
Analog Layer Extensions

for Analog/Mixed-Signal Assertion Languages

Dogan Ulus
Dept. of Elecrical & Electronics Eng.

Bogazici University

Istanbul, Turkey

Email: dogan.ulus@boun.edu.tr

Alper Sen
Dept. of Computer Eng.

Bogazici University

Istanbul, Turkey

Email: alper.sen@boun.edu.tr

Faik Baskaya
Dept. of Elecrical & Electronics Eng.

Bogazici University

Istanbul, Turkey

Email: faik.baskaya@boun.edu.tr

Abstract—Assertion-based methodology is gaining popularity in analog
and mixed-signal (AMS) verification. Early AMS assertion languages
are built on digital assertion languages. This results in limited native
support to express most low-level aspects of AMS properties. We present
three analog layer extensions to increase analog expressiveness in AMS
assertion languages. We first describe the concept of haloes, an implicit
way to handle tolerance values of analog signals in assertions. Then,
booleanization of analog signals using dual-threshold is introduced to
solve problems caused by fluctuations on signals. Finally, we integrate
analog measurement operators into assertions. We validate our extensions
using our prototype tool on a 10-bit two-stage pipelined analog-to-digital
converter design.

I. INTRODUCTION

Assertion-based verification (ABV) has gained a great deal of

popularity in the past decade, and it has been widely adopted by

digital design community thanks to its practicality and simplicity. In

an ABV flow, assumptions of the designers and the design intent

are captured by assertion statements. These statements can monitor a

design to ensure correct behavior of individual simulation runs, and

report if any unintended situation happens. This allows us to detect

bugs at their source, and assertions improve design observability and

controllability although they do not ensure 100% design correctness.

Applying the ABV methodology to Analog and Mixed-Signal

(AMS) designs can bring the same benefits that the digital design

community has enjoyed. As the number and complexity of AMS

blocks are increasing in System-on-Chip (SoC) devices, traditional

AMS verification is not sufficient to satisfy today’s highly-ambitious

time-to-market and first-pass-silicon requirements. Assertions for

AMS designs can formalize the specification of the design, and

automate the evaluation of simulation results. Such a structured

methodology reduces manual effort, increases reusability and ulti-

mately leads to a productivity increase in AMS verification.

Assertion-based verification for AMS designs borrows a lot from

digital verification. Using predicates, analog quantities are converted

into Boolean signals, and temporal logic operators can then check

time-domain specifications on these Boolean signals. Although this

is an effective methodology, it does not take some important analog

facts into account as well as it lacks some useful analog constructs

and routines. Integrating these constructs and routines into AMS

assertions can provide a more natural expression of analog properties

and increase the quality of AMS verification.

In this paper, we focus on analog expressiveness of AMS assertion

languages. By taking the analog nature of things into account, we

extend the analog layer of AMS assertion languages with three useful

extensions. We propose the following extensions.

• Haloes: An intuitive method to express tolerances of analog

signals implicitly in assertions.

• Dual-threshold Booleanization: A natural way to convert analog

signals into Boolean signals without glitches.

• Analog measurements: Common numerical routines to check

analog signal properties.

II. RELATED WORK

A number of formal approaches for analog circuit verification is

presented in [1]. Several works in the literature use these formal

methods and they have formalized simulation-based approaches to

verify analog circuits. Analog Specification Language (ASL) in [2],

[3] was proposed to define analog properties for state-space analysis.

System of Recurrence Equations (SRE) in [4] and Petri-nets in [5]

were used to verify analog circuits in a formal way. On the other

hand, scalable but incomplete simulation-based formal approaches,

which don’t suffer from state-space explosions, have been studied

in [6], [7], [8].

In [6], two verification approaches, an event-checker library based

AMS-OVL and an assertion based AMS-SVA, were presented for

Verilog-AMS designs. Similarly, in [7], Lammermann et al. pre-

sented a general assertion-based methodology, and an online tem-

poral checker library for SystemC-AMS designs. Their specification

language Mixed-Signal Assertion Language (MSAL) is implemented

for discrete-time, and the synchronization between MSAL layers is

performed at every clock cycle. It includes specific analog operators

providing mappings from analog sampling time to digital clock.

In [8], the Signal Temporal Logic (STL), which extends the

Metric Interval Temporal Logic (MITL) [9], was presented to monitor

time-domain properties of continuous signals. Analog layer of STL

incorporates comparison operators to booleanize analog signals and

a few useful operators like distance, rise and fall.

In our previous work [10], we started to extend AMS assertion

languages, introduced the halo concept and provided two case studies.

The current paper is another step to improve analog expresiveness by

extending AMS assertion languages with useful constructs.

III. AMS ASSERTION LANGUAGES

Early AMS assertion languages are usually based on Linear
Temporal Logic (LTL) [11], and extend its expressiveness towards

real-valued signals in continuous time-domain. These languages

consist of several abstraction layers. They are influenced by Property
Specification Language (PSL) [12] where layers are hierarchically

placed. Besides PSL layers such as Boolean and Temporal layers,

AMS assertion languages incorporate a new layer to define and check

analog properties. This Analog layer extracts information from analog

signals, and converts them into Boolean signals. For example, a

designer may want to check if the voltage value of an analog signal is

always less than 1.8V. The less-than operator in Analog layer returns

Proceedings of 2013 IFIP/IEEE 21st International Conference on Very Large Scale Integration (VLSI-SoC)

66



TABLE I
OUR AMS ASSERTION LANGUAGE GRAMMAR

Temporal
Layer

TempExpr ::= �BoolExpr
| �TempExpr
| TempExpr • TempExpr
| ¬TempExpr

Boolean
Layer

BoolExpr ::= HaloExpr � HaloExpr
| HaloExpr �HaloExpr
| MeasExpr � Const
| BoolExpr •BoolExpr
| ¬BoolExpr

Analog
Layer

HaloExpr ::= H(SignalExpr, params)
| SignalExpr

MeasExpr ::= M(SignalExpr, params)
SignalExpr ::= AnalogSignal

| SignalExpr � SignalExpr
| Const

Operator Types Symbols

Temporal � ∈ {F,G,O,H}
Binary Boolean • ∈ {∧,∨,→}

Binary Negation ¬
Halo Comparison � ∈ {SGT,NGT,CVR,CVD,NLT, SLT}

Relational � ∈ {>,<,≥,≤}
Halo Calculation H

Measurement M
Arithmetic � ∈ {+,−, ∗, /}

a Boolean signal that shows the regions were the condition is satisfied

in time domain. After analog signals are booleanized, and converted

into Boolean signals, boolean and temporal operators can be applied

to check whether they satisfy desired properties or not.

In Table I we show the grammar of our AMS assertion language.

The temporal and boolean operators have their usual semantics.

Specifically, G, F are bounded future temporal logic operators

denoting always, and eventually, whereas O and H are bounded

past temporal logic operators denoting once, and historically. The

grayed out region in Table I shows our extensions, namely halo

calculation, Booleanization, and measurement operators, which we

explain in the following sections.

An example property using our grammar is as follows:

G(TRIG → F[0.0:0.5](H(S) CVR H(lvl)))

where TRIG, S and lvl denote a Boolean signal, an analog signal

and a constant value, respectively. This property always checks that

if the trigger signal TRIG is true, then the halo of S covers the halo

of lvl in 0.5 time units.

IV. HALOES

Analog signals are usually associated with tolerance values. One

reason for this is that these signals are subject to random and

systematic fluctuations in reality. Besides noise sources in analog

circuits, some analog facts like charge injection can contribute to

the fluctuation of numerical simulation values. Another reason is

that specifications themselves can impose a region of tolerated

values around a nominal value or a reference analog signal. In fact,

comparison with reference signals is a common case in analog design.

For example, outputs of a high-level model can be compared with

the outputs of a transistor-level model or pre-layout simulation results

can be compared with post-layout simulation results.

We introduced the halo concept for analog signals in [10] to

handle tolerance values in the above mentioned situations. Given

an analog signal, we define the halo as a pair of boundary signals

around the analog signal. We consider the area between the boundary

signals as acceptable values for that analog signal. Besides being

able to handle tolerance values in AMS assertions, using haloes also

provides more options to define what is acceptable for an analog

signal. We proposed four different methods to calculate haloes in [10].

These methods involve user-defined constants, signal processing, and

statistical methods.

We can have six possible relations between two haloes,

namely strictly-greater-than (SGT), nearly-greater-than (NGT), cov-
ers (CVR), is-covered (CVD), nearly-less-than (NLT), and strictly-
less-than (SLT). These relations are visualized in Figure 1.

V. DUAL-THRESHOLD BOOLEANIZATION

We define analog (real-valued or continuous) signals as functions

from the time-domain T = R+ to a state-space X ⊆ Rn, where n is

the number of predicates, as in [13]. The Booleanization of an analog

signal corresponds to a transformation of the state-space X of the

signal into Boolean values using a predicate such that μ : X → B.

After using such predicates over analog signals, the analog signal

a : T → X is transformed into a Boolean signal w : T → B.

Early AMS assertion languages incorporate comparison operators

to booleanize signals. When signals are close to each other, small

variations in signals can lead to many transitions. We observed that

these rapid transitions at the outputs, usually called as glitches, affect

the quality of verification. For example, an assertion that states ”After
signal p exceeds a threshold, p remains stable above the threshold
for a period of time” is susceptible to false negatives because of the

glitches around the transition region caused by fluctuations on the

signal p.

To prevent glitches at the Boolean output, we propose a dual-
threshold Booleanization technique. Although it is novel to use dual-

thresholds to booleanize real-valued signals in AMS assertion lan-

guages, the fundamental idea corresponds to a well-known physical

phenomenon, called the hysteresis, and it has been widely employed

in electronics design such as analog comparators and Schmitt triggers.

In dual-threshold Booleanization, switching thresholds for low-to-

high and high-to-low transitions are separate from each other. There-

fore, the output retains its value until the input sufficiently changes.

It is an effective method to prevent rapid transitions, and it provides

an immunity to fluctuations on the signal in booleanization process.

In Figure 2, we show an example scenario for the property stated

above. In Column A of the figure, a noisy signal is booleanized by a

Fig. 1. All six possible relations between halo a (solid line) with halo b
(dashed line). a op b evaluates true for all points on the time-axis in each
subplot.

67



Fig. 2. Column A illustrates a single-threshold booleanization where the
output at the bottom is a glitchy boolean. Column B shows booleanization
with dual-thresholds and the output is glitch-free.

single threshold. Since there is noise on the signal, a straightforward

comparison with a single threshold leads to a Boolean signal with

glitches as shown at the bottom of Column A. In Column B of

the figure, we show the booleanization of the same noisy signal by

comparing it with a dual-threshold. The resulting Boolean signal is

now glitch-free, and satisfies the property. The scenario in Column

B is closer to the real life evaluation of analog signals.

We think built-in comparison operators using dual-threshold

Booleanization will be beneficial in AMS assertion languages. Such

an approach provides more natural information transfer from analog

domain to Boolean domain.

VI. ANALOG MEASUREMENTS

Analog designers are used to writing measurement statements,

which can be seen as analog equivalent of an assertion, to eval-

uate simulation results and automate waveform inspection. Most

numerical simulators and waveform analyzers provide support for

analog measurements such as crossing, rise-time, fall-time and slew-

rate calculations. The integration of these constructs into the analog

layer would increase the quality of analog verification and adoption

rate of AMS assertion languages by the analog community. By this

way, richer analog properties can be defined in assertion languages

and waveform measurements become a part of a unified analog

verification environment.

We implemented six types of analog measurements, namely levels,

amplitude, crossing, risetime, falltime and slewrate. These are

selected because they are measurements for time domain, and fit well

in AMS assertion languages. We integrated these measurements into

our analog layer and used CosmoScope Reference Manual [14] as

the base for definitions of these measurements.

Automatic level calculation for analog signals has an important

role for analog measurements. The topline and the baseline levels

are required for calculating rise-time and fall-time. Other levels such

as mid-line level, 10%-level and 90%-level can be derived from the

topline and the baseline levels. Topline and baseline calculation is

visualized in Figure 3. To calculate levels, we use the histogram of

Fig. 3. Automatic level calculation using histogram method

the analog signal, and look for the most occupied bins to determine

the topline and the baseline levels. Difference between the topline

and the baseline levels corresponds to the amplitude of the analog

signal.

Crossing measurement detects intersections of the signal with a

constant level or another signal. Crossing measurements can be given

a direction such as rising, falling or both directions. It internally uses

dual-threshold Booleanization so that we can capture crossing events

without false measurements.

Rise-time calculation measures the time passed from the crossing

event at the lower level to the crossing event at the upper level in rise

direction. Similarly, fall-time calculation measures the time passed

from the crossing event at the upper level to the crossing event at

the lower level in fall direction. The most common choices for upper

and lower levels are 90% and 10%-levels, respectively, although the

user can specify custom levels as well.

The slew rate is calculated as the difference between the upper

and lower levels of a waveform divided by the rise-time or fall-time

of the edge. In Figure 4, we show a slew-rate measurement for an

analog signal (shown in the first plot), G(slewrate(signal) > 34),

that is, always the slewrate of the analog signal is greater than 34.

The second plot shows the slewrate calculation and the third plot

shows the boolean output of the comparison, and then the last plot

shows the value of the temporal operator G, where the property is

false.

VII. EXPERIMENTAL RESULTS

In this section, we present a 10-bit two-stage pipelined analog-

to-digital converter (ADC) design as the case study. It shows that

how an assertion-based methodology applied for AMS designs in

general and that how the extended analog layer can be useful in

Fig. 4. Slew rate measurement and its integration with assertions

68



assertion-based AMS verification. Three experiments carried out

using the ADC design for this paper. All these experiments address

the verification of a property which is repetitive, and cumbersome

for manual verification. For example, the set of assertions in the

Experiment 2 checks if transition time from one level to another

level is acceptable. Because there exist 32 different levels in that

case, it means 32
2
= 1024 transition possibility, and all of them

should be verified for full coverage. Verifying all these transitions

manually would be very tedious task so designers can only verify a

few cases (probably most likely to be failed cases). Therefore, they

cease the verification after some point and assume there is no problem

in other cases. It constitutes a major weakness for manual verification

and this can be improved by assertion-based methodology. Even

if you have to simulate all cases separately for full coverage in

assertion-based verification, assertions would automatize evaluation

of simulation results, allow more cases to be checked compared to

manual verification, and eliminate the manual effort in the verification

flow. In comparison with formal verification of AMS designs, we do

not need to model the ADC design in our flow, and we practically

check properties from simulation results without suffering huge state

space of large AMS designs.

To summarize, we used a verification flow in our experiments as

follows: First, we obtained properties from the designer to be verified

in the ADC design. We formalized these properties in our assertion

language. We then checked these assertions using our prototype AMS

assertion checker tool. Our tool is based on continuous-time notion,

and it can handle different signal sampling rates in the same assertion.

Linear interpolation is used to calculate the values between sample

points in our tool. Property checking by assertions is performed off-

line on signals generated from the simulations of various design

formats including SPICE or Verilog-AMS.

We simulated the ADC design in Eldo SPICE simulator using

transient (.tran) and transient noise (.noisetran) analysis. Noisetran

is used to estimate the effect of the noise on the circuit, and this

analysis becomes necessary when feature sizes decrease, frequencies

increase and supply voltages are lowered.

In the ADC design, the input voltage vin is first sampled and held

steady by a sample-and-hold circuit, obtaining the signal SH. For

the first stage of the pipeline, a flash ADC converts signal SH to a

5-bit digital value, which is the first 5-bits of overall ADC output,

outADC . The 5-bit value is then fed to a digital-to-analog converter

obtaining signal DAC, and this signal is subtracted from vin. This

residue is then fed to the second stage of the pipeline to obtain the

last 5-bits of outADC .

In Figure 5, we show analog signals, SH and DAC, and trigger

Fig. 5. Signal waveforms from the ADC design used in experiments

signals, SHTRG and DACTRG; which are used in the ADC design

experiments. The signals SHTRG and DACTRG are trigger signals for

sample’n hold and digital-to-analog converter circuits, respectively.

Time bounds are given as nanoseconds in assertions we define in

experiments.

In our experiments, we approximately spend 1s to check the

assertion in the first experiment and 1.2s for assertions in second and

third experiments. In comparison, AMS simulation takes 2 minutes

to compute all output waveforms of the ADC circuit on the same

machine. Therefore, assertions we explained in next subsections have

an overhead around 1%.

A. Experiment 1: ADC-DAC Operation

The first property that we want to check is the combined operation

of 5-bit ADC and DAC circuits, which divide the input voltage range

by 32 levels. For a given level number n, we define the nth interval

intvn as the range of values between the nth level value lvln and the

following level value lvln+1. For the correct operation, if the value

of SH signal is inside intvn after the trigger SHTRG, then at the next

cycle the value of DAC signal should be equal to lvln. Note that we

use haloes to express intervals and tolerances around analog signals.

We show this property visually in Figure 6. The shaded blue regions

show the intervals intv07 and intv15, the shaded green regions show

the levels lvl07 and lvl15 with haloes. For example, when the value

of SH is inside intv07 after the trigger SHTRG, then at the next cycle,

the value of DAC should be inside the halo of level lvl07.

We divide this property into three sub-properties. First, we formal-

ize the sub-property, span, that SH is inside intvn. We use haloes

to write this sub-property as follows:

span = (H(SH) CVD intvn) ∨ (H(SH) NGT intvn)

We check if SH is covered by or is nearly greater than the interval,

intvn. NGT relation is also used because small fluctuations crossing

interval boundaries should not affect the result. Since the ADC design

is sensitive to approximately 1mV changes at the input voltage, we

choose the tolerances to calculate haloes accordingly.

The second sub-property, spbn, checks whether DAC signal is

currently at the lvln. We write this sub-property as follows:

spbn = H(DAC) CVR H(lvln)

Finally, we capture the timing specification between two sub-

properties in the temporal layer as follows.

fn = G((SHTRG ∧ F[20:40]G[0:10](span)) →
F[80:120]G[0:50](spbn))

Fig. 6. Visual explanation of the property in Experiment 1

69



Fig. 7. Evaluation of the property in Experiment 1

This property checks that if SHTRG is true and span stays true for

10ns starting between 20ns and 40ns after SHTRG is true, then spbn
stays true for 50ns starting between 80ns and 120ns after SHTRG is

true.

In Figure 7, we show step-by-step evaluation of f7 and f15. The

plot A displays SHTRG. In plot B, SH and the boundaries of intv07
and intv15 are shown. Plot C displays Boolean signals spa07 and

spa15. In plot D, we show Boolean signals F[20:40]G[0:10](span)

and F[80:120]G[0:50](spbn). Plots E, F, G are defined similarly for

DAC. Finally, in plot H, f15 is true whereas f07 is false. f07 is false

because DAC signal is not equal to lvl07, which can be also seen in

Figure 6.

We see that built-in support for haloes allows us to define new

relations between signals considering their associated tolerances.

Expressing tolerance values with haloes clarifies user-defined allowed

regions for analog signals. By this way, automatic evaluation of

simulation results can be performed according to designers’ intent.

Fig. 8. Visual explanation of the property in Experiment 2

Fig. 9. Evaluation of the property in Experiment 2

Also separating tolerance specification from the property specification

helps to keep the size of assertions manageable.

B. Experiment 2: DAC Rise Time

The second experiment shows the integration of analog measure-

ments into assertions. As the second property, we check if the DAC
signal rises from one level to another level in a specified time, which

is shown in Figure 8. The red lines and blue lines denote 10% and

90% levels for the rise-time measurement from lvl01 to lvl06 and

from lvl06 to lvl15, respectively. The width of red and blue shaded

regions denote the rise-time. The first sub-property plvln checks

whether DAC signal was at lvln at least for 50ns ending between

25ns and 50ns before the current time. Similarly, the second sub-

property nlvlm checks whether DAC signal will be at lvlm at least

for 50ns starting between 25ns and 50ns after the current time.

plvln = O[25:50](H[0:50](H(DAC) CVR H(lvln)))

nlvlm = F[25:50](G[0:50](H(DAC) CVR H(lvlm)))

Then, the third sub-property meas captures that the rise-time of

DAC from lvln to lvlm is less than 10 nanoseconds.

measnm = F[0:10](risetime(DAC, lvln, lvlm) < 10ns)

Finally, these sub-properties are combined as below.

fn−to−m = G((DACTRG ∧ plvln ∧ nlvlm) → measnm)

This property checks that if DACTRG, plvln, and nlvlm are true,

meas is true.

In Figure 9, step-by-step evaluation of f01to06 and f06to15 is

shown. In plot A, we display the DAC signal. As seen in the plot

A, there are two rise-time cases, the first from lvl01 to lvl06 and the

second from lvl06 to lvl15. In plot B, triangles represent rise-time

measurements from lvl01 to lvl06, and from lvl06 to lvl15 for the

DAC signal. The value of these rise-time measurements should be

70



Fig. 10. Rise-time measurement in Experiment 3 without using dual-
threshold Booleanization

less than the threshold value (10ns) shown as the red line. In plot

C, we check at which level the DAC signal is. In plot D, we display

Boolean signals plvl01, nlvl06, plvl06, and nlvl15. Finally, in plot E,

we see that both f01to06 and f06to15 are true, that is, DAC signal

satisfies the rise-time condition.

C. Experiment 3: DAC Rise Time without dual-threshold

In Experiment 2, the rise-time operator internally uses dual-

threshold booleanization to detect crossings for the 10% and the 90%

levels. Experiment 3 checks the same property in Experiment 2 except

the rise-time measurement uses a single threshold to detect crossings.

Figure 10 is similar to Figure 9B except we now show the resulting

rise-time measurement without dual-threshold booleanization. Note

that the scale in Figure 10 is different from the scale in Figure 9B. It

can be seen that there is one extra rise-time measurement exceeding

the specified rise-time value. We found that this mistake is caused

by a spike crossing the 90% level of the rise-time measurement from

lvl01 to lvl06, that is visible in Figure 8. We see that dual-threshold

booleanization can eliminate this type of irregularities, which are

common in analog designs, and provide more robust assertion-based

verification for AMS designs.

VIII. CONCLUSION

Assertion-based verification (ABV) has been adapted from the

digital domain for analog and mixed signal (AMS) designs in recent

years. Due to its digital origins, the built-in support for most low-

level aspects of analog designs is not included in early AMS assertion

languages. Low-level analog facts can cause false evaluation of

simulation results in the assertion-based verification of AMS designs.

It means we don’t have an effective assertion-based methodology

if we don’t handle such low-level analog facts. In this paper, we

presented three analog layer extensions to improve the low-level

analog expressiveness of AMS assertion languages. Specifically, we

provide halo, dual-threshold booleanization, and analog measure-

ment extensions. These extensions allow us to express tolerances

of analog signals, to convert analog signals into Boolean signals

without glitches, and to check common analog numerical routines.

We developed a prototype tool to validate our extensions, and show

the usefulness of handling analog facts in lower levels without adding

significant overhead. Our proposed extensions are a step forward for

more expressive analog support in AMS assertions. We think that

better support for analog constructs can increase the adoption rate

of ABV methodology in the analog design community. In future,

we plan to provide support for AC analysis and signal processing

algorithms.

ACKNOWLEDGMENT

This work was supported in part by Semiconductor Research Cor-

poration under task 2082.001, Marie Curie European Reintegration

Grant within the 7th European Community Framework Programme,

and the Turkish Academy of Sciences.

REFERENCES

[1] E. Barke, D. Grabowski, H. Graeb, L. Hedrich, S. Heinen, R. Popp,
S. Steinhorst, and Y. Wang, “Formal approaches to analog circuit
verification,” in Proceedings of the Conference on Design, Automation
and Test in Europe (DATE), 2009, pp. 724–729.

[2] S. Steinhorst and L. Hedrich, “Model checking of analog systems using
an analog specification language,” in Proceedings of the Conference on
Design, Automation and Test in Europe (DATE), 2008, pp. 324–329.

[3] ——, “Equivalence checking of nonlinear analog circuits for hierarchical
AMS system verification,” in Proceedings of the Conference on VLSI and
System-on-Chip (VLSI-SoC), 2012, pp. 135–140.

[4] G. Al-Sammane, M. Zaki, and S. Tahar, “A symbolic methodology for
the verification of analog and mixed signal designs,” in Proceedings
of the Conference on Design, Automation and Test in Europe (DATE),
2007, pp. 249–254.

[5] S. Little, D. Walter, K. Jones, C. Myers, and A. Sen, “Analog/mixed-
signal circuit verification using models generated from simulation
traces,” International Journal of Foundations of Computer Science,
vol. 21, no. 2, pp. 191–210, 2010.

[6] R. Mukhopadhyay, S. K. Panda, P. Dasgupta, and J. Gough, “Instru-
menting AMS assertion verification on commercial platforms,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 14, no. 2, 2009.

[7] S. Lämmermann, J. Ruf, T. Kropf, W. Rosenstiel, A. Viehl, A. Jesser,
and L. Hedrich, “Towards assertion-based verification of heterogeneous
system designs,” in Proceedings of the Conference on Design, Automa-
tion and Test in Europe (DATE), 2010, pp. 1171–1176.

[8] O. Maler and D. Ničković, “Monitoring temporal properties of contin-
uous signals,” in Proceedings of the Conference on Formal Modelling
and Analysis of Timed Systems (FORMATS), 2004, pp. 152–166.

[9] R. Alur, T. Feder, and T. Henzinger, “The benefits of relaxing punctu-
ality,” Journal of the ACM (JACM), vol. 43, no. 1, pp. 116–146, 1996.

[10] D. Ulus and A. Sen, “Using haloes in mixed-signal assertion based
verification,” in Proceedings of the High Level Design Validation and
Test Workshop (HLDVT), 2012, pp. 49–55.

[11] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science. IEEE, 1977, pp. 46–57.

[12] H. Foster, E. Marschner, and Y. Wolfsthal, “IEEE 1850 PSL: The next
generation,” in Proceedings of Design and Verification Conference and
Exhibition (DVCON), 2005.

[13] D. Ničković, “Checking timed and hybrid properties: Theory and appli-
cations,” Ph.D. dissertation, Joseph Fourier University, 2008.

[14] “Cosmoscope reference manual,” Synopsys, 2004.

71


