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Abstract Proliferation of multicore hardware boosted the
need for verification of multicore software that is running on
these hardware. Multicore software demands new verifica-
tion techniques different from the ones used for sequential
software. Many optimized compiler frameworks are arising
to address the complexities of multicore software. Among
these compilers, Low Level Virtual Machine (LLVM) is
especially gaining popularity because i) has a universal
front-end that allows to read in many different input lan-
guages, ii) aggressive optimizations to improve code per-
formance and quality, and iii) a well-defined intermediate
bytecode representation, called LLVM IR, that allows a uni-
fied intermediate representation. In this work, we present
a novel framework, called LLVM Verification Framework
(LLVMVF), implemented in a purely functional language
for verification of multicore software. To our knowledge,
this is the first verification framework using the LLVM byte-
code representation for multicore software. We present an
SMT-based Bounded Model Checker backend of LLVMVF
and perform initial experiments on multicore software using
Pthreads library. Furthermore, we compare our results with
an existing multicore software verification tool.
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1 Introduction

The observation of Moore’s Law in the last half century
triggered a paradigm shift in mainstream computer archi-
tectures. This shift was ignited when the hardware industry
realized that the approaches applied for boosting CPU per-
formance reached the physical limits. The solution adopted
was the transition from single to multi-processor/multicore
architectures. From the hardware perspective, this transition
seems to scale with the increasing size and complexity of
hardware designs. However, for various reasons the soft-
ware industry still does not leverage the potential CPU
speedups.

In the past, software developers methodologically relied
on hardware advances to optimize their programs. This
inadequate methodology created a fundamental problem
concerning the quality of the existing software with respect
to code reliability and efficiency. With the shift to multicore
architectures, programming language designers developed
specific concurrent programming languages and a wide
spectrum of mechanisms to support concurrency. However,
in practice, software developers still relied on operating sys-
tems and compilers to optimize their programs with efficient
scheduling and parallelization techniques.

The skepticism shared among software developers con-
cerning concurrent programming can be pinpointed to the
idea that developing concurrent programs is hard. This idea
results from the inherent non-deterministic nature of con-
current programs. The conceptual gap between standard
sequential or object-oriented programming and concurrent
programming affects all major phases of the software devel-
opment process: design, implementation and validation.
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The design and implementation of concurrent software
(multicore software) is harder because developers need to
decide which concurrent model and synchronization strat-
egy is appropriate. These decisions are not trivial con-
sidering the wide range of programming languages that
support concurrency, and the time required to develop a
deep understanding of the concurrent and synchronization
constructs. Optimization of concurrent software requires
extra effort, since the notion of atomicity depends on the
underlying memory model and compiler technology used.
Testing and debugging concurrent programs is particularly
problematic because of their non-deterministic nature. In
practice, there is a rupture of the traditional testing and
debug tools since developers cannot rely on a single execu-
tion of their test suites and erroneous test cases might not be
reproducible.

Despite the skepticism, concurrent programming has
long been claimed as the way of the future and in recent
years there is a renewed interest in concurrent programming.
This interest is driven not only by the evolution of multi-
core architectures but also the increasing size, complexity,
expectations and reliability of software systems.

Formal verification of software is a valuable approach
to produce automated analysis and testing tools. The tools
are valuable because they simplify the developers’ man-
ual quality assurance cycle, that represents a major portion
of software development. Automated test-suite generation
techniques and techniques to strengthen the quality of exist-
ing test-suites for concurrent programs are valuable for the
industry to lower the costs of the quality assurance cycle.
Moreover, research in this direction provides insights on the
behavior of concurrent software and allows the identifica-
tion of common error patterns in the industry.

Following the software industry trend, currently most of
the software verification tools focus on sequential software
or a specific concurrent model. The increasing usage of
concurrent software calls for a general framework for veri-
fication of concurrent software. The main goal of our work
is a transparent and scalable infrastructure for verification
of several concurrent mechanisms. Hence, we design the
infrastructure to verify programs represented at the com-
piler intermediate language, namely the Low-Level Virtual
Machine (LLVM) Intermediate Representation (IR) level
[29]. Furthermore, we leverage the advantages of Haskell
[27], a general purpose strongly-typed functional program-
ming language, and the Utrecht University Attribute Gram-
mar Compiler (uuagc) [38] to perform efficient transfor-
mations on our formalizations. Haskell is suitable for pro-
totyping due to its expressive type system that allows the
development of reliable and scalable solutions. Moreover, it
is suitable for program analysis and verification due to its
ease of equational reasoning, a feature of pure functional
languages.

The motivation for a new infrastructure is based on two
main observations. The first observation is that a common
practice in formal verification approaches, such as model
checking is to reuse existing frameworks. For example, in
the past several tools reused the explicit-state model checker
SPIN [24]. This approach reduces the overall implementa-
tion effort for verification of a domain specific language
because of the numerous optimizations already imple-
mented in SPIN. However, it still requires a considerable
amount of work to implement a front-end that translates the
native language to input language of SPIN, that is Promela
[3], and in general, there is no guarantee that the translation
process is reliable. Moreover, users need to understand the
translation process and the verification results provided by
SPIN. These limitations apply to other existing verification
frameworks.

The second observation is that most of the verifica-
tion tools focus on a specific concurrent domain. With the
popularity of LLVM and since LLVM IR is designed to
be a universal compiler intermediate representation, a ver-
ification framework operating at the LLVM IR level is
applicable for concurrent programs represented in the pro-
gramming languages supported by LLVM. Furthermore,
LLVM IR is a suitable language for verification since it
is a well-defined language that considerably eases a log-
ical encoding and closely reassemble the actual executed
programs. We are interested in the identification and formal-
ization of an abstract concurrent model based on LLVM IR
and apply several verification techniques over that model.
Therefore, achieving a framework that could verify differ-
ent shared-memory concurrent libraries, such as Pthreads
library, domain specific languages such as SystemC, and
message passing interfaces such as MPI [31] or MCAPI
[39].

We implemented a multicore software verification frame-
work in a pure functional language. To our knowledge, this
is the first verification framework using the LLVM byte-
code representation focused on concurrent programs. We
present a new LLVM IR formalization using the attribute
grammar system, and also an initial application targeting
multicore software using Pthreads library, which is the most
commonly used multicore software library on multicore
systems.

The rest of the paper is organized as follows. Section 2
describes related work in formalization of LLVM IR
and SMT-based bounded model checking for LLVM IR.
Section 3 details the background on LLVM, bounded model
checking, and Pthreads library. In Section 4, we intro-
duce the architecture and details on the Pthreads backend
of LLVMVF. Section 5 describes our experimental setup,
presents the results of the Pthreads experiments and dis-
cusses our results with existing approaches. We conclude
with a discussion of our contributions and future work.
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2 Related Work

A widely adopted paradigm for modeling concurrent sys-
tems is that of interleaving, where non-deterministically
a choice is made between concurrently executing threads
using a scheduler [2]. An interleaving represents a possible
execution of the program where all of the concurrent events
are arranged in a linear order. Any change of the active
thread in an interleaving is a context switch. Most verifica-
tion tools use the interleaving model including explicit-state
model checkers such as SPIN [25], Java PathFinder [23]
as well as symbolic model checkers such as SATABS [11],
CBMC [13], ESBMC [15], and LLBMC [30]. Furthermore,
memory models play an important role in formal verifica-
tion of programs. The most commonly used memory model
is sequential consistency. We also use the interleaving model
and assume sequential consistency in this paper.

Recently, several tools have formalized the LLVM IR
language in the context of certified compilers. Vellvm [42]
is a Coq framework to formally prove transformations over
LLVM IR programs in a first attempt to a formally verified
LLVM compiler. This framework was inspired in CompCert
[8], a ANSI-C verified compiler. LLVM M.D. [40] is a com-
piler research project to detect semantic changes in the input
program produced by the optimizer. LLVM M.D. is imple-
mented in Haskell, but their model generation is based on a
parser of the LLVM IR language whereas we use the bind-
ings for the LLVM API which is a more reliable solution
since the disassembled bytecode may contain errors.

In the last decade, several tools applied bounded model
checking to verify C and C++ programs. The initial tools,
CBMC [13] and F-Soft [26] focused on sequential pro-
grams. SMT-CBMC [1] proposed a combination of bounded
model checking with SMT solvers to use their expres-
sive power. TCBMC [33] and ESBMC [15] apply bounded
model checking for C programs using Pthreads. TCBMC is
limited to concurrent programs with two threads. ESBMC
reuses CBMC front-end to generate verification condi-
tions and supports several encoding approaches to produce
a boolean formula. SATABS [11] performs verification
of multi-threaded software with shared variables with a
CEGAR approach on sequential GOTO-programs translated
from the original concurrent program [12].

Recently, formal verification tools target intermediate
languages. VCC [14] is an assertion verifier for concurrent
C programs. VCC uses the SMT solver Z3 to analyze ver-
ification conditions (VCs) generated from Boogie. Boogie
[4] produces VCs for programs represented in an inter-
mediate verification language also called Boogie that is
previously translated from high-level languages such as C,
C# or Spec#. Concerning LLVM IR, LLBMC [30] applies
SMT-based bounded model checking for sequential C/C++
programs. LAV [41] combines symbolic execution and SMT

based bounded model checking for bug finding in sequen-
tial C programs. We developed an initial application of our
framework to SystemC test generation [37], which also has
a concurrent semantics.

There is a variety of work on verification of shared mem-
ory concurrent programs [1, 21, 26, 28, 32, 34, 36]. In
order to fully verify a multi-threaded program against a
given specification, all possible interleavings must be con-
sidered. We use BMC to obtain a finite state program and
explore all (finite number of) interleavings present in the
bounded program. Similar to ESBMC, we encode all possi-
ble interleavings (context-switches) into one single formula
and then exploit the high speed of the SMT solvers. There
are also other approaches such as context-bounding [19, 32],
partial-order reduction [20, 22] to reduce the complexity of
verification.

Symbolic execution is also used in bug finding. For
example, KLEE [7] is a symbolic execution tool that per-
forms a symbolic path exploration that considers the paths
separately, whereas we use BMC, which encodes all paths
up to a bounded length in a single formula. Also, KLEE
requires manual instrumentation from the user and does not
handle concurrent programs.

This is the first time LLVM is used for the verifica-
tion of multicore (multithreaded) software using Pthreads
library, which is the most commonly used multicore soft-
ware library. Furthermore, we generate SMT formulas in
SMT-LIB v.2 format that can be used with many SMT
solvers for the purposes of bounded model checking and
verification, in general.

3 Background

3.1 Background on LLMV

LLVM is a popular and growing compiler framework that
supports aggressive multistage optimizations to overcome
known problems of traditional compilation techniques. The
framework was initially designed to be a flexible, well doc-
umented and transparent infrastructure for research projects
in the compiler domain.

From a compiler designer perspective, LLVM offers sev-
eral advantages. The architecture of the framework, repre-
sented in Fig. 1, was designed to be dependent on the Inter-
mediate Representation (IR) language to ease component
reusability. This design decision simplifies the compiler
construction process since compiler implementors can reuse
LLVM’s backend. Using the framework, the main compiler
construction component is the front-end implementation.
With the upward trend of domain specific languages devel-
opment, LLVM is a valuable framework to implement an
efficient compiler with limited resources. Moreover, LLVM
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Fig. 1 LLVM architecture

provides code generation for several architectures, and
although primarily focused on C and C++, other program-
ming language front-ends have been implemented.

LLVM is used in multiple projects due to its scalability
and competitive performance results against industrial and
research compilers. Furthermore, there is an active commu-
nity of users and developers, and a continuous interest of
the academic community with hundreds of research papers
up-to-date.

In LLVM, every optimization or transformation is per-
formed over LLVM Intermediate Representation (IR) code.
The LLVM IR language implements an unbounded regis-
ter machine. The instruction set is composed of RISC-like
three address code instructions in Static Single Assignment
(SSA) form with high level type information. The SSA
representation form and the combination of low-level and
high-level information translate in a well-defined and tar-
get independent semantics. Hence, LLVM IR is suitable
for analysis and, in theory, is capable of representing all
high-level languages cleanly.

In Fig. 2, we describe some of the productions that com-
pose the implemented LLVM IR grammar. We describe a
simplified grammar since for our current verification algo-
rithms we are not interested in attributes such as linkage,
section or garbage collection.

A LLVM IR 〈module〉 is composed of a list of named
types, global variables and functions. A named typed, 〈nmd-
ty〉, binds an identifier to a type. In line 1 of Fig. 3,
%“class.std :: ios base :: Init” is defined as the integer
type of one byte. A global variable 〈global〉 is represented
by an identifier, a type and an optional value if the variable
is initialized. Line 2 of Fig. 3, defines “@M1” as a constant
with the value “M1”. Function definitions are composed of
a declaration (identifier 〈ident〉, type 〈ty〉 and parameters
〈param〉∗) and a list of basic blocks. Each basic block 〈bb〉 is
represented by a label identifier, a list of 〈phi〉 instructions,
a list of instructions and a final terminator 〈tmn〉 instruction

Fig. 2 Abstract LLVM IR grammar

such as an unconditional branch (line 4). A phi instruction
represents a value choice between basic blocks.

Instructions are grouped into binary 〈bop〉, bitwise
〈bwop〉, vector 〈vop〉, aggregate 〈aop〉, memory access
and addressing 〈mop〉, conversion 〈cop〉 and other 〈cop〉
operations.

LLVM IR is equipped with a type system that adds extra
expressive power to the language. Every LLVM IR 〈value〉,
either an identifier 〈ident〉 or a constant 〈const〉 has a type
〈ty〉. LLVM IR supports primitive types: void, integers with
a specified bit width i 〈int〉 or 〈float〉; and derived types for
arrays, vectors, structs, pointers and functions.

3.2 Concurrent Program Model

A concurrent program consists of a finite set of threads
T0 , . . . , Tk communicating via shared variables. Threads
are allowed to fork other threads in a bounded manner, and
the total number of threads is finite. We represent a concur-
rent program using a concurrent control flow graph (CCFG),
similar to [36]. A CCFG G = (V , E) consists of a set of
vertices V and a set of edges E. We use two special types
of vertices fork and join to model thread creation and thread
join, respectively. A thread Ti corresponds to a sub-graph
(Vi, Ei) of the CCFG, where Vi consists of nodes represent-
ing program locations as well as statements in thread Ti and
Ei consists of edges representing the thread program order
at the bytecode level. We assume that Ni contains unique
entry and exit nodes of Ti and there are no cycles in the

Fig. 3 LLVM IR example
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control flow graph. For each Ti (other then the main thread)
the entry node has a single incoming edge from a fork node
and the exit node has a single outgoing edge to a join node.
The transition relation of a thread is composed of executions
of statements at nodes in the control flow graph. The transi-
tion relation of the CCFG is obtained from transitions of all
the threads and will be detailed below.

3.3 Bounded Model Checking

In general, the problem of verifying two-threaded programs
(with unbounded stacks) is undecidable [35]. Bounded
Model Checking (BMC) [5], which is a symbolic model
checking approach, limits all program runs and data struc-
tures to finite ones, thereby achieving decidability. This is
accomplished by analyzing only bounded program runs.
The bound is typically imposed by restricting the number
of nested function calls and loop iterations that are allowed.
By considering only finite program runs, affected data struc-
tures and context-switches also become finite. Function
inlining and loop unrolling then results in one function
that is subject to verification. We use LLVM “decidabil-
ity” transformations similar to LLBMC [30] and LAV [41],
described in Section 4.1, to obtain a bounded program from
LLVM-IR representations. Using BMC, we can check the
violations of safety properties such as assertions, reachabil-
ity of certain program statements or race conditions.

More specifically, Bounded Model Checking (BMC) [5]
originated as an alternative to symbolic model checking
using Binary Decision Diagrams (BDD) [6] that suffered
from a scalability problem considering the increasing trend
in complexity and size of hardware systems.

The approach of BMC consists on generating verifi-
cation conditions that encode the reachability problem of
all property violation states in the system up-to a given
bound. BMC leverages recent optimizations in boolean sat-
isfiability (SAT) and Satisfiability Modulo Theories (SMT)
solvers, that find (if possible) satisfying assignments to a
set of constraints, to remain a scalable approach for increas-
ingly complex systems. SAT/SMT-based BMC generates a
first-order propositional formula � given a transition sys-
tem M, a bound k, and a property φ according to the formula:

�(M, k, φ) = I (M) ∧
∧

i∈[0..k−1]
Ti(M) ∧ �¬φ�i (1)

The general BMC formula above encodes the entire
model M as a set of transitions (Ti(M)) at each bound
depth constrained by the initial state I (M). BMC encodes
the negation of the given property and uses the SAT/SMT
solver to determine if the negation of the property is satis-
fiable, i.e. if there is an assignment to the formula variables
such that the formula evaluates to true. Using the dual rela-
tionship between satisfiability and validity, BMC proves if

the property in the model is invalid. In practice, BMC is
an iterative process that increases the search depth until
resource exhaustion or property violation. In this work, we
exploit the optimization advances of SMT solvers to tackle
the verification of multi-threaded software.

3.4 Background on Pthreads Library

We develop algorithms for the verification of multithreaded
programs written using the Pthreads library. The Pthreads
library is the most popular library for implementation of
multi-threaded C/C++ programs. The library provides an
extensive API for thread management, scheduling, synchro-
nization, signaling and cancellation. Moreover, the library
does not specify any scheduling algorithm, although it sup-
ports functions to change the priority of the processes. The
thread scheduling is accomplished by the operating system
scheduler, which typically is preemptive, i.e. the scheduler
can stop a running thread in any instruction location.

3.4.1 Pthread Example

Figure 4 presents a Pthreads example from [15]. The main
function (lines 22 to 30) creates two threads Tx and Ty
that execute without any synchronization mechanism. In this
example, since the function nondet uint can return an inte-
ger bigger than 10, if thread Ty executes first and re-assigns
the shared variable x to 3, when execution resumes to Tx the
assertion will fail. We will use this example to describe our
Bounded Model Checker throughout this work.
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Fig. 4 Pthread example
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4 LLVMVF: LLVM Verification Framework

The architecture of LLVMVF is designed to create a com-
pact model of the bytecode from the original high level
program. In Fig. 5, we present several phases of our frame-
work. The input of our flow is a LLVM bytecode file
corresponding to the high-level program under verification.
For example, in the case of C/C++ we can use a com-
piler from the clang family [10] to obtain the bytecode.
Since the implementation of C++ libraries is heavily based
on template programming, applying various optimizations
to obtain more compact bytecode modules removes some
overhead from the infrastructure as described below.

4.1 Simplification

We start, phase (a), by using the optimizer to transform the
current bytecode into a form that is suitable for our anal-
ysis and specifically to obtain a bounded program similar
to transformations in LLBMC [30] and LAV [41]. In total,
we apply 18 LLVM passes over the input bytecode file.
The LLVM Pass Framework is an infrastructure to struc-
turally implement bytecode traversals at different levels
of abstraction for compiler transformations/optimizations
and analysis. We divide the set of transformations applied
into decidability and simplification categories. Decidabil-
ity transformations aim at generating a bounded version of
the program such that the reachability problem becomes
decidable for sequential programs. For the purpose of our
analysis we want to obtain bytecode that has no cycles
in the basic block graph. Simplification transformations
aim at simplifying our formalization. We reduce the byte-
code size eliminating LLVM IR constructs not supported
by our analysis such as invoke or switch instructions. Fur-
thermore, we lift stack operations by promoting the stack
to registers and use an LLVM pass to name all nameless
identifiers.

4.2 Extraction

In phase (b) of Fig. 5, we obtain a formal LLVM IR model
in Haskell by using a binding mechanism. Specifically, the
extraction function uses a double binding schema to call an
LLVM API function from Haskell and follows the abstract
grammar in Fig. 2. An alternative solution to formalize

LLVM IR in Haskell would be to create a parser from the
disassembler output. Our approach is more reliable because
the output from the disassembler might contain errors.

We now give an example of model extraction. To call the
LLVM API function getModuleIdentifier that retrieves the
name of the bytecode module:

c o n s t s t d : : s t r i n g &g e t M o d u l e I d e n t i f i e r ( ) c o n s t
{

re turn ModuleID ;
}

First, we create the C binding:

c o n s t char ∗ LLVMGetModuleIdent i f ie r (
LLVMModuleRef M) {

re turn unwrap (M)−> g e t M o d u l e I d e n t i f i e r ( ) .
c s t r ( ) ;

}

Then, we create the Haskell binding:

f o r e i g n import c c a l l u n s a f e ”
LLVMGetModuleIdent i f ie r ”
g e t M o d u l e I d e n t i f i e r : : ModuleRef −> IO
C S t r i n g

We have extended the functionality of the current Haskell
and C binding infrastructure with about 25 LLVM API
function calls.

4.3 Abstraction

In phase (c) of Fig. 5, the model generated by the extraction
function is refined into an abstract concurrent model that
contains information about the architecture and the behavior
of the threads. To extend the framework to a new concur-
rent mechanism or language, the only component that a user
has to implement is the refinement from Haskell model of
LLVM IR to the abstract concurrent model.

The LLVM IR Haskell model extracted implicitly rep-
resents a concurrent control flow graph through func-
tion calls to concurrent libraries such as Pthreads. We
model concurrency by interleaving as described above and
refine the LLVM IR model as a concurrent model with
explicit scheduler where only one thread can execute at
a time.

Figure 6 shows the concurrent control flow graph
for the Pthread program in Fig. 4. The diamond node
represents thread forking. Each node is annotated with
a program counter and the actions. For Pthread pro-
grams, the abstraction algorithm traverses the main function

(a) (b) (c) (d)

Fig. 5 LLVMVF architecture
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function main

basic block bb

function Tx

basic block bb

basic block bb2

basic block bb5 basic block bb6

basic block bb11

function Ty

basic block bb

basic block bb2 basic block bb8

basic block bb9

||

1 %tmp = load i32* @x, align 4 16 %tmp = load i32* @x, align 4

38 create_thread40 create_thread

2 %tmp1 = icmp sgt i32 %tmp, i32 2

3 br i1 %tmp1, label %bb2, label %bb11

4 %tmp3 = load i32* @i, align 4

15 ret undef

5 %tmp4 = icmp ult i32 %tmp3, i32 10

6 br i1 %tmp4, label %bb6, label %bb5

7 call __assert_fail 9 %tmp7 = bitcast i8* %arg to i32*

8 unreachable 10 %tmp8 = load i32* %tmp7, align 4

11 %tmp9 = sext i32 %tmp3 to i64

12 %tmp10 = getelementptr [10 x i32]* @a, i64 0, i64 %tmp9

13 void store i32 %tmp8, i32* %tmp10, align 4

14 br label %bb11

17 %tmp1 = icmp sgt i32 %tmp, i32 3

18 br i1 %tmp1, label %bb2, label %bb8

19 %tmp3 = bitcast i8* %arg to i32* 26 void store i32 3, i32* @x, align 4

20 %tmp4 = load i32* %tmp3, align 4

21 %tmp5 = load i32* @j, align 4

22 %tmp6 = sext i32 %tmp5 to i64

23 %tmp7 = getelementptr [10 x i32]* @a, i64 0, i64 %tmp6

24 void store i32 %tmp4, i32* %tmp7, align 4

25 br label %bb9

28 ret undef

27 br label %bb9

Fig. 6 Concurrent control flow graph for example 4

calculating the intra-procedural control flow and searching
for thread fork/join operations. In this example, the LLVM
instruction at program counter 38:

c a l l i 3 2 @ p t h r e a d c r e a t e ( i 6 4 ∗ %id1 , %
u n i o n . p t h r e a d a t t r t ∗ n u l l , i 8 ∗ ( i 8 ∗ ) ∗ @Tx
, i 8 ∗ %tmp1 ) nounwind

is translated to:
c r e a t e T h r e a d ”Tx” ( I d e n t i f i e r ” tmp1 ” (

T y P o i n t e r ( T y I n t 8 ) )

At the end of the abstraction phase, our model is ready
to be used by the particular backend implementation. In this
work, we devise an SMT-based Bounded Model Checking
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technique for Pthreads programs as the backend implemen-
tation. Earlier, we described a backend for automated test
generation of SystemC designs [37].

4.4 SMT Encoding and Verification

In phase (d) of Fig. 5, we obtain an encoding of the con-
current model in SMT-LIB v.2 format that can be used
with several SMT solvers. The SMT-LIB language encodes
logical formulas in a many-sorted first-order logic. It is a
strongly-sorted (typed) language, where each well-formed
expression has a unique sort and is well-sorted. It supports
polymorphic functions such as equality function (=) and
new sort definition. Since we use the SMT-LIB with bit-
vectors and arrays, many LLVM constructs can be easily
encoded including types, global variables, and instructions.
Once the program is encoded then it is given to an SMT
solver for verification.

As described in Section 3.3, given a transition system M,
a bound k and a property φ, an SMT-based BMC generates
the formula:

�(M, k, φ) = I (M) ∧
∧

i∈[0..k−1]
Ti(M) ∧ �¬φ�i

Although we have a partial implementation for a linear
encoding of LTL properties, we currently focus on verifying
user assert statements. Therefore, we are able to statically
determine the error states since they are calls to the function

assert fail and reduce the formula above to a reachability
problem:

�(M, k) = I (M)∧
⎛

⎝
∧

i∈[0..k−1]
scheduleri ∧ Ti(Mthreads)

⎞

⎠∧error

(2)

error =
∨

i∈[0..k−1]

Current state is a fail state︷ ︸︸ ︷∨

f ∈F(M)

∨

j∈[0..tc−1]
�jpci = f (3)

In Formula 2, we explicitly encode a scheduler. Further-
more, in Formula 3, tc is the number of threads and �jpci is
the program counter in bound i of the thread �j . Intuitively,
formula 2 encodes a breadth-first search for an error state
f in the set of error states of M, F(M), up to the specified
bound k in the transition system M.

Next, we will show how we encode � by describing
encodings for types, global variables, thread instructions,
the scheduler, the initial state, and the error state. Then we
will show an overall encoding example.

4.4.1 Encoding Types

We now describe our encoding of all the types used in the
program. We define the type iN as a new sort IN that is a
synonym for a BitV ector of size N, except for i1 that is

mapped to Bool. For example, the LLVM type i8 is encoded
as:

( d e f i n e − s o r t I8 ( ) ( Bi tVec 8) )

An LLVM array (Array n ty) is encoded as:

(define−sort Arraynty () (Array ( BitVec bsize(n)) sort (ty)))

The function sort retrieves the sort of the type and the
function bsize generates a BitVector of the minimum size
required to encode the number of elements in the Array. For
example, an array with 48 elements of type i8 is encoded as:

( d e f i n e − s o r t Ar ray48I8 ( ) ( Array ( Bi tVec 6)
I8 ) )

For simplicity, pointer types are defined as the sort of the
type they point to. Structures are encoded as pairs of sorts.
For example, the type:

%u n i o n . p t h r e a d a t t r t = type { i64 , [48 x i 8 ]}

is encoded as:
( d e c l a r e − s o r t P a i r 2 )
( d e f i n e − s o r t u n i o n . p t h r e a d a t t r t ( ) ( P a i r I64

Ar ray48I8 ) )

Encoding for the remaining LLVM types is not supported
yet.

4.4.2 Encoding Global Variables

We first declare the global variables and if they are initial-
ized we generate assertions and a predicate lid, where id is
the variable name that keeps track of the program counter
where an initial assignment was performed. By default, this
program counter is 0. For example, the global declaration:

@x = g l o b a l i 3 2 2 , a l i g n 4

is encoded as:
( d e c l a r e − fun x ( ) I32 )
( d e c l a r e − fun l x ( ) I32 )
( a s s e r t ( and (= x ( bv2 32) ) (= l x ( bv0 32) ) ) )

4.4.3 Encoding Instructions

The encoding function is straightforward for binary, bit-
level, casting and address calculation instructions, since
these instructions are part of the theory of arrays and fixed-
sized bitvectors or can easily be encoded. For example,
the LLVM instruction add is translated into the instruction
bvadd in the theory of bitvectors. The address calculation
instruction getelementptr is translated into the instruction
select in the theory of arrays.

Note that, all encoding examples below consider the
encoding for the first step (bound 0) of BMC, unless
otherwise specified.

To encode memory access instructions related to global
variables (such as variable x) at step N of BMC, we intro-
duce a fresh variable xN, for each store of the global
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variable, and another fresh variable px(N + 1) that repre-
sents the program counter of the last store to the variable.
The variable px(N + 1) will be useful in load instructions
of the next BMC step (step N + 1), whereas variable pxN is
used in the current step. In Fig. 4, two threads Tx and Ty are
active and for simplicity we assume that they modify global
variables x and i only. In Fig. 6, the store instruction at pc =
26, (that is, x = 3 at line 18 of Fig. 4)

vo id s t o r e i 3 2 3 , i 3 2 ∗ @x, a l i g n 4

is encoded as follows:
( and ( and ( and Ty0
( and (= Typc0 ( bv26 32) )
( and (= x0 ( bv3 32) ) ( and (= p i 1 p i 0 ) (= px1

( bv26 32) ) ) ) ) )
(= Typc1 ( bv27 32) ) )
(= Txpc1 Txpc0 ) )

This instruction is active when thread Ty is chosen by the
scheduler at bound 0, that is, Ty0 is true. Thread Ty goes
from pc = 26 to pc = 27, that is, Typc0 = 26 and Typc1 =
27, while thread Tx does not change its pc, Txpc1 = Txpc0.
Since this instruction is a store of x, we create fresh variables
x0, px1 and assign 3 to x0 and the value of the last store
program counter, that is 26, to px1. Similarly, since variable
i is not modified, the last store program counter of i, that is
pi1, is the same as the current program counter value, pi0.

The encoding of the load instruction at pc = 1 (that is,
read of x at line 8 of Fig. 4)

%tmp = l o a d i 3 2 ∗ @x, a l i g n 4

is encoded as follows:
( and ( and ( and Tx0
( and (= Txpc0 ( bv1 32) )
( and
( or ( and (= px0 l x ) (= Txtmp x ) ) ( and (= px0 (

bv26 32) ) (= Txtmp x0 ) ) )
( and (= p i 1 p i 0 ) (= px1 px0 ) ) ) ) )
(= Txpc1 ( bv2 32) ) )
(= Typc1 Typc0 ) )

This instruction is active when thread Tx is chosen by
the scheduler at bound 0, that is, Tx0 is true. Thread Tx
goes from pc = 1 to pc = 2, that is, Txpc0 = 1 and
Txpc1 = 2, while thread Ty does not change its pc. In this
formula, we assign a value to the local variable tmp of
T x, that is, Txtmp, depending on the value of px0, which is
the variable that represents the program counter of the last
store. In this case, px0 is either lx, which keeps track of the
program counter for the global variable initialization of x,

hence T xtmp = x or px0 is 26 that corresponds to the store
by Ty shown above and T xtmp = x0. This approach can
also be used to encode phi instructions.

For encoding a conditional branch instruction, we gen-
erate two alternatives. If the condition is true then the
program counter is updated with the program counter of the
true branch, otherwise with the false branch. In Fig. 6, the
branch instruction at pc = 3 updates pc to either 4 or 15,
that is,

br i 1 %tmp1 , l a b e l %bb2 , l a b e l %bb11

is encoded as follows:

( and ( and ( and Tx0
( and (= Txpc0 ( bv3 32) ) ( and (= p i 1 p i 0 ) (=

px1 px0 ) ) ) )
( or ( and Txtmp1 (= Txpc1 ( bv4 32) ) ) ( and (

not Txtmp1 ) (= Txpc1 ( bv15 32) ) ) ) )
(= Typc1 Typc0 ) )

4.4.4 Encoding Scheduler

Finally, we explicitly add an encoding for the scheduler
where at each bound depth a single thread is nondetermin-
istically chosen for execution while other threads do not
make any progress. This captures modeling concurrency by
interleaving and allows us to cover all possible interleav-
ings during verification. The encoding of the scheduler for
bound, N = 0, is as follows.

( or ( and Tx0 ( not Ty0 ) ) ( and Ty0 ( not Tx0 ) ) )

4.4.5 Overall Encoding

We now show the overall encoding for our SMT based BMC
using Formula 2 when bound k = 1. For ease of reading we
show the formula below,

�(M, k) = I (M)∧
(∧

i∈[0..k−1] scheduleri ∧ Ti(Mthreads)
)

∧
error

The initial state I(M) contains encoding of types, global
variables as well as the initializations of variables and pro-
gram counters. We show the encoding for I(M) as follows:

/ / Encoding of t y p e s
/ / Encoding of g l o b a l v a r i a b l e s
/ / I n i t i a l i z a t i o n s
( and ( and (= Txpc0 ( bv1 32) ) (= Typc0 (

bv16 32) ) ) ( and (= p i 0 l i 7 ) (= px0 l x ) ) )

LLVM IR
Model

Abstract
Model

Pthread
Model

SMT Formula
z3

MathSat
...

Assertion
pass/fail

Fig. 7 Verification flow in LLVMVF
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Table 1 SMT-based BMC
results for the last bound using
LLVMVF

Benchmark # Lines # Threads Bound Result Z3 MathSat5

Time (s) Time (s)

account bad 111 3 30 sat 1.4 0.97

account ok 111 3 50 unsat 87 49

lazy01 bad 86 3 15 sat 0.5 0.4

simple 90 2 11 sat 0.5 0.36

phase01 bad 74 2 10 sat 0.3 0.27

deadlock01 bad 77 2 50 sat 1.2 0.9

stateful01 unsafe 82 2 26 sat 3 1

carter01 unsafe 80 2 9 sat 0.24 0.28

The error state error refers to the program counter 7, so it is
encoded as

( or (= Txpc0 ( bv7 32) ) (= Typc0 ( bv7 32) ) )

We encode the scheduler scheduler0 for k = 1 as

( or ( and Tx0 ( not Ty0 ) ) ( and Ty0 ( not Tx0 ) ) )

The transition relation Ti(Mthreads) is composed of
the transition relations for threads Tx and Ty. We
showed instructions for both threads when k = 1
above. Similarly, we can obtain the encoding for other
bounds.

The complexity of our encoding algorithm is k ×
size(M), where k is the bound and size(M) is the number
of instructions in model M.

5 Experiments

In this section, we present our experimental results using
LLVMVF. We conducted the experiments using Ubuntu
12.04 on a virtual machine with 2 cores and 365 MB RAM.

In Fig. 7, we illustrate the verification flow backend in
LLVMVF. Given a LLVM IR Model, we can instantiate
our abstract model to Pthreads and then apply a verifica-
tion procedure to generate a standard SMT-LIB v.2 formula.
Hence, LLVMVF provides an infrastructure for comparison
of different SMT tools.

We tested our SMT-based BMC with a set of Pthreads
programs based on concurrent benchmarks used in Com-
petition on Software Verification [16] and the simple
example described in this paper. All multi-threaded pro-
grams have user defined assertions denoting some error
conditions.

In Table 1, we present our results. We achieved correct
results for all benchmarks. The second column of the table
shows the size of the LLVM bytecode file in number of lines
and third column represents the number of threads in the

program. We run BMC in an iterative fashion with a bound
up to 50. The fourth column shows the bound where the
formula became satisfiable. We are able to identify poten-
tial safe test cases such as account ok. In this case, the
generated formula was always unsatisfiable because the pro-
gram always hit a correct scenario. One of the advantages
of generating a SMT-LIB v.2 formula is that we are able
to compare different SMT solvers that are compliant with
the standard. We present in the sixth and seventh columns
the execution time of the last bound for two different SMT
solvers, namely Z3 [17] and MathSat5 [9]. Our initial inves-
tigation indicates that MathSat5 is more efficient to resolve
programs in the theory of bit-vectors.

In Table 2, we present an initial comparison between
LLVMVF and ESBMC. ESBMC is a mature BMC tool
with several optimizations flags such as options to con-
trol the scheduling constraints or to restrict the number of
context switches. ESBMC uses CBMC as a front-end but
not LLLVM like we do, hence it is not portable to other
languages. We ran LLVMVF in a loop incrementing the
bound depth until we have a satisfiable assignment or the
bound is 50 (unlike above where we list the solver times for
the last bound only). We ran ESBMC with the script used
during the Competition on Software Verification 2013 with
optimizations and a timeout of 450 s.

Table 2 Execution time comparison between LLVMVF and ESBMC

Benchmark LLVMVF Z3 LLVMVF MathSat5 ESBMC

account bad 24 11 1.1

account ok 87 49 TO

lazy01 bad 3.5 3.3 TO

simple 3.7 2.2 1

phase01 bad 1.5 1.5 4.3

deadlock01 bad 1.8 1.9 TO

stateful01 unsafe 36 15 1

carter01 bad 1.3 1.2 1
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Our comparison suggests that LLVMVF execution times
are similar when the bound depths required for a satisfiable
assignment are close.

ESBMC does not achieve a verification result with time-
out of 450 s for 3 benchmarks account ok, lazy01 bad
and deadlock01 bad, whereas LLVMVF successfully com-
pletes verification for all benchmarks. For benchmarks
when ESBMC completes verification, LLVMVF has longer
running times. This is because currently we do not support
any optimizations in LLVMVF unlike ESBMC.

Note that we can use the program counter to obtain
a trace in the counter-example generation given by the
SMT solver. We can then use a C-backend for LLVM IR
or use the metadata information in a debug compilation
to obtain precise information with respect to the original
program.

6 Conclusion and Future Work

We present the design and implementation of a frame-
work for verification of multicore software. The goal of this
framework is to have a reliable and scalable infrastructure
for verification of concurrent programs. Our framework,
LLVMVF, is novel in that it operates at the bytecode rep-
resentation of the programs using the Low Level Virtual
Machine (LLVM) framework. Our implementation lever-
ages the advantages of Haskell, a general purpose strongly-
typed functional programming language, to achieve a trans-
parent, powerful and scalable framework. We describe
a Satisfiability Modulo Theories (SMT) based Bounded
Model Checker for Pthreads programs using LLVMVF.
We obtained favorable results on benchmarks compared
with a previous non-LLVM based multicore software
verifier.

The importance of our solution is that it can work at
the bytecode level. Therefore, the verification techniques
supported by our framework can potentially be used in a
wide spectrum of concurrent domains. Also, since we gen-
erated standard SMT formulas, SMT-LIB v2, this allowed
us to compare performance of different SMT solvers such
as MathSat5 and Z3, where MathSat5 had a slight edge
over Z3.

In the future, we plan to support more concurrency con-
structs such as conditional variables to augment the domain
of our analysis. Furthermore, we believe that abstraction
techniques can reduce the size of our encodings and prior
analysis of the source can provide insight to a conservative
minimum bound to optimize our iterative approach. Finally,
a possible implementation could be to use our framework
for test generation in the context of emerging multicore
software standards such as MCAPI [18].
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