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Abstract—Analyzing the achievable rate of molecular com-
munication via diffusion (MCvD) inherits intricacies due to its
nature: MCvD channel has memory, and the heavy tail of the
signal causes inter symbol interference (ISI). Therefore,using
Shannon’s channel capacity formulation for memoryless channel
is not appropriate for the MCvD channel. Instead, a more general
achievable rate formulation and system model must be considered
to make this analysis accurately. In this letter, we proposean
effective ISI-aware MCvD modeling technique in 3-D medium
and properly analyze the achievable rate.

Index Terms—Molecular communication via diffusion, channel
capacity, achievable rate, inter-symbol interference.

I. I NTRODUCTION

M OLECULAR communication is a new interdisciplinary
research paradigm in the nanonetworking domain that

is related to nanotechnology, biotechnology, and communica-
tion technology [1]. Molecular communication via diffusion
(MCvD) is an effective method since it does not require
any infrastructure, and the propagation of the molecules by
free diffusion is energy efficient [2]. In MCvD, a number
of micro and nano machines residing in a fluid environment
communicate through molecules that are discharged into the
communication medium. Following the physical characteris-
tics of the channel, these molecules propagate through the
environment via diffusion. Some of these molecules arrive at
the receiver (i.e. hit the receiver) and form chemical bonds
with the ligand receptors on the surface of the receiver. The
properties of these received molecules (e.g., concentration,
type) constitute the received signal.

The received molecular signal has a heavy tail, hence
the molecules arriving in the subsequent symbol slots cause
significant inter symbol interference (ISI). Therefore, MCvD
channel is an ISI channel with memory, and the achievable rate
of the MCvD channel must be analyzed accordingly. In the
literature, channel capacity evaluations are carried out under
more simple cases and assumptions. In [2]–[4], the channel
capacity is investigated by utilizing Shannon’s formulation
that is for memoryless channels, but the MCvD channel is
not memoryless. In [4], channel capacity in a 3-D medium is
considered, however, the reception process does not consider
the first passage. The reception process without first passage
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is easier to model but it deviates receiver dynamics from
reality. For most of the cases observed in the nature, almost
all of the molecules contribute to the signal only once [5].
In [6], the authors derive a closed-form expression for the
lower bound on channel capacity of diffusion-based molecular
communication in gaseous environments. In [7], the diffusion-
based molecular communication channel is considered with
on-off keying modulation and the authors present formulations
for the optimal decision threshold and the mutual information
of the diffusion channel. However, in both of the works, the
derivations are based only on the diffusion process, without
considering absorption/reception (i.e., the molecules can enter
and exit the receiver multiple times without any resistanceor
change in the movement as if the receiver is transparent to the
molecules’ movement). In [8], information theoretical aspects
of the diffusion channel is investigated in 1-dimensional (1-D)
environment. In [9], channel capacity formulations are derived
when the messenger molecules degrade during diffusion in
the medium. Although they provide a solid formulation for
the channel capacity, they only consider 1-D environment and
analyze a few performance metrics.

The contributions of this paper are twofold; one is introduc-
ing a more realistic analytical model for the MCvD system
surpassing the aforementioned shortcomings in the literature,
by taking the memory of the channel (i.e. ISI effect) into
consideration. The second is using this analytical model to
introduce a stricter upper bound on the MCvD communication
by employing the achievable rate calculations for finite state
ISI channels. We start by defining the MCvD system and
proposing our model. Then, we statistically verify the validity
of the proposed model by extensive simulations with goodness
of fit analysis. We conclude by presenting the realistic upper
bounds on the MCvD achievable rate using our verified model.

II. M ODELING THE MOLECULAR COMMUNICATIONS

CHANNEL CONSIDERING THEISI

We model a communication system composed of a fluid
environment and a pair of spherical devices, each called a
Nanonetworking-enabled Node (NeN); one as the transmitter
and the other as the receiver. In MCvD, the information is
transmitted between the transmitter and the receiver through
the propagation of certain molecules via diffusion [1]. These
molecules are called the Messenger Molecules (MMs). The
MMs diffuse throughout a drift-free environment obeying the
laws of Brownian motion. We do not consider the collisions
between MMs for the sake of simplicity. In this paper we focus
on Binary Concentration Shift Keying (BCSK) in which 1-bit
information is sent in each symbol duration [2].
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The messenger molecules, the transmitter, and the receiver
are assumed to have spherical bodies. Whenever an MM’s
body coincides with the body of the receiver, the MM is
assumed to be received and removed from the environment.
A single MM reaches the receiver before a given deadline
with a certain probability. This probability, known as the
first passage probability, is affected mainly by the diffusion
coefficient, transmitter-receiver properties, and the distance
between the transmitter and the receiver, which is denoted by
d. In the literature, reception process considering first passage
probability is mostly examined in a 1-D environment [8], [9].
First passage probability in a 3-D environment with a point
source is formulated in [10]. In our setup the transmitter node
is a spherical body, which is more realistic and complex.

We assume that time is divided into equal sized time slots of
lengthts, called the symbol duration. At the start of a symbol
slot, s, the transmitter NeN releases a predefined number of
molecules,Ns, to the communication environment, whereNs

depends only on the transmitted bitxs. In our channel model,
the transmitted bits are independent and identically distributed.

Arising from the probabilistic dynamics of Brownian mo-
tion, the MMs move randomly and reach the receiver at
different symbol slots. Note that it is possible for an MM to
miss the receiver since the first passage process is not recurrent
in 3-D environment [10], i.e., molecules have positive survival
probability.

Let us denote the probability of an MM being received with
a delay ofi symbols aspi. The reception event of an MM can
be modeled as a Bernoulli trial with success probabilitypi, and
therefore the reception event ofNs MMs can be modeled with
the Binomial distribution. We denote the number of molecules
that are emitted at the beginning of thesth symbol slot and
received during therth symbol slot as the random variableN r

s .
We start by definingNs

s , the number of MMs that experience
i=0 symbols of delay, as the binomial random variable

Ns
s ∼ B(Ns, p0). (1)

The case is not simple for the MMs that are not released
and received in the same symbol slot. These MMs cause ISI
in the channel and modeling the number of such MMs is the
main contributing factor in our channel model. The number
of MMs that experience a delay ofi > 0 symbols depends
on the number of MMs that had been released in the same
symbol slot and experienced a delay less thani symbols (i.e.
Ns+i

s depends onNs+j
s , ∀j ∈ {0, . . . , i− 1}). We define this

conditional distribution as

Ns+i
s |

(

Ns
s , . . . , N

s+i−1
s

)

∼ B



Ns −
i−1
∑

j=0

Ns+j
s , p∗i



 (2)

wherep∗i is the success probability of a remaining MM being
receivedi symbols later, given that it was not received before.
p∗i is calculated using the previously definedpi values as

p∗i =
pi

1−
∑i−1

j=0 pj
. (3)

At the receiver side, the total number molecules received in
the rth symbol slot (N r) not only depends on the number of

MMs released in therth symbol slot, but also on the previous
transmissions. Sincepi values are exponentially decaying [2],
expectedNs+i

s also decreases rapidly asi increases. Therefore,
there exists an integerη ≥ 0 for which Ns+η+i

s values are
negligible. Taking this fact into account, a transmission is
only significantly affected by theη previous symbols before
itself. We call thisη value as theISI-awareness windowof the
proposed model, which is the minimum number of channel
coefficients required for realistic modeling. Then,N r can
be represented as the sum ofη + 1 independent binomially
distributed random variables

N r =

r
∑

s=r−η

N r
s =

η
∑

k=0

N r
r−k. (4)

Thus, the demodulated bityr by the receiver NeN at therth

symbol can be computed asyr = 0 if N r ≤ τ , yr = 1
if N r > τ , whereτ is the symbol demodulation threshold.
Note that,yr depends on the previous emissions (previous
xs values), and we takeη previous symbols into account for
modeling the impact of ISI. Therefore, we have

p(yr=0|x1, . . . , xr)=p(N r ≤ τ |xr−η+1, . . . , xr)

=

τ
∑

i=0

p(N r = i|xr−η+1, . . . , xr) (5)

=

τ
∑

i=0

p

(

η
∑

k=0

N r
r−k= i

∣

∣

∣

∣

∣

xr−η+1, . . . , xr

)

.

Calculating the probability in (5) is done byη convolutions
sinceN r is the sum ofη + 1 random variables.

In the literature, it is considered that the most significantef-
fect is due to 1-previous symbol ([2], [11]), which corresponds
to havingη=1. In Section III, we employ an analysis focusing
on the deviation from the simulation results for validatingour
model and determine the required value forη.

III. V ERIFICATION OF THE ISI-AWARE MCVD MODEL

In order to ensure the validity of our proposed analytical
model, we implement a particle tracking based MCvD sim-
ulator where the movement of each MM is monitored. We
set up a simulation environment mimicking the pancreatic
islets where the transmitter and receiver NeNs are similar
in size to the pancreatic beta cells (10µm radius), MMs
are similar to the insulin hormone (2.5nm radius), and the
typical distance between the communicating pair being one
cell at most (4 ∼ 24µm) [12]. The diffusion coefficient
is 79.4µm2/sec, which is in accordance with the insulin
hormone. The symbol durationts is selected as0.1 (d/2)2 sec
as per the setting in [2]. This choice is also supported by the
fact that the propagation delay of MCvD is shown to increase
by a factor ofd2 in [10], which is drastically different than
the EM spectrum communication. The number of molecules
released each symbol,Ns, is 0 for the bit 0 and 50 for the
bit 1. Therefore, the demodulation thresholdτ is in the range
1 ∼ 50. We investigate the ISI-awareness windowη for the
range0∼14. Each simulation consists of a random10 000-bits
long transmission, repeated30 times. To investigate whether
our proposed model fits the simulation results, we conduct a
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goodness of fit analysis using Pearson’sχ2-test. The test com-
pares the probabilitiesp(yr|xr−η+1, . . . , xr) obtained from the
simulations with those derived from our proposed model.
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Fig. 1: Model verification using Pearson’sχ2 test. (a) The change in the ratio
of good fits with respect toη. α denotes the significance level. (b) The change
in the ratio of good fits with respect toη and distance whereα=0.01.

Figure 1a shows the change in the ratio of good fits with
respect toη. Theα values indicate the significance level of the
Pearson’sχ2 goodness test where a smaller value stands for a
stricter test. The model’s chance of obtaining a successfulfit
over all parameter combinations increases asη is increased.
We observe that the model achieves more than95% good fits
whenη>9 and exceeds99% whenη>11.

Figure 1b shows the ratio of good fits with respect toη and
source-receiver NeN separation. A curious trend is observable
for shorter distances, where decreasingη fails in terms of
model fit much rapidly as opposed to farther distances. This
is due to the fact that although shorter distances have a higher
probability of MM reception, the ISI is also stronger since
many lagging molecules are absorbed before they have a
chance to scatter away.

η = 1

5 10 15 20 25

10

20

30

40

50

d(µm)

τ

η = 5

5 10 15 20 25

10

20

30

40

50

d(µm)

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io
o

f
g

o
o

d
fi

ts

η = 9

5 10 15 20 25

10

20

30

40

50

d(µm)

τ

η = 13

5 10 15 20 25

10

20

30

40

50

d(µm)

τ

Fig. 2: The change in the ratio of good fits with respect to the demodulation
thresholdτ and distanced. Good fits are calculated using theχ2-test with
a significance level of0.01. The brighter intensity indicates the ratio of
the scenarios where the model successfully fits the simulation results. When
η=13, the model is able to fit the simulation results for almost alldeployment
scenarios over all possibleτ values.

In Figure 2, heat maps of ratio of good fits for four different
η values are presented with details in terms of distance and
threshold values. The brighter areas show the parameters for
better agreement with the model. There are four main areas of
interest, which are clearly observable in theη=5 case. Upper
right portions of the graphs indicate that simulation and the
model results overlap since largerτ values are biased towards
demodulating bits as 0 in both the model and the simulations.

The bright intensity patch towards the middle corresponds to
the cases where the narrow band of appropriate demodulation
thresholds result in overlapping results for the simulation and
model. The two lower intensity bands, which fade away with
increasingη, correspond to the disagreement scenarios. The
lower band represents the cases where the ISI easily causes
incorrect demodulations due to lowτ selection. The upper low
intensity band lying between the high-intensity zones depicts
the cases where the model expects incorrect demodulation of
sent bits, mostly for 1, due to higherτ selection. Non-accurate
modeling occurs due to disregarding or imprecise handling
the ISI. Our aim is to achieve a robust model where the
simulations and model results fit regardless of the selection
of τ . Increasingη incorporates the ISI effect precisely into
the model and the model fits the simulations regardless of
the demodulation threshold, which is the case forη = 13.
These suitableη values might change for MCvD setups other
than those presented here; however, we see that the literature
standard ofη = 1 is overly optimistic. Note that proposing a
globally suitableη is beyond the scope of this work.

IV. A CHIEVABLE RATE ANALYSIS OF THE CHANNEL

Current works in the literature use Shannon’s classical
channel capacity formulaC =sup

p(x)

I(X ;Y ) for analyzing the

achievable rate of the MCvD channel, since it provides a
convenient closed-form solution. However, this formula isonly
valid for memoryless channels, and by having ISI, the MCvD
channel is not a memoryless one. Thus, we need to employ
the general formulation for the mutual information rate

I(X ;Y) = lim
n→∞

1

n
I(X1, . . . , Xn;Y1, . . . , Yn). (6)

However, there is no closed-form solution for (6) in MCvD.
Fortunately, the quantity can be computed numerically. We
know thatI(X ;Y) = H(Y)−H(Y|X ). The quantityH(Y|X )
can be easily calculated, whereasH(Y) cannot. The Shannon-
McMillan-Breiman theorem states that the sample entropy
rate Ĥn(Y) converges to the true entropy rateH(Y) with
probability 1 for stationary ergodic random processes [13,p.
644]. That is,

lim
n→∞

Ĥn(Y) = lim
n→∞

−
1

n
log p(Y1, . . . , Yn) = H(Y). (7)

Since the MCvD channel is ergodic [14], we can calculate
Ĥn(Y) and estimateH(Y) numerically by generating a long
sequence of the demodulated bitsy1, . . . , yn. The achievable
information rate of the ergodic finite state ISI channels is a
previously studied problem in the literature [15]. We have
shown in Section III that the MCvD channel can be modeled
correctly with a finite memory. Thus, we may represent it as
a finite state machine by defining the states as the sequence
of the last transmittedη+ 1 bits, resulting in2η+1 states. We
use the recursive calculations shown in [15], by incorporating
the outputs of our analytical model, namely, the demodulation
probabilities presented in (5). We omit the tedious algebra
required for the calculations due to page limit.

We use our verified model for achievable rate calculations
of the MCvD system. Thankfully, we do not need to run
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Fig. 3: The change of mutual information with respect to the demodulation thresholdτ and input probability distribution for three different NeNdeployment
scenarios. The mutual information is represented in bits/channel use, where the annotated points denote the achievable rate for the particular scenario.

highly time-consuming simulations, where the execution time
depends drastically on MCvD system parameters. In Fig-
ure 3, the change in mutual information depending on the
input distribution and demodulation thresholdτ is given for
different source-receiver separation values. We observe that
the achievable rate is obtained around the equiprobable input
distribution for all distances, but the demodulation threshold
varies significantly. For closer distances, the system is more
robust in terms ofτ selection. A greater percentage of the
MMs are received at shorter distances, thus letting the receiver
NeN to easily make the distinction between the bits 0 and 1.
At farther distances, the achievable rate starts to decrease, and
the effective operation range ofτ narrows significantly.

Notice the slight obliqueness in Figure 3 ford=4µm. When
a lower τ is selected, the system is inclined to demodulate
more bits as1. In the case where this fact is supplemented
with an input distribution biased towards producing more1s
than0s, the probability of successful demodulation, and thus
the mutual information, increases. The converse also holds
for the combination of highτ and0-biased input distribution,
which explains the obliqueness.

The observations on the achievable rate are extended in
Table I. When the literature standard ofη=1 is selected, the
achievable rate turns out to be overly optimistic, especially
for increasingd. The realistic achievable rate of the molecular
communication channel decreases slightly with distance in
terms of bits per channel use. However, in order to keep the
achievable rate (bits/channel use) high, the symbol duration
has to increase for increasing distances. This results in a
rapidly decreasing achievable rate in terms of bits per second
and presents an open issue on symbol duration optimization.

TABLE I: Achievable Rate of the MCvD channel using optimistic (η=1) vs.
realistic (η=14) modeling

.
d ts Achievable Rate (η=1) Achievable Rate(η=14)

(µm) (sec) bits/ch. use bits/ch. use bits/sec
4 0.4 1.0000 0.9999 2.4998
8 1.6 0.9995 0.9965 0.6228
12 3.6 0.9953 0.9831 0.2731
16 6.4 0.9830 0.9540 0.1491
20 10.0 0.9664 0.9218 0.0922
24 14.4 0.9434 0.8869 0.0616

V. CONCLUSION

In this work, we introduce a realistic analytical ISI-aware
channel model for MCvD with a spherical transmitter-receiver
pair in 3-D environment. We show that the MCvD channel suf-
fers from high ISI and propose a finite-state channel model to

represent the ISI effect realistically. We validate the proposed
model by rigorous testing based on statistical methods and
show that the assumption of a 1-symbol ISI awareness window
in the literature is overly optimistic and falls short of modeling
the channel correctly. Furthermore, we present a general view
of the achievable rate of the channel. The achievable rate
analysis shows that incorrect modeling of the channel leads
to an erroneously high achievable rate. Moreover we observe
that the system suffers from transmitter-receiver separation
significantly under farther distances and further investigation
is required for the optimal symbol duration.
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