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Abstract—Benchmarks capture the essence of many impor-
tant real-world applications and allow performance, and power
analysis while developing new systems. Synthetic benchmarks
are a miniaturized form of benchmarks that allow high sim-
ulation speeds and act as proxies to proprietary applications.
Software architecture principles guide the development of new
applications and benchmarks. We leverage software architec-
tural patterns in developing synthetic benchmarks for embed-
ded multicore systems. We developed an automated framework
complete with characterization and synthesis components and
performed experiments on PARSEC and Rodinia benchmarks.
Our benchmarks can be run on any given infrastructure,
that is, SMP or message passing, unlike previously developed
benchmarks. Hence, this allows us to target heterogeneous em-
bedded multicore systems. Our results show that the synthetic
benchmarks and the real applications are similar with respect
to various micro-architecture dependent as well as independent
metrics.

Keywords-multicore; workload characterization; software ar-
chitectural pattern; synthetic benchmark; embedded multicore

I. INTRODUCTION

As single core processors rapidly reach the physical limits
of possible complexity and speed, multicore processors
are growing as a new industry trend. Embedded multicore
systems are being deployed in many domains ranging from
medical to automotive to networks. However, designing
multicore hardware is hard because the concurrent nature
of multicores leads to complex behaviors that are difficult
to analyze. Designing multicore systems is especially harder
without workloads. Workloads can include real-world appli-
cations such as customer codes or benchmarks. Benchmarks
are a good proxy for workloads that capture the essence
of many important real-world applications. They are used
to design and evaluate the performance of new computer
systems. For example, PARSEC [1] targets multithreaded
applications for shared memory architectures, Rodinia [2]
targets heterogeneous systems including GPUs, EEMBC
[3] contains applications for embedded systems, and NAS
parallel benchmarks [4] contain scientific workflows for
message passing architectures.

Workloads allow the designers to perform tasks such as
early architectural exploration and predicting performance

of new architectures. These tasks require high simulation
speeds that may be difficult to accomplish when the work-
loads, either customer codes or benchmarks, are big. Fur-
thermore, proprietary customer codes may not be available
to the hardware designer. Hence, there is a need to develop
high speed simulation benchmarks and benchmarks that can
act as proxies for proprietary customer codes. Also, tradi-
tional benchmarks such as PARSEC, Rodinia as well as the
embedded multicore benchmark suite EEMBC multibench
all rely on presence of shared memory architectures, or
Pthreads, OpenMP, OpenCL libraries as well as uniform
CPU ISAs. Heterogeneous embedded multicore systems
may not be able to use these benchmarks as they may
not support such architectures or libraries. There is a need
to develop workloads suitable for any given infrastructure,
that is, SMP or message passing architectures, as well as
workloads suitable for heterogeneous embedded multicore
systems.

In order to address above problems with workloads, we
develop synthetic benchmarks for embedded multicore sys-
tems suitable for any given infrastructure. Synthetic bench-
marks do not perform any useful computation. However, the
characteristics of real applications can be approximated by
these small, simple and accurate programs. These bench-
marks can be run on hardware simulation models, where
the performance of the workload is crucial for timely devel-
opment or on actual hardware, where the workload needs to
capture more of the characteristics of the original application
so that sensitivity analysis can be performed. Multicore
Association (MCA) [5] provides a basic framework for
developing applications for any given infrastructure on het-
erogeneous embedded multicore systems. We show that the
synthetic benchmarks can run using MCA APIs (Multicore
Communications API (MCAPI) or Multicore Resource API
(MRAPI)), that provide a portability layer for heterogeneous
systems. This allows us to demonstrate that the synthetics
do not require SMP and shared memory, yet achieve similar
characteristics to the original application.

In order to develop a synthetic benchmark, the first step is
to characterize the given workload. Characterization consists
of a description of the workload by means of quantitative



parameters and functions; the objective is to derive a model
able to show, capture, and reproduce the behavior of the
workload and its most important features. Workload charac-
teristics can be divided into micro-architecture independent
characteristics such as instruction mix, instruction level
parallelism, data locality, thread communication; or micro-
architecture dependent characteristics such as branch miss
prediction and cache miss rate. In fact, significant work
has been done to characterize single threaded benchmarks
[6], [7]. Although, there has been work in multithreaded
program characteristics such as memory level parallelism,
ultimately the synthetic benchmark is a low level program.
The development of synthetic benchmarks for multicore
systems demands high level characteristics since our goal
is to develop synthetic benchmarks suitable for any given
infrastructure and low level characteristics simply do not
allow the portability that we require.

In this work, we leverage software architecture patterns
for capturing high level characteristics of multicore work-
loads. Such characteristics have not been previously used
for synthetic benchmark development. Software architecture
defines the components that make up a software system, the
roles played by those components, and how they interact. A
systematic way to describe software architectures is through
patterns. A pattern is a high quality general solution to a
frequently occurring problem. Patterns reduce the effort in
developing new applications and programming paradigms
and ease their adoption. Since we target multicore appli-
cations, we exploit parallel software architecture patterns
as novel micro-architecture independent characteristics to
develop synthetic benchmarks. Mattson et al. [8] describe
parallel patterns such as pipeline, task parallel, divide and
conquer and others in their work. These patterns have been
extended in a pattern language with dwarfs such as dense
linear algebra, dynamic programming, and structured grid in
[9]. We show that patterns provide a sufficiently high-level
framework for creating synthetic benchmarks, and there is
simply a requirement for some basic infrastructure such as
that provided by MCA.

Manually developing benchmarks for heterogeneous mul-
ticore embedded systems is both error prone and labor
intensive. We develop an automated framework that can
analyze a given workload and can create a synthetic bench-
mark for whatever infrastructure we have. We validate the
applicability of software architectural patterns, in particular,
parallel patterns, for developing synthetic multicore applica-
tions. We performed experiments on PARSEC and Rodinia
benchmarks. Our results show that the synthetic benchmarks
and the real applications are similar with respect to various
micro-architecture dependent and independent metrics. We
use metrics such as software architectural patterns, commu-
nication/computation as well as IPC, cache miss rate, and
branch miss rate. Our benchmarks are similar up to 95% and
on average above 86%. The readability of our benchmarks

Figure 1: Parallel Patterns for Software [8]

in C language is also much higher than previous synthetic
benchmarks that generate assembly level benchmarks.

We summarize our contributions as follows:
• We exploit software architectural patterns in character-

izing and generating synthetic multicore applications.
• Our synthetic benchmarks can run any given infrastruc-

ture, that is, both SMP operating system or POSIX API
as well as MCA APIs. Hence, it supports heterogeneous
embedded multicores.

• We experimentally validate that our synthetic bench-
marks achieve similar characteristics with the original
workloads.

II. SOFTWARE ARCHITECTURAL PATTERNS

Architectural patterns are fundamental organizational de-
scriptions of common top-level structures observed in a
group of software systems [10]. One of the most important
decisions during the design of the overall structure of a
software system is the selection of an architectural pattern.
Architectural patterns allow software developers understand
complex software systems in larger conceptual blocks and
their relations, thus reducing the adoption complexity.

Architectural design patterns have been developed for
object-oriented software and have been found to be very
useful [11]. Similarly, a parallel pattern language which is a
collection of design patterns, guiding the users through the
decision process in building a system has been developed
[12]. In a pattern language, patterns are organized into a
hierarchical structure so that the user can design complex
systems going though the collection of patterns. A parallel
pattern language also provides domain-specific solutions to
the application designers in less time.

Figure 1 shows parallel patterns in a decision tree. There
exist three classes of parallel patterns based on organization
of tasks, data, and flow of data. When a work is divided
among several independent tasks, which can not be par-
allelized individually, the parallel pattern employed is task
parallelism. In divide and conquer, a problem is structured
to be solved in subproblems independently, and merging the
outputs later. A data decomposition aligned with the set of
tasks is designed to minimize communications between tasks
and make concurrent updates to data safe. When the data
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Figure 2: Synthetic Multicore Benchmark Framework

decomposition is linear, the parallel pattern that is employed
is called geometric decomposition. Matrix multiplication, list
and vector operations are examples of geometric decomposi-
tion. On the other hand, parallel pattern used with recursively
defined data structures is called recursive data. Graph search,
tree algorithms are example usages of recursive data. Apart
form task parallelism and data parallelism, if a series of
ordered but independent computation stages need to be ap-
plied on data, where each output of a computation becomes
input of subsequent computation, pipeline parallel pattern
is used. Event-based coordination parallel pattern defines a
set of tasks that run concurrently where each event triggers
starting of a new task.

The above architectural patterns capture the essence of
multicore applications at a high level. This concept has not
been used in synthetic benchmark generation before and we
describe how we use them in the following sections.

III. OVERALL VIEW OF THE BENCHMARK FRAMEWORK

Figure 2 shows a high level view of the automated frame-
work we developed. Our framework contains three main
modules: workload characterizer, parallel pattern recog-
nizer, and synthetic benchmark synthesizer. Workload char-
acterizer obtains parallel workload characteristics by using
a dynamic binary instrumentation tool. The parallel pattern
recognizer decides the architectural parallel pattern from
the workload characteristics. Finally, benchmark synthesizer
generates a synthetic benchmark from the parallel pattern
and the workload characteristics. Also, the specific MCA
API is used during synthesis in order to generate benchmarks
for a heterogeneous embedded system. Next, we explain
each of these modules in detail.

IV. PARALLEL WORKLOAD CHARACTERIZATION

The goal of workload characterization is to produce some
quantitative and qualitative relations and invariants that char-

acterizes the behavior of a workload through experimental
data. In this work, we are interested in those high level
characteristics of a multicore application that allows us to
determine its software architecture. All our characteristics
are geared towards concurrent programs.

We analyze the workload characteristics in three groups:
data sharing, thread communication, and general threading.
Each group has sub characteristics. Sub-characteristics in
the data sharing group are read-only, migratory, shared, and
private. In read-only characteristics, the data is constantly
being read by threads and is not updated. If the data is
accessed by a single thread, we say that the data has private
characteristics. In migratory characteristics, a thread reads
and writes to a shared data item within a short period
of time and this behavior is repeated by many threads.
If multiple threads access the same data and at least one
of the thread operations is write then this means that
the data is shared between threads. Thread communication
characteristics cover both the shared memory and message
passing infrastructures. There exist three thread commu-
nication characteristics; namely, none (terminal thread or
minimal communication), few (algorithmically defined), and
many (data dependent) based on the amount of communi-
cation among threads. Furthermore, knowing the direction
of communication is also valuable. Finally, we keep track
of the following general threading characteristics. These are
the number of the threads over time, lifetime of threads,
Program Counter (PC) uniqueness between threads (this
allows to determine whether the threads are executing the
same function or not), dynamic instruction counts per thread
(this allows us to determine whether the threads are balanced
or unbalanced). Moreover, we build a relationship graph
between threads where we keep the creator of each thread
and the creation/exit times of the threads.

V. PARALLEL PATTERN RECOGNITION

Once we obtain the workload characteristics, we use
them to decide the high level characteristics of the parallel
workload, that is, the software architectural pattern or the
parallel pattern. Our recognizer can detect different phases in
a program as is the case for real programs and find multiple-
patterns that follow one and other in a workload. In order to
recognize parallel patterns described above, we develop a set
of reference behaviors that capture the characteristics each
parallel pattern exhibits. We then measure the Euclidean
distance between the given characteristics of the workload
and the characteristics of the reference behaviors to decide
the parallel pattern of the workload. The parallel pattern
nearest to the workload characteristics gives the parallel
pattern of the workload.

We developed reference behaviors by investigating the
behaviors in the literature [8], as well as our own experience
with multicore applications.
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In a task parallel or recursive data pattern, private and
read-only data are common because each thread does its
work locally without sharing data. In pipeline and event-
based coordination patterns, data migrates between stages in
which different threads run. The divide and conquer pattern
has producer/consumer sharing and migration characteristics
because the producer thread creates consumer threads by
dividing tasks and the threads communicate with each other
by migrating data. In geometric decomposition pattern, we
have the producer/consumer sharing characteristics since
data is shared between threads, particularly between threads
with neighboring data.

In task parallel and divide and conquer patterns, there
exist no or few inter-thread communication. This is because,
each thread does its work by mainly using local data.
The geometric decomposition and recursive data patterns
have high degrees of inter-thread communication such as
in graph traversal algorithms, where each thread shares its
result with neighboring nodes. The pipeline and event-based
coordination patterns have few and algorithmically defined
communication between threads.

We use PC uniqueness between threads as general thread-
ing characteristics. For each thread we keep its PC, and
then we check whether many threads have the same PC
or each thread has a unique PC. If most threads have
a unique PC, the parallel pattern is pipeline or event-
based coordination since each thread does different work
in these patterns. Whereas, PCs are shared between threads
in other patterns. The distribution of the number of dynamic
instruction counts of the threads also changes from pattern
to pattern. For example, threads have similar number of
dynamic instructions in geometric decomposition pattern as
the subproblems have similar size. Whereas, in divide and
conquer pattern, the number of dynamic instruction counts
differs between threads because the size of the subproblems
can be different. Similarly, the lifetimes of the threads have
similar values for geometric decomposition pattern since
the size of the data that the threads work on is divided
equally. In divide and conquer pattern, threads have different
lifetimes since the problems that each thread solves change.
While all threads are created at the beginning in task parallel
and geometric decomposition patterns, threads are created
dynamically during the execution in divide and conquer
pattern.

For example, the parallel pattern of a workload with read-
only and private data sharing characteristics, and no inter-
thread communication, where threads have unique PCs, and
threads are created by the same thread at the beginning
of the program is task parallel. An example of geometric
decomposition pattern can be a workload with many pro-
ducer/consumer and few migratory data sharing characteris-
tics, many data dependent inter-thread communication, and
balanced threads that the share same PC and created at the
same time by one thread.

VI. SYNTHETIC BENCHMARK SYNTHESIS

In this part, we use the workload characteristics and
software architectural patterns to generate a synthetic bench-
mark. Synthetic benchmarks are synthesized as C programs
with MRAPI or MCAPI library. Since C is a high level pro-
gramming language, our synthetic benchmarks are portable
and human-readable. There are many knobs to control the
behavior of the synthesizer and it can also work as a
standalone tool, where required parameters can be input
manually rather than being automatically inferred through
characterization.

Our synthetic benchmarks preserve the micro-architecture
independent and dependent behaviors, hence they preserve
both the software architectural semantics and the perfor-
mance characteristics of the original workload. Note that
synthetic benchmarks also preserve the number of the
threads as well as their hierarchies. In order to achieve this,
we measure the similarity between the original workload and
the synthetic benchmark with respect to several similarity
metrics. The goal of the synthesizer is to reach a user defined
similarity score in an iterative and automated manner. The
similarity metrics that we use are the Parallel Pattern type
(PL), Thread Communication (TC) behavior, Communica-
tion/Computation Ratio (CCR), Instructions Per Cycle (IPC),
Cache Miss Rate (CMR), and Branch Misprediction Rate
(BMR). Many of the micro-architecture dependent metrics
have previously been used to determine similarity but the
software architectural patterns have not been used during
synthesis.

We use the error rate to quantify the similarity of work-
loads. Given a similarity metric, mt, and the value of mt
for the synthetic and the original workloads as mtsyn and
mtorg, respectively, we define the error rate for mt as,
errorratemt = (mtsyn−mtorg)/mtorg. We now describe
how we calculate the similarity score, sscoremt, for each
metric mt. The Parallel Pattern (PL) similarity score is
calculated by comparing first whether the original and the
synthetic have the same number of patterns, if not, a score of
zero is generated. If they have the same number of patterns
then we check the ratio of the number of matching pattern
types in both workloads to the number of all pattern types
in the original workload. Our synthesis flow makes sure that
this score is always 100% for our synthetic benchmarks. The
Thread Communication (TC) similarity score is calculated
by comparing the communication behavior between pairs of
threads in the original workload and pairs of threads in the
synthetic workload. We calculate it as follows: sscoreTC =
(CC +NN)/(CC + CN +NC +NN). For a given pair
of threads (assuming the number of threads is the same for
both workloads), if the threads are communicating in both
the original and the synthetic workloads, we increment the
integer value CC. If the threads are not communicating in
both the original and the synthetic workloads, we increment
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the integer value NN . If the threads are communicating in
the original but not in the synthetic workload, we increment
the integer value CN , and similarly we increment NC.
This score gives us an accurate number in terms of the
communication behavior. The Communication to Compu-
tation (CCR) similarity score is the average of the error rate
of communication between the original and the synthetic
workloads and the error rate of computation between the
original and the synthetic workloads. The similarity scores
for the remaining Instructions Per Cycle (IPC), Cache Miss
Rate (CMR), Branch Misprediction Rate (BMR) metrics are
calculated as the inverse of the error rate formula given
above. Finally, we calculate an overall similarity score as
an equal weighted average of all of the similarity scores but
the PL score. This is because we make sure that the synthetic
and the original workloads have the same types of patterns.

Now, we describe the synthesis steps in more detail. The
first step in the synthesis flow is to create a candidate
synthetic benchmark using the parallel pattern and other
workload characteristics. The candidate benchmark has the
same number of threads as the original. We add communi-
cation operations among threads in an ordered way. These
communication operations are either read/write (in case of
MRAPI) or message send/receive operations (in case of
MCAPI). We also decide on the type of messages and the
number of operations in this step. The candidate benchmark
exploits the reference behavior and the characteristics de-
scribed above. For example, for task parallel pattern, in
order to obtain private data sharing behavior, we create
local private data and add read and write operations on
this data. For read-only data sharing behavior, we create a
global data that is read-only. We do not add any inter-thread
communication since in task parallel every thread works on
its unique task. In order to obtain PC uniqueness in general
threading behavior, each thread executes a separate function.
To obtain the same lifetimes, the amount of computation
(sleep) is increased or decreased.

After the candidate benchmark is created, we check the
overall similarity score. If it is above the overall similarity
score or the total number of iterations both set by the user
then we have the final synthetic benchmark. Otherwise,
we iterate until we reach the threshold. During iteration
steps, we check which similarity scores are lower than the
threshold similarity score and improve those metrics. For
example, in order to improve sscoreTC , we either add the
missing communication between threads in the synthetic that
exist in the original workload or remove the extra inter-
thread communication that exists in synthetic but not in
original workload. When sscoreIPC is low, we either insert
a C code block with high (integer addition) or low (division)
IPC to the candidate synthetic benchmark. If sscoreCMR is
low, then we insert a new code block where the data that are
already in cache are accessed many times. Otherwise, our
new code block includes accesses to data that are not already

cached. Similarly, we add code blocks for other metrics.
When all the steps given above are completed, a minia-

turized multicore synthetic benchmark is obtained. This
synthetic benchmark keeps the performance attributes of the
original workload as we show in the experimental works.
Note that our framework allows to change the communica-
tion paradigm between the original and synthetic. That is,
if the original uses shared memory paradigm, the synthetic
could use either shared memory (MRAPI) or message pass-
ing (MCAPI).

VII. EXPERIMENTS

We performed experiments to analyze correlation of syn-
thetic and real (original) benchmarks. In order to show that
our approach works across different number of multicores
and cache sizes, we targeted different core and cache plat-
forms. The experiments were performed on two hardware
configurations. HW1 uses an i7 processor with 4 cores and
6MB cache, and HW2 uses dual Xeon e5520 processors with
8 cores and 8MB cache.

We used PARSEC [1], and Rodinia (OpenMP) [2] bench-
marks as real benchmarks and generated synthetic bench-
marks in MRAPI and MCAPI from them. PARSEC is
a well-known, open-source multithreaded benchmark with
fundamental parallelism constructs. Rodinia is a benchmark
suite for heterogeneous computing and cover a wide range of
parallel communication patterns, synchronization techniques
and power consumption.

We use a dynamic binary instrumentation tool, named
DynamoRIO [13] for gathering characteristics during the
execution of a workload. We also use Umbra [14], which
is an efficient and scalable memory shadowing tool built
on top of DynamoRIO. We developed our characterizers as
clients of DynamoRIO and Umbra. We also used perf tool
[15] to obtain micro-architecture dependent characteristics.
Our framework consists of nearly 6000 lines of C code. We
ran the original and the synthetic benchmarks 10 times in
order to obtain similarity scores. We also set the number
of iterations to 20, the overall similarity score to 80% and
individual similarity scores to 70%. We used the medium
input for PARSEC and default input for Rodinia. All of our
benchmarks can be downloaded from our website 1.

Table I shows the results of our pattern recognizer as
well as the pattern of the benchmark known from the
literature on PARSEC benchmark suite. We obtained 100%
pattern match on all benchmarks. Note that this may take
a few iterations. Our pattern recognizer was also able to
recognize different patterns in a given benchmark such as
task parallel and pipeline patterns in X264, although this is
not explicitly stated in the literature. The correct patterns
are crucial because recognizing a wrong pattern can result
in wrong communication and computation behaviors in the

1http://www.cmpe.boun.edu.tr/˜sen/iiswc2012
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Table I: Pattern Recognition Results for PARSEC benchmarks

Original Synthetic
Benchmark LC Parallel Pattern LC Parallel Pattern #Iterations
Blackscholes 1262 Task Parallel 116 Task Parallel 1

Bodytrack 7696 Geometric Decomposition 1197 Geometric Decomposition 5
Canneal 2794 Task Parallel 116 Task Parallel 1
Dedup 7125 Pipeline 756 Pipeline 1

Facesim 20275 Task Parallel 190 Task Parallel 1
Ferret 10765 Pipeline 2722 Pipeline 4

Fluidanimate 2784 Geometric Decomposition 867 Geometric Decomposition 9
Swaptions 1095 Task Parallel 189 Task Parallel 6

X264 38546 Pipeline 1647 Task Parallel + Pipeline 17

synthetic benchmark. This can also result in higher number
of iterations to match the synthetic benchmark with the
original one or not be able to match at all. For example,
when we manually force the parallel pattern of Ferret bench-
mark from PARSEC as task parallel instead of pipeline,
we obtain a synthetic benchmark with only 50% overall
similarity score even after 20 iterations. However, our pattern
recognizer recognizes the parallel pattern as pipeline and our
synthesizer generates a synthetic benchmark in 4 iterations
with 82% similarity. This observation explicitly indicates
a relationship between the high level architectural pattern
and other metrics given above. We also show the lines of
code (LC) for the original and the synthetic benchmarks
as well as the number of iterations it takes to generate the
synthetic benchmark. It can be seen that the synthetic is
much smaller and less complex than the original as expected,
hence leading to high simulation speeds. Also, in general,
we generate the synthetic after only a few iterations. X264
took 17 iterations because the synthetic benchmark is large
in terms of lines of code as well as the number of library
function calls. These result in high influence on the metrics
that we are trying to match. Furthermore, X264 has two
patterns that makes it harder to synthesize.

Note that parallel patterns of Rodinia benchmarks are not
known from the literature, hence we did not display these
results. However, our framework finds that Rodinia bench-
marks have only task parallel and geometric decomposition
patterns. This is expected because OpenMP does not support
other patterns. That is, if the data used in OpenMP is private,
then it results in task parallel pattern, otherwise the pattern
is geometric decomposition. We observe that PARSEC and
Rodinia benchmark suites do not contain all parallel patterns
such as recursive data pattern. Also due to compilation and
binary instrumentation problems we do not list results for
all applications in these benchmark suites.

We next compared the similarity of our synthetic
benchmarks with the real benchmarks using both micro-
architecture independent metrics such as Parallel Pattern
type (PL), Thread Communication behavior (TC), Com-
munication/Computation Ratio (CCR) as well as micro-
architecture dependent metrics such as Instructions Per Cy-
cle (IPC), Cache (L1 and L2) Miss Rate (CMR), and Branch

Misprediction Rate (BMR). We calculated the error between
the synthetic benchmark and the original benchmark with
respect to each of these metrics. We also present the average
error for each metric. The first set of experiments are
performed on hardware configuration HW1.

Figure 3 compares the overall similarity score of the
synthetic benchmarks for MRAPI and MCAPI on HW1. The
average similarity score is 87% and the minimum similarity
score is 81% for MRAPI in Swaptions, x264, and Heart
Wall Tracking. The maximum similarity score for MRAPI
is Dedup with 95%. The average similarity score is 86%
and the minimum similarity score is 81% for MCAPI in
Swaptions, Bodytrack, and Heart Wall Tracking. The max-
imum similarity score for MCAPI is 94% for Blacksholes
and Back Propagation. We observe that the synthetic and
the original workloads are similar to each other over 80%,
which was what was set by the user. These scores also show
the high quality of synthetics.

Figure 4 compares Thread Communication score of the
synthetic benchmarks for MRAPI and MCAPI. The average
error is 4% and the maximum error is 17% for MRAPI in
Bodytrack. The average error is 2% and the maximum error
is 10% for MCAPI in Canneal. MRAPI and MCAPI overall
similarity and thread communication scores are close to each
other. They both use the same library platform hence this is
expected. Due to lack of space, unless specified otherwise,
we display results for MRAPI synthetic benchmarks.

Figure 5 compares Communication/Computation between
the synthetic and the real benchmarks for MRAPI. The aver-
age error is 19% and the maximum error is 29% for Kmeans.
We observe that improving one metric can worsen others.
Specifically, for Kmeans, we added a C code block in order
to decrease the cache miss rate, which led to an increase
in Communication/Computation error. Figure 6 compares
IPC between the synthetic and the real benchmarks. The
average error is 16% and the maximum error is 30% for
Particle Filter. Figure 7 compares Cache Miss Rate between
the synthetic and the real benchmarks. The average error
is 16% and the maximum error is 30% for Ferret, and LU
Decomposition. The reason why these synthetic benchmarks
have large error is that the real benchmarks have the smallest
(0.2%) and the highest (33.7%) cache miss rates that result in
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(a) (b)

Figure 3: Overall Similarity Scores of synthetic benchmarks from (a) PARSEC, (b) Rodinia, for MRAPI/MCAPI on HW1

(a) (b)

Figure 4: Thread Communication scores of the synthetic benchmarks from (a) PARSEC, (b) Rodinia, for MRAPI and MCAPI

high loop counts with side effects in our synthetics. Figure 8
compares Branch Misprediction Rate between the synthetic
and the real benchmarks. The average error is 12% and the
maximum error is 29% for X264. Note that the average error
for the above set of metrics is 16% and the maximum error is
30%. This is expected since our goal is to maximize those
high level metrics such as the parallel pattern and thread
communication. Even though these error results may seem
high the overall score is still above 85% on average.

We also performed experiments where we increased the
user defined overall similarity score to 90%. We observed
that the lines of code in the synthetic benchmarks do not
increase however the number of iterations goes up. Also, we
are not able to reach 90% for benchmarks where the micro-
architecture dependent metrics such as cache miss rate is
very low. However, there is a lot of work in the literature
that develops synthetics with these low level metrics and we
plan to exploit those works in the future.

We next compare hardware configuration independence
of our results by running experiments on HW2. All of
the runs on HW2 use the same synthetic benchmarks syn-

thesized from the HW1 configuration, not re-synthesized
benchmarks. Figure 9 compares overall similarity scores
of the synthetic benchmarks for MRAPI and MCAPI on
HW2. The average similarity score is 85% and the minimum
similarity score is 81% for MRAPI in Swaptions, X264,
and Heart Wall Tracking. The maximum similarity score
for MRAPI is 93% for Dedup and Back Propagation. The
average similarity score is 84% and the minimum similarity
score is 81% for MCAPI in Swaptions and Heart Wall
Tracking. The maximum similarity score for MCAPI is 93%
for Back Propagation. Figure 10 compares IPC between the
synthetic and the real benchmarks on HW2. The average
error rate is 16% and the maximum error rate is 30% for
Particle Filter. We observe from HW2 results that the both
the overall similarity scores and IPC scores are independent
of hardware configurations. In other words, we observe
nearly the same scores on both hardware configurations.

VIII. RELATED WORK

There has been prior work on characterizing PARSEC.
In [1], the authors analyze several characteristics such as

7



(a) (b)

Figure 5: Comparison of CCR between the synthetic and the original benchmarks from (a) PARSEC, (b) Rodinia

(a) (b)

Figure 6: Comparison of IPC between the synthetic and the original benchmarks from (a) PARSEC, (b) Rodinia, for MRAPI

(a) (b)

Figure 7: Comparison of CMR between the synthetic and the original benchmarks from (a) PARSEC, (b) Rodinia

data locality, effects of different cache block size, degree of
parallelization and temporal and spatial behavior of commu-
nication. A comparison of PARSEC and Rodinia benchmark
suites is given in [16], using instruction mix, working

set, and sharing behavior characteristics. Hillenbrand et al.
[17] present an architecture independent methodology for
analyzing communication of multithreaded applications. The
communication patterns they use are read-only, read/write,
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(a) (b)

Figure 8: Comparison of BMR between the synthetic and the original benchmarks from (a) PARSEC, (b) Rodinia

(a) (b)

Figure 9: Overall Similarity Scores of synthetic benchmarks from (a) PARSEC, (b) Rodinia, for MRAPI/MCAPI on HW2

(a) (b)

Figure 10: Comparison of IPC between the synthetic and the original benchmarks from (a) PARSEC, (b) Rodinia on HW2

producer/consumer and migratory. Bharathi et al. [18] char-
acterized workflows from different scientific communities.

Benchmark synthesis [19] for performance evaluation has
been previously investigated. Miniature clones of the appli-
cations at assembly level have been developed to minimize

running time of the applications [20], [21], whereas we
generate benchmarks as readable C code. So far, synthetic
benchmarks have mainly been developed for sequential ap-
plications [6]. Although there are some recent multithreaded
applications in [22], [23], these do not target embedded
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systems. Also, the number of the metrics we used is much
smaller, hence we can converge faster. In these works, micro-
architecture independent characteristics have also been used
for characterization but these do not include software archi-
tectural patterns.

Software architecture patterns [24] have long been stud-
ied. Gamma et al. [11] introduced design patterns for object-
oriented programming. Poovey et al. [25] detect parallel
patterns from PARSEC and SPLASH-2. The accuracy of
their technique is 50%, whereas we have a complete match
on patterns in PARSEC. Also, they do not use patterns in
synthesis. Architectural patterns for parallel programs are
given in [10]. Architectural patterns are classified based
on functional parallelism, domain parallelism, or activity
parallelism. The abstraction of the high-level architectural-
skeletons as re-usable components for parallel computational
patterns is given in [26]. Explicit knowledge of parallel
pattern composition semantics has been exploited in pre-
vious work [27] to meet performance and power goals with
dynamically self-optimizing parallel programs. Whereas, we
detect sequential composition of parallel patterns and plan
to detect concurrent composition in the future.

Multicore Association (MCA) [5] is a standard orga-
nization aiming to develop multicore software standards
for heterogeneous embedded multicore systems. Multicore
Communications API (MCAPI) and Multicore Resource API
(MRAPI) are two of the standards developed by MCA.
MRAPI is an API that specifies essential application-level
resource management capabilities needed to coordinate con-
current access to multicore system resources. MRAPI stan-
dard handles memory management and supplies synchro-
nization. MCAPI is a lightweight message passing API that
aims to supply communication and synchronization between
closely distributed embedded systems. MCAPI standard
provides high performance, small memory footprint and
scalable message-passing capabilities.

IX. CONCLUSIONS AND FUTURE WORK

We developed an automated framework capable of gener-
ating infrastructure independent multicore synthetic bench-
marks. We exploit software architectural patterns in char-
acterizing multicore applications. These high level charac-
teristics are essential in capturing the behavior of multicore
applications. Our framework supports any given infrastruc-
ture, that is, both SMP operating system or POSIX API as
well as MCA APIs. Hence, they can run on heterogeneous
embedded multicores. Furthermore, our synthetics are in
C and are readable. We experimentally validate that our
synthetic benchmarks achieve similar characteristics with
the original workloads. In the future, we plan to generate
synthetics from other benchmarks such as NAS as well as
real case studies. Also, we want to expand the hardware
configurations that we experiment on and improve similarity
scores for low level metrics as well.
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