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Abstract—Recently, new technologies have emerged in indus-
trial automation platforms. A rapid modeling and simulation
environment is required to integrate these new technologies with
existing devices and platforms to reduce the design effort and time
to market. System-level modeling is a popular design technique
that provides early simulation, verification, and architectural
exploration. However, integration of real devices with system
models is quite challenging due to synchronization and hard
real-time constraints in industrial automation. SystemC is the
most commonly used system-level language in hardware–software
codesign. However, SystemC lacks interfaces for the integration
of system (virtual) models with real (physical) devices. We
introduce the hybrid channel concept to clearly define the
integration interface. Hybrid channel incorporates both real-to-
virtual and virtual-to-real communication functions by solving
synchronization issues while satisfying the real-time constraints.
We successfully demonstrated the usability of our framework in
industrial systems that utilize BACNet and Ethernet. We also
developed a mathematical model that correctly estimates the
results of our experiments. To the best of our knowledge, this
is the first framework and mathematical model for SystemC in
industrial automation domain.

Index Terms—Hardware in the loop, real-time communication,
real-time embedded systems, SystemC.

I. Introduction

INDUSTRIAL automation systems are experiencing a
paradigm shift due to incorporation of new technologies,

such as embedded real-time devices and communication net-
works. It has been shown that the demand for plug and
play mechatronic solutions increases significantly and the
investments on automation systems that utilize hardware–
software and communication infrastructures cannot be ignored
in today’s factory systems [1]. As the complexity of these
systems increase, a rapid modeling and simulation environ-
ment is required to reduce the design and verification time.
System-level modeling is a very effective way of reducing
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the development cycle while providing early prototypes and
enabling architectural exploration and verification.

System-level modeling also allows reuse of different forms
of intellectual properties (IPs), which is a common practice in
the industry. Since industrial automation systems are increas-
ingly connected with other IPs or industrial components, they
should also benefit from system-level modeling techniques to
reduce the development costs.

In traditional system-level modeling, all components need
to be modeled. However, modeling has no added value
for components that are already physically implemented
because modeling is an abstraction mechanism and requires
human effort. Therefore, techniques have to be developed for
incorporating real devices with virtual models. Traditionally,
there are communication mechanisms between virtual
models. These mechanisms are defined through the constructs
of modeling languages. Similarly, real implemented devices
communicate with each other through physical mediums
with predefined exchange data formats. However, there is no
established mechanism that provides communication between
real devices and virtual models (given in SystemC), and this
paper fills this gap. Specifically, we present synchronization
mechanisms between virtual models and real devices so as to
achieve real-time communication.

We use SystemC, which is an IEEE standard (1666–2005)
[2], for the system-level modeling of the industrial automation
systems. SystemC allows modeling of complex systems at
various abstraction levels. Therefore, it is one of the most com-
monly used modeling language in hardware–software code-
sign. However, SystemC does not have a library to connect real
devices to virtual models. In this paper, we develop a hybrid
channel mechanism for the design of industrial automation
systems that incorporates both real devices and virtual models.
We describe our contributions as follows.

1) We devise a coherent way of matching simulation time
with real-time execution. This is because in heteroge-
neous simulation, the simulation time of virtual models
does not match execution of real devices.

2) We develop mechanisms for connecting concurrent real
devices to a set of virtual models. This is a requirement
for the virtual model if it is driving multiple real
devices in parallel. However, SystemC kernel operates
sequentially and it cannot generate concurrent outputs
from the virtual models.

3) We define techniques that allow virtual models to receive
inputs from real devices. This is due to the fact that
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current SystemC libraries do not allow receiving inputs
from external devices but only from virtual models.

4) We develop a mathematical model to estimate the valid-
ity of our heterogeneous framework.

5) We develop an experimental framework that utilizes
hybrid channels in SystemC. We validate the effective-
ness of our framework in industrial systems that employ
BACNet and Ethernet.

The communication rate over hybrid channels can be as high
as 10 kHz, that is enough to satisfy hard real-time constraints
in industrial automation systems, as specified in [1].

The organization of this paper is as follows. Section II
provides an overview of hardware–software codesign, which
is followed by Section III covering related work. Section IV
explains our solution and Section V gives information on the
experimental evaluation of the proposed solution. Finally, we
conclude by discussing the obtained results and listing the
future work in Sections VI and VII.

II. Background

A. SystemC

SystemC is a language developed for system-level model-
ing (virtual models) used mostly for system-on-chip (SoC)
systems. SystemC offers a clear set of modeling mechanism
at varying abstraction levels.

SystemC has the concept of processes to model the con-
current activities of a system. Processes can be combined into
modules to create hierarchies. Events (described in sc−event
class) are the basic means of synchronization between pro-
cesses. Events provide the wait and notify methods. Processes
are the main concurrent execution units in SystemC. They
have a notion of sensitivity to events, which can trigger for
execution of processes. Channels are the formal means of
communication between modules. Employing other means
for intermodule communication harms the reusability of the
model. Communication structures that can be modeled with a
channel range from a very simple mutual exclusion mechanism
to a very complex hierarchical communication structure such
as a peripheral component interconnect bus. Interfaces provide
a powerful ability to have interchangeable channels. Ports are
connection points of modules to channels.

SystemC simulation kernel is a discrete event simulator [3].
SystemC kernel has a nonpreemptive, nondeterministic sched-
uler without a notion of priority for processes. A scheduled
process is executed until it willingly gives up the execution
resource via a wait method or it terminates (nonpreemptive).
Among active processes, one of them is chosen for execution
nondeterministically.

SystemC kernel execution consists of four main phases:
initialize, evaluate, update, and time advance, as shown in
Fig. 1. Evaluate and update phases form a delta cycle. Only
an infinitesimal amount of time is assumed to pass in a delta
cycle, so it is a “zero time advance” cycle. The changes of the
evaluate phase operations on channels are not updated until the
update phase. This mechanism allows the simulation kernel to
model concurrent operations similar to hardware description
language simulators.

Fig. 1. SystemC kernel scheduler [3].

B. Real-Time Simulation

In a discrete-event simulator, the simulation clock is ad-
vanced in discrete-time intervals. At each interval, the simu-
lator executes the processes that are triggered by the events
that are scheduled. As soon as the execution of processes is
finished, the simulation clock is advanced. Hence, the actual
duration of two subsequent time intervals need not be the
same. However, in real-time simulation, the time intervals
must be physically the same (e.g., 1 ms). The clock for real-
time simulation is defined as the wall clock. In order to have
a system with real-time behavior, we need to establish the
relationship given in (1) between the simulation and wall
clocks, where tSnew (tWnew) and tS (tW ) denote the current
and the starting values of the simulation clock (wall clock),
respectively, [4] as follows:

tSnew − tS

tWnew − tW
= 1. (1)

III. Related Work

A. Hardware-in-the-Loop Techniques

There are several hardware-in-the-loop (HiL) solutions for
different domains. We mention some of these techniques as
they relate to our paper.

Both industry and academia propose solutions for providing
HiL simulation in many domains, including aerospace and
automotive [5]–[8], such as for engine controller units,
antilock brakes, or space robot testing and validation.
dSPACE [9] has a widespread reputation in these domains.
The first two platforms use MATLAB/Simulink [10] or
Modelica/Dymola [11], [12], which are known as powerful
languages in continuous-time modeling of physical systems.
However, these tools have engines and libraries to support
discrete-event simulation [13]–[16].

In HiL solutions such as xPC Target [17] and Veristand [18],
the model is executed on a dedicated system or on a Windows
system, respectively. However, the modeling languages pro-
vided by these solutions have not been designed for hardware–
software codesign purposes or for discrete-event simulation,
so they lack the necessary constructs and mechanisms that are
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already present in SystemC. Our paper is orthogonal to such
existing methods, as it is proposing to introduce the technique
to the field of hardware–software codesign with a much more
powerful modeling language, namely, SystemC.

SystemC simulation kernel is a powerful discrete-event
simulator for hardware–software codesign. However, a HiL
solution with SystemC has not been proposed before our
paper. In the literature, programming temporally integrated
distributed embedded systems (PTIDES) [19] has been pro-
posed to fill the gap of discrete-event-based HiLs, but Ptolemy
II, which is the modeling language used by PTIDES, has not
been as widely adopted by the hardware–software codesign
community as SystemC has been. Also, PTIDES uses a real-
time operating system (RTOS), named PTinyOS, whereas
our solution is implemented on a general-purpose operating
system (GPOS) (i.e., Linux) with a real-time patch (i.e.,
RT-PREEMPT). PTIDES only uses an event-driven method
to handle external events arriving from real devices. Our
SystemC-based solution incorporates not only event-driven but
also nonadaptive and adaptive polling methods to provide a
better cosimulation environment. We experimentally show that
for some cases, nonadaptive and adaptive polling methods
can perform better than the event-driven method. Also, there
are discrete-event simulators to simulate register transfer-level
(RTL) models with SystemC models [20], both of which are
virtual models. Balarin et al. [20] used property specification
language, formal language, for describing transactors between
different models. Transactors can be generated for connecting
SystemC and RTL models as well as supporting standard co-
emulation modeling interface protocol. However, there is no
support for connecting actual real hardware components to
virtual models, whereas we support this type of connection.

B. Frameworks for Industrial Automation

In the last decade, there have been significant studies to
develop design platforms for intelligent industrial automation
systems [21]. These automation systems rely heavily on a
distributed computer-based infrastructure, where smart sen-
sors and actuators, intelligent machines, robots, and other
automation devices can interact using industrial protocols and
take decisions in real time. In these systems, system-level
communication, device synchronization, and the integration of
new devices to the system are extremely challenging issues.
Hence, there is a demand for sophisticated tools for the design
of intelligent complex industrial automation systems.

In SIMOO-RT [22], an object-oriented framework is pro-
posed for modeling a real-time industrial automation system.
In this approach, objects are generated in Active-Objects/C++.
It utilizes RT-UNIX operating systems (OSs) such as QNX.
A system model with real devices cannot be developed with
SIMOO-RT.

OOONEIDA [23] complies with IEC 61449 [24], which is a
standard to design distributed control systems with intelligent
devices. It proposes encapsulation of different types of IPs
into reusable portable software modules called as function
blocks. To achieve this, interfaces are created between various
kinds of automation IPs such as devices, RTOSes, machines,
systems, and industrial enterprises. However, in IEC 61499,

the real-time properties of applications (e.g., reaction time)
and resources (e.g., polling of data by function blocks, com-
munication) are unspecified [25]. In OOONEIDA, real-time
properties have to be handled via embedded controllers that
are introduced to the system by encapsulation. There has also
been a proposal on handling real-time issues in function blocks
[25], but it has not been implemented yet. The encapsulation
modules are developed in Java for the Eclipse and NetBeans
integrated development environments.

In RI-MACS [26] project, a service-oriented architecture
with real-time capabilities is proposed. Temporal behavior of
each activity is isolated as much as possible by using dedicated
hardware and software [1]. Linux kernel is modified to provide
temporal isolation.

Our solution aims to design the entire real-time complex
industrial automation systems with existing real devices and
nonexisting-but-will-exist devices (i.e., virtual models). Sys-
temC allows abstract modeling hence giving the designer
flexibility in terms of developing various models. In HiL
solutions, the virtual model does not necessarily need to be
implemented; it can purely be used for testing or validating
the already available real devices or can be used for developing
newer generations of devices and testing them before they are
produced. Even in the case of SoC design, it is a common
practice to use SystemC for virtual model development and
the actual hardware does not actually get produced directly
through synthesis from this SystemC model.

C. Integrating Different Virtual Platforms

As there are no real devices involved, there is no need for
real-time behavior, but executions of virtual environments have
to be synchronized.

HetSC [27] integrates multiple models of computation in
SystemC. It does not handle integration of a SystemC model
with external environments. The work in [28] proposed a
method for the component-oriented interoperation of real-time
discrete-event system specification (DEVS) engines. DEVS
is a model of computation that has its implementations in
languages such as ECD++ and SystemC [29].

The work in [30] aimed to integrate quick emulator em-
ulation environment and SystemC. It employed a SystemC
module for representing the communication. An additional
channel was necessary to connect the integration module to
the rest of the model. However, this approach suffered from
unnecessary doubling of effort, where the integration could be
directly implemented with a hierarchical SystemC channel.

D. Integrating Real and Virtual Environments

A major decision point in the integration of real devices and
virtual models is the level of abstraction. The communication
between real devices and virtual models can range from
pin level [31]–[33] to transaction level [30], [34]–[37]. Pin-
level approaches offer great flexibility, as any communication
protocol can be modeled on top of pin-level when necessary.
However, with pin-level approach, modeling the communica-
tion protocol is costly and this also degrades accuracy and
the execution speed of the whole model. Approaches that
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prefer transaction-level communication between real devices
and virtual models allow to skip the modeling of the details
of the communication protocol and focus on other issues such
as emulation or bus modeling.

We first introduced the hybrid channel concept for
hardware–software codesign in [38]. In that paper, we de-
veloped a heterogeneous system with a single real device.
The input from the real device could be obtained via polling,
where polling period had to be manually tuned. Since that
solution was not able to efficiently handle complex industrial
automation systems, we extended it in many directions in this
paper. Specifically, we introduce techniques to drive multiple
concurrent outputs from virtual models to real devices. We
enable two automated mechanisms for receiving inputs from
real devices: adaptive polling and event-driven solution. We
provide a mathematical model to estimate the performance
and scalability of the systems designed with our modeling
framework. Also, we present experimental results with indus-
trial automation systems that show the effectiveness of our
approach.

E. Timing Concerns

Virtual chip [31] has a contribution in the timing manage-
ment between real devices and virtual models. The device
consists of the internal interface module (IIM), the operational
buffer unit (OBU), and the external interface module (EIM).
Behaviors of IIM and EIM are synchronized with the virtual
model and the real device, respectively. OBU connects both
interface modules and handles the timing difference via buffer-
ing methods.

Realtimify [39] provides real-time behavior for SystemC
models. Basically, a module is added to the model to syn-
chronize the virtual simulation to real-time with the objective
to monitor the execution in real time. This approach is very
lean and satisfactory for observing the model’s execution in
real time. However, it does not address the determinism issues
faced during interaction with real devices. Additionally, the
approach is intrusive as it requires changes in the model. It also
relies on the nondeterministic SystemC scheduler. This results
in uncertainty about when the model will be synchronized.

F. Deterministic Behavior

OS plays a critical role in obtaining deterministic behavior.
RTOSs specialize in providing deterministic behavior [40],
but they lack the variety of applications, I/O interfaces,
and functionality provided by a GPOS. Linux with real-
time improvements seems as a promising tradeoff. Real-time
application interface [41], which is used in [42], is built on top
of adaptive domain environment for OSs [43] and does time
sharing with a Linux kernel. It provides real-time behavior
by itself while leaving the resources to the Linux kernel
for noncritical tasks. On the other hand RT−PREEMPT [44]
employs a more direct method in which latency is decreased
by increasing preemptibility throughout the Linux kernel.

IV. Hybrid Channels

Fig. 2 shows our hybrid channel solution. We define model-
ing platform as the combination of the simulation kernel, OS,

Fig. 2. Architecture of our hybrid channel solution.

Fig. 3. Real-time visualization and patch to SystemC simulation kernel.

Fig. 4. Detail of Fig. 3 for the real-time duration tWpassed.

and the computer hardware. Our solution both achieves real-
time behavior and integrates real devices (real subsystems) and
virtual models (virtual subsystems).

A. Achieving Real-Time Behavior

Fig. 3 details a single evaluate, update, and time advance
phase of the SystemC simulation kernel in Fig. 1. In Fig. 3, the
time increases from left to right and we use the real-time as
the scale. Assume that at the end of the time advance phase,
the simulation clock will be advanced from tS to tSnew by
the SystemC kernel. Also assume that at the end of the time
advance phase, the wall clock has advanced to tWactual due
to the delta-cycle processing time tWpassed. In order to satisfy
(1), we delay the execution of the virtual model simulation
by tWdelay, thereby advancing the wall clock to tWnew. Note
that this is possible when the delta-cycle processing time is
less than the amount of time that will be advanced to in the
virtual model (virtual model should execute at least as fast as
the real-time device). Fig. 4 gives a detail view of the delta
cycle in Fig. 3.

To reduce latency of the integrated system, we improve the
preemptibility of the underlying OS with patches. We also
disable further sources of latency, such as swap memory and
power management. Additionally, the priority of threads exe-
cuting the virtual model is increased to guarantee availability
of resources.

B. Integrating Real Devices and Virtual Models

We extend SystemC channel concept to realize the hybrid
channel functionality. We categorize the channel types and de-
vise the class hierarchy shown in Fig. 5. dsc−hybrid−channel
class at the base of the hierarchy distinguishes hybrid chan-
nels from other channel types in SystemC and implements
the update real functionality, which will be explained in
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TABLE I

Comparison of Timing Alternatives for Model Outputs

Phase Advantages Disadvantages
Evaluate Data do not wait at all. Glitches occurring at the end of

delta cycles can be relayed to real devices immediately.
Data must not change in subsequent cycles, e.g., sc−fifo.
Delta-cycle processing time increases.

Update The final data from concurrent processes are used.
Glitches occurring at the end of delta cycles can be
relayed to real devices.

Data wait until the update phase. Delta-cycle processing
time increases. Concurrent outputs are distributed over
a larger window in real time.

Update−real (just before the time
advance)

The final data from concurrent processes are used.
Fewer output values are used. Concurrent outputs calcu-
lated by delta cycles are gathered together in real time.

Data wait until the time advance phase. Glitches occur-
ring at the end of delta cycles are not relayed to real
devices.

Fig. 5. Class diagram of hybrid channels.

the next section. In SystemC, a channel can inherit from
sc−prim−channel (primitive channel) or sc−module (for hier-
archical channels). As hierarchical channels offer a superset
of primitive channel capabilities [3], we chose sc−module
as the base of dsc−hybrid−channel. A hybrid channel can
carry digital or analog data. This choice can be specified by
choosing the appropriate subclass dsc−digital−hybrid−channel
or dsc−analog−hybrid−channel. Digital channels can transfer
data in a parallel way or in a serial way. Hence, two further
subclasses are provided for specifying this characteristic.

1) Interactions from Virtual Models to Real Devices: Out-
put values generated in the virtual models can be transferred
to the real devices in three phases of the SystemC kernel: eval-
uate, update, or just before the time advance phase as shown
in Fig. 1 and Table I. The constraints of the channel model
dictates the best phase for the transfer as we describe below.

a) Evaluate: The data can be transferred as soon as it is
produced. For example, a first in first out (FIFO) channel
whose current value will not be affected by values in
later delta cycles can be transferred in the evaluate phase.

b) Update: There might be several processes that affect the
final value of an output variable. In that case, the data
should not be transferred to the real device until the final
stable value is reached. Otherwise, if multiple successive
delta cycles change the data in the channel, real devices
can observe this. For example, a signal channel whose
actual value is established at the end of a delta cycle can
be transferred in the update phase.

Fig. 6. Example set of outputs from virtual models to real devices using
three different output methods.

c) Update−real (just before the time advance): Due to
the sequential nature of SystemC simulation kernel
(it merely simulates concurrency), concurrent outputs
cannot be transferred to the real devices simultaneously.
When output values are transferred in the evaluate or
update phases, real devices observe them at time points
distributed in tWdelta cycles time as shown in Fig. 4.
Delaying the transfer until the time advance phase will
gather the outputs in tWoutput time, which is much smaller
than tWdelta cycles. So, outputs that are simultaneous with
reference to the simulation clock are generated in a
smaller time window. This option has another advantage
of reducing simulator effort because the number of
I/O operations are reduced. As a disadvantage, delta-
cycle changes are not observable by real devices in this
scheme. However, delta-cycle changes need not always
be relayed to the real devices. In other words, a real
system that has to be insensitive to the transient behavior
of the signals at its inputs benefits from this method.

Fig. 6 shows an example of using the above-mentioned
three different phases for transferring outputs from virtual
models to real devices for a simulation that involves multiple
time advance phases. We assume that the output values are
generated only in the evaluate (EV) phase. Outputs can be
transferred in evaluate (EV), update (UP), or update real (UR)
phases. The time advance (TA) phase always pairs with exactly
one UR phase, and is solely used for advancing the time.
The arrows on the top of the timelines denote the output-
event-generation phases in the virtual model and the arrows
below the timeline denote the phases where such outputs are
transferred to the real devices. Arrow colors denote for which
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device an output is generated. Note that the number of arrows
at the top and the bottom can differ as outputs sent to the same
real device can be combined together.

SystemC offers methods for transferring the output values
in evaluate or update phases. Our work further provides the
method update real that is called at the time advance phase
prior to the advance of the simulation clock. The model
developer can choose the appropriate output timing for the
hybrid channel.

If the hardware used by the hybrid channel is capable
of receiving or producing concurrent I/O from or to the
virtual models or real devices (e.g., a digital I/O device
with multiple output channels), then update−real mechanism
can be easily exploited to achieve accurate real-time and
concurrent behavior.

If there is no hardware support, then ordering has to be
applied to the hybrid channels so as to reduce the transfer
delay between subsequent channels. We define the set of
concurrent outputs as the critical output subset. There can be
more than one critical output subset. The hybrid channels in a
critical output subset have to have successive order numbers.
Additionally, all pending outputs have to be sorted just before
tWdelta end in update−real.

2) Interactions from Real Devices to Virtual Models: Sys-
temC kernel does not have a mechanism for receiving external
events such as the ones generated by a real device. Time is
always advanced according to internal events and operations
of the kernel. A mechanism is needed to incorporate external
events. We solve this by implementing three mechanisms:
a) nonadaptive polling; b) adaptive polling; and c) event-driven
simulation.

a) Nonadaptive polling: SystemC thread processes are used
in order to poll the external inputs and relay this infor-
mation to internal sc−events. SystemC kernel becomes
aware of the external events and the rest of the model
can use sc−event to check for inputs. Fig. 7 shows an
example of this mechanism. The actual input receipt is
done asynchronously by an OS thread, whereas it could
also be done by the SystemC poll thread synchronously.
The polling period (poll−period) is a fixed parameter
in this mechanism. The input latency introduced by
polling will range in [0; poll−period] and on the av-
erage, it will be poll−period/2. Therefore, increasing
the poll−period will increase the input latency, and
decreasing poll−period will increase the performance
demands on virtual model simulation.

b) Adaptive polling: If the interval between external events
is changing during the model execution, the poll−period
can be changed dynamically to adapt to these changes.
For instance, the model of a network device may need
to adapt its poll−period accordingly when the network
traffic increases or decreases. Adaptive polling also helps
in the case where the model developer does not have an a
priori knowledge on the environment of the model and
the correct poll−period is unknown at the time of the
development. A control loop employing a proportional,
integral, and derivative (PID) controller is used to ac-
commodate for these changes. poll−period is the control

Fig. 7. Nonadaptive polling mechanism for incorporating external events
from real devices to virtual models.

variable and input−interval is measured independently
by the unit handling the inputs. The control loop tries to
converge the difference between the input−interval and
the poll−period to 0. To achieve this, the poll−period
is increased or decreased. The coefficients of the PID
controller (proportional KP , integral KI , and derivative
KD) are parameterizable. The assignment of these coef-
ficients is a standard PID controller tuning task and the
same techniques can be applied here.

c) Event-driven simulation: The real-time patch to the Sys-
temC kernel (Section IV-A) can be extended to eliminate
the need for polling to incorporate external events as
shown in Fig. 8. The changes are added after the comple-
tion of delta cycles and before the time advance phase,
hence the first box in the figure. The unconditional
waiting of tWdelay in Fig. 3 is replaced by a conditional
waiting on ext−event, shown as wait(ext−event, tWdelay)
in the figure. An sc−event is used to represent each
external event. This sc−event is added to the external
event list and the ext−event is signaled (notified) by
the OS input thread (input handler). In case there is
no timeout, then the SystemC scheduler waiting on
ext−event wakes up, adjusts the SystemC simulation
clock according to the current wall clock time, and
schedules timed notifications for all the external events
sc−events in the external event list including the external
event that triggered the wait condition. These timed
notifications will trigger the threads responsible for
processing external inputs in the SystemC virtual model.
If the OS input thread does not get an input, hence
no ext−event, the wait will end due to timeout and the
execution will proceed to the next delta cycle.

Table II shows a comparison of methods for incorporating
external events to the simulation model.

C. Mathematical Model of Execution Performance

We define the following variables for modeling the real-time
patch of our SystemC simulation kernel according to Fig. 1.

1) A: Total number of time advance phases in the simula-
tion.

2) Ui: Total number of update phases before the ith time
advance phase.
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TABLE II

Comparison of Methods for Incorporating External Events from Real Devices to Virtual Models

Mechanism Advantages Disadvantages
Nonadaptive polling Simple implementation. Fastest execution.

No complex OS constructs.
Tuning necessary for poll−rate. Tradeoff: I/O latency versus sim-
ulation performance.

Adaptive polling No complex OS constructs. Tuning necessary for PID coefficients.
Event-driven simula-
tion

No tuning necessary. Intricate implementation, uses complex OS constructs.

Fig. 8. Event-driven mechanism for incorporating external events from real
devices to virtual models.

3) Eij: Total number of evaluate phases before the jth
update phase, which comes before the ith time advance
phase.

4) Oi: Total number of outputs to real devices before the
ith time advance phase.

5) H : Total number of hybrid channels.
6) P : Total number of SystemC thread processes.
The SystemC kernel scheduler, hence the simulation of

the virtual model, should satisfy the following constraints to
achieve real-time behavior.
Constraint 1) The relationship in (1) between the simulation

clock TS and the wall clock TW has to be
maintained.

Constraint 2) Concurrent output generations with regard to
the simulation time TS have to occur within a
maximum output window of tWow with regard to
the real-time clock TW . This allows the real de-
vices connected to the virtual model to observe
these virtual model outputs as concurrent. This
constraint can be further strengthened by adding
narrower critical output windows of tWcows

for
specific subsets of output channels.

1) Constraint 1: Real-Time Simulation for Hardware–
Software Codesign: Constraint 1 means that tWdelayi

must re-
main nonnegative since a negative delay is not implementable.
This implies that the following inequality must hold in Fig. 3:

tWpassedi
≤ tSnewi

− tSi
. (2)

Using Fig. 4, (2) can be further be detailed as follows:

tWdelta cyclesi
+ tWoutputi ≤ tSnewi

− tSi
. (3)

Fig. 1 shows that the real-time patch of SystemC kernel
scheduler (that takes tWdelta cycles time as per Fig. 3) consists
of multiple delta cycles and a delta cycle consists of multiple
evaluate phases and exactly one update phase. Equation (4)
shows this relationship as follows:

tWdelta cyclesi
=

Ui∑
j=1

⎡
⎣

⎛
⎝

Eij∑
k=1

tWevaluateijk

⎞
⎠ + tWupdateij

⎤
⎦ (4)

where tWevaluateijk
is the sum of runtimes of processes that are

active in the evaluate phase k before the update phase j that
comes before the time advance phase i. tWupdateij

is the sum of
channels’ update times that were written during the previous
evaluate phases. If an upper bound can be guaranteed for
tWevaluateijk

, tWupdateij
, and Ui, then the inequality (2) can be guar-

anteed statically because the total number of thread processes
in the model, P , is always an upper bound for the number
of processes executed in an evaluate phase, Eij . However,
SystemC is based on C++, so it supports all programming
structures of this language, including very complex ones.
Furthermore, the inputs from real devices arriving via hybrid
channels can change the execution path of threads. Therefore,
it is nearly impossible to determine the runtimes statically or
guarantee upper bounds for these variables. Common industry
practice of profiling, i.e., runtime analysis, should be chosen
here. As an addition to profiling for the special case of
SystemC, measuring the ratio tWpassedi

/(tSnewi
−tSi

) at each time
advance phase is used to monitor if the inequality (2) is held.

2) Constraint 2: Concurrent Outputs: The generation of
an output from the virtual model to the real devices is done
in three steps as described below.

a) Output value computation: Computation of the data to
be output.

b) Output trigger: The trigger for starting the output gen-
eration.

c) Output generation: The actual realization of the output
so that the real devices can receive it.

tWoutputi is the sum of output production runtimes of hybrid
channels at the ith time advance phase. This can vary a lot for
different types of output hardware. The following assumptions
are introduced for simplification.

a) All output generations are delegated to asynchronous
output threads that employ sufficiently large output
buffers to guarantee decoupling from the simulation’s
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Fig. 9. Concurrent output generations from virtual models to real devices
using n output threads in the update real phase for the ith time advance
phase.

generation so that the simulation thread does not wait
on output threads. These threads are created in the
initialization phase of the simulation in order to avoid
latencies caused by the thread creation.

b) The triggers of output threads from the simulation
thread is implemented via similar OS mechanisms, e.g.,
notifying a condition variable.

c) The number of concurrent output productions at a spe-
cific simulation time does not exceed the number of
processing cores in the modeling platform.

d) All hybrid channels use the update real method for
output timing.

Under these assumptions, it becomes safe to claim that all
output triggers take the same amount of time, tWo, in the
simulation thread. The total number of hybrid channels H in
the model can be used as an upper bound for the number
of output generations at a time advance phase. If there are
multiple output generations pending on a hybrid channel at a
time advance phase, they can be still regarded as one, because:
a) the trigger to output generation is still single, and b) multiple
output value computations imply a sequential relationship, so
the concurrency is not actually required for the output produc-
tions of one hybrid channel. We can derive (5) as follows:

tWoutputi =
Oi−1∑
u=1

tWo = (Oi − 1) · tWo ≤ (H − 1) · tWo. (5)

Fig. 9 outlines the generation of outputs using the update
real phase, detailing the tWoutput in Fig. 4. Output value
computation is done in the evaluate and update phases, i.e.,
before tWdelta endi

. Output trigger is done in the simulation
thread, which always takes tWo. Output generation is done in
asynchronous output threads and may therefore take various
amount of times, denoted as tWdu

for each output thread u.
Now we can discuss satisfaction of Constraint 2. As Fig. 9

shows, concurrent output triggers are distributed over tWoutputi ,
which should be lower than the output window tWow described
above. So the constraint can be formulated as follows:

tWoutputi ≤ tWow. (6)

Fig. 10. Concurrent output windows.

Equation (5) can be used to get an upper bound for tWoutputi ,
so (7) can be used as an estimator for (6). Here, H can be
derived statically from the model and tWo can be measured as
a characteristic of the modeling platform as follows:

(H − 1) · tWo ≤ tWow. (7)

Satisfying a narrower time window of tWcows
for a subset s

of output channels (see Fig. 10 for an example) is achieved by
specifying a fixed order of output generations, where output
channels in the subset are ordered successively. This requires
that the subsets are exclusive, i.e., do not share an output
channel. Thereby, the time between two output generations
in the subset is set to tWo. For a subset s consisting of ms

channels, the constraint can be formulated as follows:

(ms − 1) · tWo ≤ tWcows
. (8)

As seen in Fig. 9, the real point in time where the output
is observable by real devices depends also on the runtime
of the output thread tWdu

. However, this does not imply
an inaccuracy of the model from the real system because
several forms of delay are also present in a real system as
propagation delay, signal setup time, etc. The same fact is
also true for input channels.

Another point regarding the output timing is the hold
time for channels with parallel semantics (dsc−parallel−
hybrid−channel). As new values overwrite old values, there
should be a minimum time window for the value to remain
unchanged, so that the real devices can get the value. However,
this is strongly dependent on the model, and the model
developer should and can specify this hold time by inducing
a wait in SystemC. Our method will guarantee that the value
will be held for at least this duration.

3) Illustrative Example: Let there be an embedded system
under development where the model is connected to the real
devices via six hybrid channels: A, B, C, D, E, and F. A and C
are connected to real subsystem 1, B, E, and F are connected
to real subsystem 2, and D is connected to real subsystem 3.
Fig. 11 shows the setup.

As concurrent outputs from the model to single devices
should be produced within a narrow time window, two critical
output subsets of the set of all hybrid channels are defined.
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Fig. 11. Setup of illustrative example.

Fig. 12. Sample execution of the illustrative example.

Hybrid channels A and C belong to the critical output subset
1 (with number of channels m1 = 2) and B, E, and F belong to
the critical output subset 2 (with number of channels m2 = 3).
Critical output subsets 1 and 2 have the critical output windows
tWcow1 = 10 μs and tWcow2 = 15 μs, respectively. There is
also the general output window tWow = 50 μs for all hybrid
channels.

To satisfy the critical output window constraints, a strict
ordering of all hybrid channels is forced by assigning them
integers for ordering as follows: A: 10, C: 10, B: 20, E: 20, F:
20, and D: 30. All outputs are triggered during the update real
phase and the output generation is delegated to asynchronous
output threads. Let the time of one output trigger be tWo = 5 μs.

Fig. 12 shows an excerpt of the execution of the example
system. In all cycles, tWpassedi

has remained below tSnewi
− tSi

,
i.e., in the first cycle, we measured that tWpassed1

= 36 μs ≤
tSnew1 − tS1 = 75 μs, in the second cycle, tWpassed2

= 51 μs ≤
tSnew2 − tS2 = 100 μs, and in the third cycle, tWpassed2

= 63 μs ≤
tSnew3 − tS3 = 75 μs. As a result, the time advance phase can
always be executed.

The following observations can be made about the behavior
of concurrent outputs.

a) In the first cycle, only one channel from each critical
output subset has an output, so critical output windows
need not be checked. Only general output window can
be checked, and it is satisfied: (O1 − 1) · tWo = 5 μs ≤
tWow = 50 μs.

b) In the second cycle, two channels from the critical output
subset 2 have new output values, so the critical output

window 2 is checked and it is satisfied too: (m2−1)·tWo =
10 μs ≤ tWcow2 = 15 μs. Additionally, general output
window is also satisfied: (O2 − 1) · tWo = 5 μs ≤ tWow =
50 μs.

c) In the third and last cycle, all hybrid channels have an
output, so both critical output windows are checked and
they are satisfied: (m1 − 1) · tWo = 5 μs ≤ tWcow1 =
10 μs and (m2 − 1) · tWo = 10 μs ≤ tWcow2 = 15 μs.
Additionally, general output window is satisfied too:
(O3 − 1) · tWo = 5 μs ≤ tWow = 50 μs. In the last
cycle, output generations continue after the end of the
cycle. This is expected and acceptable because outputs
are executed in asynchronous output threads.

V. Experimental Results

The proposed method has been evaluated using three set of
experiments. The first set of experiments helps to measure the
performance of our method in terms of real-time behavior and
I/O performance, respectively. The second set aims to analyze
the behavior of concurrent outputs. The last experiment is the
design of a new industrial embedded system, which is tested
with real devices and transaction-level SystemC models.

A. Implementation Details

SystemC simulation kernel is executed on the Linux OS
kernel. The real-time patch has been applied to SystemC
in sc−simcontext::simulate code, where time is advanced.
Additionally, the code for calling update real methods of all
channels of type dsc−hybrid−channel has been inserted at the
same place.

Fig. 13 shows a simple example of the proposed hybrid
channel. It has a SystemC interface sc−signal−inout−if on one
side, and a handle to the I/O driver on the other side. The
pin uses parallel communication, so it inherits from the class
dsc−parallel−hybrid−channel.

Two more complex examples realize communication over
Ethernet as shown in Fig. 14:

1) sc−hybrid−eth−in for data from Ethernet to SystemC
model;

2) sc−hybrid−eth−out for the reverse direction.
In order to minimize the time during virtual model execution

(tWpassed in Fig. 3), I/O operations have been delegated to
the OS threads. For instance, in sc−hybrid−eth−in, an OS
thread recv−thread does the actual reception from Ethernet,
and then a SystemC thread gets the data to the virtual
model. Similarly, actual transmission is done in the OS thread
send−thread, which is triggered by a SystemC thread. Queues
hold the incoming or outgoing data for the transfer between
threads. Ethernet is a kind of serial communication, so these
classes inherit from dsc−serial−hybrid−channel. Similar to the
Ethernet hybrid channel, we have also built a UDP/IP hybrid
channel sc−hybrid−udp capable of both input and output.

Management of delta cycles is handled differently in pin and
Ethernet channels. Pin channel implements a SystemC signal,
so the value can change in successive delta cycles and it makes
sense to delay the output until the final value is established
for the current simulation time. On the other hand, Ethernet
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Fig. 13. Hybrid pin channel.

Fig. 14. Hybrid Ethernet channels.

channels are FIFO channels, and each written value should
be transferred to the output regardless of later operations so
that the output device can start processing the data as soon
as it receives it [3]. Thus, sc−hybrid−pin generates the actual
output in update−real, i.e., just before the time advance phase,
while sc−hybrid−eth−out sends the data right away to the OS
thread at the evaluate phase.

To improve determinism, Linux kernel’s preemptibility has
been increased via the RT−PREEMPT patch [44]. SystemC
thread and OS threads for the I/O operations have been set
to real-time scheduling and their priorities have been set to a
priority directly below the interrupt handling threads. Since a
computer with swap memory has been used in the experiments,
all memory pages belonging to the simulation process have
been locked in memory to avoid latencies due to page faults.
The thread stack has been extended beyond the maximum
point used, in order to avoid page faults due to stack growth.

Our software modeling platform consists of Linux 2.6.31.6-
rt19 with RT−PREEMPT mode turned on and SystemC ver-
sion 2.2.0 with our real-time patch. CPU load is generated via
multiple instances of an infinitely spinning shell script. For the
round-trip time (RTT) experiment, a PC with dual Intel Quad-
Core Xeon processors running at 3.4 GHz is used and for the
BACnet broadcast management device (BBMD) experiment a
PC with Intel Pentium 4, 3.2 GHz HT is used.

B. I/O Performance

RTT experiment is used to measure the I/O performance of
our proposed system in isolation. Fig. 15 shows the setup of
the experiment. Here, the SystemC model functions as a frame
replier, which sends the incoming frames back. The SystemC
module sc−eth−mirror is responsible for sending the received
frames back. sc−hybrid−eth−in and sc−hybrid−eth−out relay

Fig. 15. Experiment setup of RTT measurement.

Fig. 16. RTT results with nonadaptive polling for (a) 100 μs and
(b) 1000 μs.

the frames between the Ethernet interface and the SystemC
model. The measurement is then done on initial sender’s side.
Three proposed methods for incorporating external events to
the simulation are evaluated in three experiments: nonadaptive
polling, adaptive polling, and event-driven solution. Each
experiment is carried out with three different frame lengths,
i.e., 64, 780, and 1514 bytes. In each run, 100 samples are
taken. The performance of the three methods is shown as box
plots in Figs. 16–18, respectively.

In nonadaptive polling method, polling period directly af-
fects the performance. To demonstrate this fact, we did experi-
ments with two different polling periods: 100 μs and 1000 μs.
Fig. 16 shows that the polling time has a more significant
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TABLE III

Parameters of RTT Experiment With Adaptive Polling

Parameter Value(s)
KP −0.1
KI −0.05
KD 0
Max. polling−period 10 ms
Min. polling−period 10 μs

Fig. 17. RTT results with adaptive polling.

effect than the frame size. It has also been observed that
polling time results in high jitter of RTT because the response
time is directly dependent on the current phase of the polling
cycle. Furthermore, frame size has a linear effect on RTT,
as most operations—copy, Ethernet propagation—are affected
linearly. For cyclic communication, cycle times of 1 ms may
require low polling cycles, 100 μs in this experiment, since
measured values exceed this value in other cases. However, at
periods of 10 ms and higher, no further tuning is necessary for
satisfactory performance.

Parameters for adaptive polling include a maximum and
minimum value for the polling period and the coefficients
KP , KI , and KD of the PID controller. Our experimental
parameter values are listed in Table III. The results are shown
in Fig. 17. The results depend strongly on the behavior of the
PID controller, so fine-tuning of PID coefficients may yield
much better results; however, this fine-tuning is costly in terms
of effort. Longer frames increase the transmission time but
also decrease the polling period. We have also observed that
communication cycles of 1 ms are possible.

Event-driven solution performs worse than adaptive polling
for large frames (Fig. 18). Event-driven solution’s RTT values
grow mostly linearly with the frame size. Maximum RTT is
not effected by the frame size, probably this occurs due to
an inherent latency in the OS constructs, which are more
complex in comparison to nonadaptive polling or adaptive
polling. Event-driven solution has the big advantage of not
requiring any tradeoff between I/O latency and simulation
performance or any tuning.

C. Concurrent Outputs

The behavior of concurrent outputs in real-time has been
evaluated in these experiments. Two proposed measures, i.e.,

Fig. 18. RTT results with event-driven solution.

Fig. 19. Experiment setup for concurrent outputs. (a) Without hardware
support. (b) With hardware support.

ordering outputs (H = 7 and ms = 2) and using hardware
support, if available, have been studied in two experimental
setups shown in Fig. 19.

In both setups, seven digital output signals are written by the
model to the parallel port. Without hardware support, all chan-
nels write their values to the parallel port without combining it
with other channels. When using hardware support, all output
channels send their data first to another class called par−port,
which combines all values and writes to the hardware at a
single point in time. We achieved 100% concurrency with
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Fig. 20. PWM behavior for different desired frequencies.

Fig. 21. Real-time difference between signals pin1 and pin7 of Fig. 19(a).

Fig. 22. Waveforms of two concurrent signals in real time (persistence =
infinite). (a) With five channels in between. (b) Successive.

hardware support. On using output ordering without hardware
support, the time delay between concurrent signals can be
reduced 6.7 times on average (Figs. 21 and 22). Maximum
delay is reduced 10.7 times, probably because longer delay is
more likely to be caught by the maximum system latency.

D. Evaluation of the Mathematical Model

We verified the proposed mathematical model using the
above experiment results. The first part of the model (Con-
straint 1) dealing with the real-time execution can be verified
using the PWM experiment. As seen in Fig. 20, the ratio
tWpassed/(tSnew − tS) derived directly from (2) is reflected in
the output signal. Hence, Constraint 1 is satisfied.

The second part of the mathematical model (Constraint
2) dealing with concurrent outputs can be verified using the
results in Fig. 21 explained above. We know from (7) and (8)

Fig. 23. Experiment setup of BBMD.

Fig. 24. Model of BBMD.

that the relationship (H−1)/(ms−1) ≤ tWow/tWcows
needs to be

satisfied for the concurrent output experiment. This is because
in this experiment, there is only one set of concurrent outputs.
Also, in this experiment, H = 7 and ms = 2, which implies
that tWow must be at least six times larger than tWcows

. We
observe from Fig. 21 that tWow/tWcows

= 6.7, which satisfies
the relationship above. Hence, Constraint 2 is verified.

E. Industrial Automation System Experiment

Fig. 23 shows the setup of BBMD experiment. BACnet is
a communication protocol used widely in building automation
networks [45]. BBMD is a subset of the BACnet protocol and
is used in BACnet networks running over the Internet protocol
(IP) to ensure that the broadcast packets used by BACnet
are distributed correctly to all IP subnetworks constituting the
BACnet network. In this experiment, an untimed transaction-
level model (TLM) of a new generation BBMD has been cre-
ated, which may then be extended to a fully BACnet-compliant
device. Our method allowed us to test this new-generation
BBMD model with old-generation real BBMD devices. The
test network consists of two IP subnets comprising four
Siemens S7-300 building automation stations, a management
station for monitoring other stations, and a PC acting as an IP
router and a packet sniffer. Each IP subnet needs one BBMD.
One of the building automation stations has been configured
to act also as a BBMD for one subnet. For the other subnet,
the BBMD model has been connected to the network using
our method. In addition to the traffic between the management
station and the building automation stations, there is peer-to-
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peer traffic among building automation stations, shown with
arrows in Fig. 23.

Our TLM of the new-version BBMD has performed very
well in the experiment. It has outperformed the existing real
BBMD in terms of response time and packet drop rates. Under
a traffic burst of 2000 incoming packets per second, our model
has not dropped any packet while the real BBMD has dropped
67% of packets. As the model was untimed, the accuracy of
response time has not been an evaluation criterion and the
model has outperformed the real BBMD in average response
time up to 80 times.

VI. Discussion

We addressed the lack of a structured communication
mechanism between the virtual models and the real devices
with the concept of hybrid channel in SystemC. This concept
allows minimal interference with SystemC model development
and also provides a very clear interface via SystemC’s native
mechanisms. Hybrid channels are also very generic tools to
implement every kind of communication between the real
devices and virtual models.

In order to let virtual models behave according to the real-
time in an accurate manner, a real-time patch has been added to
the SystemC kernel. This patch is nonintrusive to the SystemC
model, i.e., it allows all models running on top of the patched
simulation kernel to behave according to the real-time in a
transparent manner. A deterministic behavior for industrial
applications has been achieved even with inexpensive off-the-
shelf components like the standard parallel port and Ethernet
hardware.

Polling posed a difficult tradeoff between the I/O perfor-
mance and the simulation performance, both of which are im-
portant. Adaptive polling and a event-driven simulation kernel
capable of incorporating external events have been devised as
a remedy. Polling is still an option for simple configurations.
Adaptive polling can be used when complex OS constructs
have to be avoided to reach lower I/O latencies. Event-driven
solution can be used even more widely after ensuring better
behavior of complex OS constructs, e.g., by using a native
RTOS instead of Linux with real-time improvements.

The mathematical model has also been developed and
verified in the scope of this paper. This model can foremost
be used as a first test to see whether our method is applicable
to a given SystemC specification. The empirical data needed
by the model can be obtained through profiling on the virtual
model platform. Additionally, the mathematical model can also
be used in order to understand bottlenecks and improvement
points in the virtual model. The mathematical model can also
be adapted to improve SystemC kernels, where parallelism is
employed to increase simulation’s performance.

The level of determinism gained via RT−PREEMPT so-
lution of Linux is satisfactory for our purposes. API-
transparency is a big advantage of this approach. However, this
method remains largely manual. The modeling platform needs
to be tested and tuned until a satisfactory result is obtained.
Real-time Linux [44] is constantly being improved, and new
tools are being developed so the manual approach is fading in

favor of more structured ones, which favors our choice to use
RT−PREEMPT.

Only models able to run at least as fast as real-time can
be targeted with our approach. Thus, industrial applications
domain with TLMs is feasible with the current state of the art.
Nowadays, there are a lot of studies in the fields of increasing
computation power of processors and increasing execution
speed via parallel execution or optimization. Further advances
in these fields will multiply the possible domains to use the
proposed method.

VII. Conclusion

We presented a rapid modeling and simulation environment
to integrate virtual models with real devices. We used the
popular SystemC language for virtual models. We addressed
issues related to integrating virtual models and real devices
with that of a novel hybrid channel concept. Our experimental
results validated the effectiveness of our framework on indus-
trial automation systems. We also developed a mathematical
model to estimate the validity of the heterogeneous framework.
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