process 



17

execve

� execve(name, argv, envp): 

� name
� -- name of the file to execute. 

� argv
� NULL-terminated array of pointers to NULL-

terminated character strings. 

� envp
� NULL-terminated array of pointers to NULL-

terminated strings. Used to pass environment
information to the new process. 



18

process execution

� a process first starts up 

� started via exec

� After startup the C library: 

� makes the arguments passed to exec available as 
arguments to the main procedure in the new 
process. 

� places a copy of envp in the global variable 
environ. 



19

Process Creation

� #include <sys/types.h>

� #include <unistd.h>

pid_t fork(void);

int execve (const char *filename,

char *const argv[], 

char *const envp[]);



20

Execve
int main(int argc, char **argv) 

{ char *argvNew[5]; 

int pid;

if ((pid = fork()) < 0) { 

printf( "Fork error\n“);

exit(1);

} else if (pid == 0) { /* child process */ 

argvNew[0] = "/bin/ls";

argvNew[1] = "-l";

argvNew[2] = NULL;

if (execve(argvNew[0], argvNew, environ) < 0) {

printf( "Execve error\n“);

exit(1);

}

} else { /* parent */

wait(pid); /* wait for the child to finish */

}

} 

Returns only in 
error condition



21

utility functions

� execl(name, arg0, arg1, arg2, ..., 0) 
� used when the arguments are known in advance. 

� 0 terminates the argument list. 

� execv(name, argv) 
� argv is the same for execve. 

� execvp(name, argv) 
� argv is the same as for execve. 

� executable file is searched for in the path 

� eventually execve will be called
� global variable environ in place of the envp argument

� child processes inherits the parent's environment. 



22

basic  shell like application

while (1) {

type_prompt(); /* show prompt */ 

read_command(command,parameters); /* get input */

if (fork != 0) {

/* Parent code */

waitpid(-1,&status,0);

} else {

/* child code */

execve(command,parameters,0);

}

}

source: Operating Systems Design and Implementation – Tannenbaum & Woodhull



23

Synchronization

Interprocess Communication 

(IPC)



24

Interprocess Communication

� Mechanism for processes to 
communicate and to synchronize their 
actions.



25

Interprocess Communication

� Types
� Pipes & streams

� Sockets & Messages

� Remote Procedure Call

� Shared memory

� OS dependent

� Depends on whether the communicating 
processes share all or part of an address 
space



26

Interprocess Communication

� Common IPC mechanisms 
� shared memory – read/write to shared region

� E.g., shmget(), shmctl() in Unix

� Memory mapped files in WinNT/2000
� Need critical section management

� semaphores
� post_s() notifies wait ing process
� Shared memory or not

� software interrupts - process notified asynchronously 
� signal ()

� pipes - unidirectional stream communication
� message passing - processes send and receive messages

� Across address spaces



27

Software Interrupts

� Similar to hardware interrupt.
� Processes interrupt each other

� Non-process activities interrupt processes 

� Asynchronous 

� Stops execution then restarts
� Keyboard driven – e.g. cntl-C

� An alarm scheduled by the process expires 
� Unix: SIGALRM from alarm() or settimer()

� resource limit exceeded (disk quota, CPU time...)

� programming errors: invalid data, divide by zero



28

Software Interrupts (continued)
� SendInterrupt(pid, num)

� Send signal type num to process pid, 

� kill() in Unix

� (NT doesn’t allow signals to processes)

� HandleInterrupt(num, handler)

� type num, use function handler

� signal() in Unix

� Use exception handler in WinNT/2000

� Typical handlers:
� ignore

� terminate (maybe w/core dump)

� user-defined



29

Pipes

� A pipe is a unidirectional stream connection 
between 2 processes

� Unix/Linux

� 2 file descriptors 

� Byte stream

� Win/NT 

� 1 handle

� Byte stream and structured (messages)



30

� Classic IPC method under UNIX: 
> ls -l | more

� shell runs two processes ls and more which are linked via a pipe

� the first process (ls) writes data (e.g., using write) to the pipe and 
the second (more) reads data (e.g., using read) from the pipe

� the system call  pipe( fd[2] )

creates one file descriptor for reading
(fd[0]) and one for writing (fd[1]) 

- allocates memory page to hold data

(Named) Pipes



31

Pipe Example
#include <unistd.h>
#include <stdio.h>

char *msg = "Hello Pipe!";

main()
{  
char inbuf[MSGSIZE];
int p[2];
pid_t pid;

/* open pipe */ 
if (pipe(p) == -1) { perror("pipe
call error"); exit(1); }

switch( pid = fork() ) {

case -1: perror("error: fork 
call");

exit(2);

case 0:  close(p[0]);  /* close the 
read end of the pipe */

write(p[1], msg, 
MSGSIZE);

printf(“Child: %s\n", 
msg);

break;

default: close(p[1]);  /* close 
the write end of the pipe */

read(p[0], inbuf, 
MSGSIZE);

printf("Parent: %s\n", 
inbuf);

wait(0);
}
exit(0);

}



32

creating file descriptors

� $ exec 3< file1 
� creates a file descriptor called 3

� 3 is descriptor for file called file1

� Standard descriptors
� 0 – read

� 1 – write

� 2 – error

� $ read <&3 var1
� reads from file with descriptor 3

� result is places in  var1

� echo $var1



33

example: file_descriptor_read_write

#/bin/sh
#process a file line by line

if [ $# != 1 ] ; then
echo "Usage: $0 input-file"
exit 1

else
processfile=$1

fi

# assign file descriptor 3 to file

exec 3< $processfile

#read from file through 
descriptor

until [ $done ]
do

read <&3 out
if [ $? != 0 ] ; then

done=1
continue

fi

# process file
echo $out
done
echo " That is al folks!"



34

Processing

file1:

date

users

pwd

ls

uskudarli@uskudarli:~/code/shell$ 
./file_descriptor_read_write file1
date
users
pwd
ls
That is all folks!!! 



35

IPC – Message Passing

� Communicate information from one process 
to another via primitives:
send(dest, &message)

receive(source, &message)

� Receiver can specify ANY

� Receiver can choose to block or not



36

Message Passing

void Producer() {
while (TRUE) {

/* produce */

build_message(&m, item); 

/* send message */

send(consumer, &m); 

/* wait for ack */

receive(consumer, &m);

}

}

void Consumer {

while(TRUE) {

receive(producer, &m); 

/* receive message */

extract_item(&m, &item);

/* send ack */

send(producer, &m); 

/* consume item */

}

}



37

send

� send ( ) operation

� Synchronous
� Returns after data is sent

� Blocks if buffer is full

� Asynchronous
� Returns as soon as I/O started

� Done?

� Explicit check

� Signal

� Blocks if buffer is full



38

receive

� receive () operation

� Syncronous
� Returns if there is a message

� Blocks if not

� Asyncronous
� Returns if there is a message

� Returns indication if no message



39

Mailbox

� Indirect Communication – mailboxes

� Messages are sent to a named area – mailbox

� Processes read messages from the mailbox

� Mailbox must be created and managed

� Sender blocks if mailbox is full

� Enables many-to-many communication



40

Message Passing issues

� Scrambled messages (checksum) 

� Lost messages (acknowledgements)

� Lost acknowledgements (sequence no.)

� Process unreachable (down, terminates)

� Naming

� Authentication

� Performance (copying, message building)



41

Buffering/Queuing

� Queue of messages attached to the link

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous).

2. Bounded capacity – finite length of n messages
Sender must wait if link full.

3. Unbounded capacity – infinite length 
Sender never waits.



42

Message Passing (2)

� Message passing may be:

� Blocking

� synchronous.

� Non-blocking

� asynchronous.

� send and receive primitives may be 
either blocking or non-blocking.



43

Synchronization in message passing (1)

� For the sender
� convenient to not to be blocked after send

� send several messages to multiple 
destinations.

� usually expects acknowledgment of message 
receipt 

� For the receiver
� it is more natural to be blocked after issuing receive:

� the receiver usually needs the info before 
proceeding.

� but could be blocked indefinitely if sender 
process fails before send.



44

Synchronization in message passing (2)

� Other aternatives

� blocking send and blocking receive: 

� both are blocked until the message is received.

� when the communication link is unbuffered (no 
message queue).

� tight synchronization (rendezvous).



45

� 3 meaningful combinations:

1. Blocking send, Blocking receive

2. Nonblocking send, Nonblocking receive

3. Nonblocking send, Blocking receive 

3rd is most popular

Synchronization in message passing (3)



46

Messages and Pipes Compared



47

Some Signals

SIGHUP  1  Exit  Hangup
SIGINT 2 Exit Interrupt
SIGQUIT 3 Core Quit
SIGILL 4 Core Illegal Instruction
SIGTRAP 5 Core Trace/Breakpoint Trap
SIGABRT 6 Core Abort
SIGEMT 7 Core Emulation Trap
SIGFPE 8 Core Arithmetic Exception
SIGKILL 9 Exit Killed
SIGBUS 10 Core Bus Error
SIGSEGV 11 Core Segmentation Fault
SIGSYS 12 Core Bad System Call
SIGPIPE 13 Exit Broken Pipe
SIGALRM 14 Exit Alarm Clock
SIGTERM 15 Exit Terminated



48

Signal Example
#include <stdio.h>
#include <signal.h>

void sigproc()
{ 
signal(SIGINT, sigproc); 

printf(“you have pressed ctrl-c -
disabled \n”);

}

void quitproc()
{ 

printf(“ctrl-\\ pressed to quit\n”); 
exit(0); /* normal exit status */

}

main()

{ 

signal(SIGINT, sigproc);   

/* DEFAULT ACTION: term */

signal(SIGQUIT, quitproc);  

/* DEFAULT ACTION: term */

printf(“ctrl-c disabled use ctrl-\\
to quit\n”);

for(;;);

}



49

signal example

#include <stdio.h>

#include <signal.h>

void sighup(); 

void sigint();

void sigquit();

main()

{ 

int pid;

/* get child process */

if ((pid=fork()) < 0) 

{ perror("fork"); exit(1); }

if (pid == 0) { /* child 
*/

signal(SIGHUP, sighup); 

signal(SIGINT, sigint);

signal(SIGQUIT, sigquit);

for(;;); 

} else { /* parent */

printf("\nPARENT: 
sending SIGHUP\n\n");

kill(pid,SIGHUP);

sleep(3); 

printf("\nPARENT: 
sending SIGINT\n\n");

kill(pid,SIGINT);

sleep(3); 

printf("\nPARENT: 
sending SIGQUIT\n\n");

kill(pid,SIGQUIT);

sleep(3);

}

}



50

Signal Example

void sighup()

{  

signal(SIGHUP,sighup); 
/* reset signal */

printf("CHILD: 
received SIGHUP\n");

}

void sigint()

{  

signal(SIGINT,sigint); 
/* reset signal */

printf("CHILD:received
SIGINT\n");

}

void sigquit()

{ 

printf("Parent

Killed me!!!\n");

exit(0);

}



51

Summary

� Many ways to perform send messages or 
perform IPC on a machine

� mailboxes - FIFO, messages has types

� pipes – FIFO, no type

� shared memory – shared memory mapped into 
virtual space

� signals – send a signal which can invoke a 
special handler 



52

Critical Sections

� Critical section of code involve shared access 
in a concurrent situation

� More than one process/thread must not enter

� Synchronization mechanisms must be used



53

Blocking

� Blocking is synchronous

� Non-blocking is asynchronous



54

Threads



55

Processes are very heavyweight

� Lots of data in process context

� Processor caches a lot of information 
� Memory Management information

� Costly context switches and traps
� 100’s of microseconds



56

Processes are Heavyweight

� Separate processes have separate address 
spaces

� Shared memory is limited or nonexistent

� Applications with internal concurrency are difficult

� Isolation between independent processes vs.

cooperating activities
� Fundamentally different goals



57

Example

� Web Server – How to support multiple concurrent 
requests

� One solution:

� create several processes that execute in parallel

� Use shared memory (shmget() ) to map to the same

address space in the processes

� have the OS schedule them in parallel

� Not efficient

� space:  PCB, page tables, etc.

� time: creating OS structures (fork() ) and context 

switch



58

Example 2

� Transaction processing systems
� E.g, airline reservations or bank ATM transactions

� 1000’s of transactions per second
� Very small computation per transaction

� Separate processes per transaction are too 
costly



59

Solution:– Threads

� A thread is the execution of a program or procedure 
within the context of a Unix or Windows process

� I.e., a specialization of the concept of process

� A thread has its own
� Program counter, registers

� Stack

� A thread shares
� Address space, heap, static data

� All other resources

with other threads in the same process



60

Threads

0x00000000

0xFFFFFFFF

Virtual

address space

code

(text)

static data

heap

thread 1 stack

PC (T2)

SP (T2)

thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)

PC (T3)

SP

PC



61

Thread Interface

� From POSIX pthreads API:

� int pthread_create(pthread_t *thread, const pthread_attr_t

*attr, void*(*start_routine) (void), void *arg) ;

� creates a new thread of control

� new thread begins executing at start_routine

� pthread_exit(void *value_ptr)

� terminates the calling thread 

� pthread_join(pthread_t thread, void **value_ptr);

� blocks the calling thread until the thread specified terminates 

� pthread_t pthread_self()

� Returns the calling thread's identifier



62

Threads

� Linux, Windows, and various versions of Unix 
have their own thread interfaces

� Similar, not standardized

� Some issues
� E.g., ERRNO in Unix — a static variable set by system 

calls



63

Threads – Management

� Who/what creates and manages threads?
� Kernel level – new system calls and new entity to 

manage
� Linux: lightweight process

� Win/NT & XP: threads

� User level
� done with function library (POSIX)

� Runtime system – similar to process management 
except in user space

� Win/NT – fibers: x user-level thread mechanism



64

Threads – User Space

� Thread Scheduler
� Queues to keep track of threads’ state

� Scheduler – non-preemptive
� Assume threads are well-behaved

� Thread gives up CPU by calling yield() – does context switch 
to another thread

� Scheduler – preemptive
� Assumes threads may not be well-behaved

� Scheduler sets timer to create a signal that invokes scheduler

� Scheduler can force thread context switch

� Increased overhead

� Application must handle all concurrency itself!



65

Threads inside the OS kernel

� Kernels have evolved into large, multi-
threaded programs.

� Lots of concurrent activity
� Multiple devices operating at one time

� Multiple application activities at one time



66

Threads – Summary

� Processes are very heavyweight in Unix, 
Linux, Windows, etc.

� Need for isolation between processes conflicts the need 
for concurrency within processes

� Threads provide an efficient alternative 
Thread implementation and management 
strategies depend upon expected usage

� Kernel support or not

� Processor support or not



67

Processes

� Processes are created in a hierarchical structure  

� depth is limited by the virtual memory available to the virtual 
machine 

� A process may control the execution of any of its descendants 

� suspend

� resume

� change relative priority

� terminate

� Termination of a process causes termination of all its 
descendants

� Termination of the root process terminates the session

� Linux assigns a process ID (PID) to the process



68

Processes

� Foreground

� a process runs in terminal

� invoked from prompt

� when process terminates it returns to prompt

� Background

� process runs in the background

� invoked with “&” at the end of the command line,

� the prompt immediately returns

� terminal is free to execute other commands



69

Processes

� Daemons
� Background processes for system administration 

are referred to as “daemons”

� These processes are usually started during the 
boot process

� The processes are not assigned any terminals

UID        PID  PPID  C STIME TTY          TIME CMD

root         5     1  0  1999 ?        00:00:14 [kswapd]

bin        254     1  0  1999 ?        00:00:00 [portmap]

root       307     1  0  1999 ?        00:00:23 syslogd -m 0

root       350     1  0  1999 ?        00:00:34 httpd



70

Processes

[root@penguinvm log]# sleep 10h &

[1] 6718

[root@penguinvm log]# ps -ef

UID        PID  PPID  C STIME TTY          TIME CMD

root      6718  6692  0 14:49 ttyp0    00:00:00 sleep 10h

& causes process to be run 

in “background”

Job Number Process ID (ID) Parent Process ID



71

Processes - UID & GID

� Real UID

� At process creation, the real UID identifies the 
user who has created the process

� Real GID

� At process creation, the real GID identifies the 
current connect group of the user for which the 
process was created



72

Processes - UID & GID

� Effective UID
� The effective UID is used to determine owner access 

privileges of a process.

� Normally the same as the real UID. It is possible for a 
program to have a special flag set that, when this program 
is executed, changes the effective UID of the process to 
the UID of the owner of the program. 

� A program with this special flag set is said to be a set-user-
ID program (SUID). This feature provides additional 

permissions to users while the SUID program is being 
executed.



73

Processes - UID & GID

� Effective GID
� Each process also has an effective group

� The effective GID is used to determine group access 
privileges of a process

� Normally the same as the real GID. A program can have a 
special flag set that, when this program is executed, 
changes the effective GID of the process to the GID of the 
owner of this program

� A program with this special flag set is said to be a set-
group-ID program (SGID). Like the SUID feature, this 
provides additional permission to users while the set-
group-ID program is being executed



74

Processes - Process Groups

� Each process belongs to a process group

� A process group is a collection of one or more processes

� Each process group has a unique process group ID

� It is possible to send a signal to every process in the group just 
by sending the signal to the process group leader

� Each time the shell creates a process to run an application, the
process is placed into a new process group

� When an application spawns new processes, these are members 
of the same process group as the parent



75

Processes - PID

� PID
� A process ID is a unique identifier assigned to a 

process while it runs

� Each time you run a process, it has a different 
PID (it takes a long time for a PID to be reused by 
the system) 

� You can use the PID to track the status of a 
process with the ps command or the jobs
command, or to end a process with the kill
command



76

Processes - PGID

� PGID 

� Each process in a process group shares a 
process group ID (PGID), which is the same as 
the PID of the first process in the process group

� This ID is used for signaling-related processes

� If a command starts just one process, its PID and 
PGID are the same



77

Processes - PPID

� PPID 

� A process that creates a new process is called a 
parent process; the new process is called a child 

process 

� The parent process (PPID) becomes associated 
with the new child process when it is created

� The PPID is not used for job control


