
Solving Computation Slicing
Using Predicate Detection

Neeraj Mittal, Member, IEEE Computer Society, Alper Sen, Member, IEEE, and

Vijay K. Garg, Fellow, IEEE

Abstract—Given a distributed computation and a global predicate, predicate detection involves determining whether there exists

at least one consistent cut (or global state) of the computation that satisfies the predicate. On the other hand, computation slicing is

concerned with computing the smallest subcomputation (with the least number of consistent cuts) that contains all consistent cuts of

the computation satisfying the predicate. In this paper, we investigate the relationship between predicate detection and computation

slicing and show that the two problems are actually equivalent. Specifically, given an algorithm to detect a predicate b in a computation

C, we derive an algorithm to compute the slice of C with respect to b. The time complexity of the (derived) slicing algorithm is OðnjEjT Þ,
where n is the number of processes, E is the set of events, and OðT Þ is the time complexity of the detection algorithm. We discuss how

the “equivalence” result of this paper can be utilized to derive a faster algorithm for solving the general predicate detection problem in

many cases. Slicing algorithms described in our earlier papers are all offline in nature. In this paper, we also present two online

algorithms for computing the slice. The first algorithm can be used to compute the slice for a general predicate. Its amortized time

complexity is Oðnðcþ nÞT Þ per event, where c is the average concurrency in the computation and OðT Þ is the time complexity of the

detection algorithm. The second algorithm can be used to compute the slice for a regular predicate. Its amortized time complexity is

only Oðn2Þ per event.

Index Terms—Program trace analysis, predicate detection, computation slicing, testing and debugging.

Ç

1 INTRODUCTION

WRITING correct distributed programs is a nontrivial
task. Not surprisingly, distributed systems are

particularly vulnerable to software faults. Testing and
debugging is an effective way of improving the depend-
ability of software prior to its deployment. Software bugs
that persist after extensive testing and debugging have to
be tolerated at runtime to ensure that the system continues
to operate properly. Detecting a fault (e.g., violation of a
safety property such as mutual exclusion) in the execution
of a distributed system is a fundamental problem that
arises during testing and debugging, as well as software
fault tolerance.

In this paper, we focus on detecting those faults that can
be expressed as predicates on variables of processes. For
example, “no process has the token” can be written as
no token1 ^ no token2 ^ � � � ^ no tokenn, where no tokeni de-
notes the absence of the token on process pi. This gives rise
to the predicate detection problem, which involves determin-
ing whether there exists a consistent cut (or global state) of a
distributed computation (distributed program execution)
that satisfies a given global predicate (this problem is also

referred to as detecting a predicate under the possibly
modality in the literature). For example, a programmer
debugging an implementation of a distributed mutual
exclusion algorithm may want to test whether a given
execution of the system contains a global state for which
two or more processes are in their critical sections
simultaneously.

Detecting a global predicate in a distributed computation
is a hard problem in general [2], [3], [4]. The reason is the
combinatorial explosion in the number of possible consis-
tent cuts. Finding a consistent cut that satisfies the given
predicate may therefore require looking at a large number
of consistent cuts. In fact, we prove in [4] that detecting a
predicate in 2-conjunctive normal form (2-CNF), even when
no two clauses contain variables from the same process, is
an NP-complete problem in general. An example of such a
predicate is ðx1 _ x2Þ ^ ðx3 _ x4Þ ^ � � � ^ ðxn�1 _ xnÞ, where
each xi is a Boolean variable on process pi. Many algorithms
for predicate detection exploit the structure of the predicate
to detect it efficiently in a given computation (hereafter, we
say that an algorithm is efficient if its (worst case) time
complexity is polynomial in input size). Polynomial-time
detection algorithms have been developed for several useful
classes of predicates, such as conjunctive, linear, and
semilinear predicates [3] and relational predicates [5].

We introduced the notion of computation slice in [6].
Intuitively, slice is a concise representation of consistent cuts
satisfying a certain condition. The slice of a computation
with respect to a predicate is a subcomputation such that 1)
it contains all consistent cuts of the computation for which
the predicate evaluates to true and 2) of all the subcomputa-
tions that satisfy 1), it has the least number of consistent
cuts. Suppose the number of consistent cuts of the slice is

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007 1

. N. Mittal is with the Department of Computer Science, The University of
Texas at Dallas, Richardson, TX 75083. E-mail: neerajm@utdallas.edu.

. A. Sen is with Freescale Semiconductor Inc., Austin, TX 78729.
E-mail: alper.sen@freescale.com.

. V.K. Garg is with the Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX 78712.
E-mail: garg@ece.utexas.edu.

Manuscript received 28 Sept. 2005; revised 18 Oct. 2006; accepted 24 Jan.
2007; published online 9 Feb. 2007.
Recommended for acceptance by R. Eigenmann.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0416-0905.
Digital Object Identifier no. 10.1109/TPDS.2007.1077.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

much smaller than those of the computation. Then, clearly,
in order to detect a fault, rather than searching the state
space of the computation, it is more effective to search the
state space of the slice. We demonstrate this with the help of
an example.

Suppose that we want to detect the predicate ðx1 �
1Þ ^ ðx3 � 3Þ ^ ðx1 � x2 þ x3 < 5Þ in the computation shown
in Fig. 1a. The computation consists of three processes p1,
p2, and p3 hosting integer variables x1, x2, and x3,
respectively. The events are represented by circles. Each
event is labeled with the value of the respective variable
immediately after the event is executed. For example, the
value of variable x1 immediately after executing the event c
is 2. The first event on each process (namely, a on p1, q on p2,
and u on p3) “initializes” the state of the process and every
consistent cut contains these initial events. Without compu-
tation slicing, we are forced to examine all consistent cuts of
the computation, 30 in total, to ascertain whether some
consistent cut satisfies the predicate. Alternatively, we can
compute the slice of the computation with respect to ðx1 �
1Þ ^ ðx3 � 3Þ as follows. Immediately after executing b, the
value of x1 becomes �1, which does not satisfy x1 � 1. To
reach a consistent cut satisfying x1 � 1, c has to be executed.
In other words, any consistent cut in which only b has been
executed but not c is of no interest to us and can be ignored.
The slice is shown in Fig. 1b. It is modeled by a partial order
on a set of metaevents, and each metaevent consists of one or
more “primitive” events. A consistent cut of the slice either
contains all the events in a metaevent or none of them
(intuitively, any consistent cut of the computation that
contains only a partial set of events in a metaevent is of no
relevance to us). Moreover, a metaevent “belongs” to a
consistent cut only if all its incoming neighbors are also
contained in the cut. We can now restrict our search to the
consistent cuts of the slice, which are only six in number,
namely,

fa; q; r; u; vg; fa; q; r; u; v; b; cg; fa; q; r; u; v; wg;
fa; q; r; u; v; b; c; wg; fa; q; r; u; v; w; sg;
and fa; q; r; u; v; b; c; w; sg:

The slice has much fewer consistent cuts than the
computation itself—exponentially smaller in many cases
—resulting in substantial savings.

The notion of a computation slice is similar to the notion
of a program slice, which was introduced by Weiser in [7] to
facilitate program debugging. A program slice consists of all
those statements of a program that may potentially affect the
value of certain variables at some point of interest. Program
slicing has been shown to be useful in program debugging,

testing, program understanding, and software maintenance
[8], [9]. In spite of the apparent similarities, the two notions of
slicing are quite different from each other. First, program
slicing is applicable to both sequential and distributed
programs. Computation slicing is applicable to (traces of)
distributed programs only. Second, program slicing involves
conducting data-flow analysis of the program [10], whereas
computation slicing involves computing join-irreducible
elements of a distributive lattice [6]. Third, program slicing
is traditionally variable-based (statements that affect the
value of a variable), whereas computation slicing is pre-
dicate-based (consistent cuts that satisfy a predicate). In fact,
the two techniques for testing and debugging are orthogonal
to each other and can be used in conjunction. For instance,
to compute a program slice, the programmer needs to
determine a point at which the program behaves in a faulty
manner (that is, there is a mismatch between actual and
expected values). For a sequential program, determining a
point in an execution where a fault has occurred is a
relatively easy problem. However, for a distributed pro-
gram, as explained earlier, determining even whether a fault
has occurred in an execution is an intractable problem in
general. In this paper, we show that computation slicing can
be used for reducing the state space to be analyzed to
determine whether and where a fault has occurred. Recently,
Li et al. [11] have extended the notion of program slicing,
which is traditionally variable-based, to include predicate-
based program slicing.

The predicate detection problem is only concerned with
determining whether there exists at least one consistent cut
of the computation that satisfies the given predicate.
Computation slicing, on the other hand, is concerned with
computing (a succinct representation of) all consistent cuts
of the computation for which the given predicate evaluates
to true. Clearly, computing the slice for a predicate is at
least as hard as detecting the predicate in the sense that the
detection problem can be easily solved, given the slice for
the predicate (it suffices to test for the emptiness of the
slice). In this paper, we show, somewhat surprisingly, that
the two problems are actually equivalent by proving the
converse; that is, computing the slice for a predicate is no harder
than detecting the predicate. Specifically, given an algorithm A
for detecting a predicate b, there exists an algorithm B for
computing the slice for b such that the time complexity of B
is at most OðnjEjÞ times the time complexity of A, where n
is the number of processes and E is the set of events. As a
corollary, it can be derived that there exists a polynomial-
time algorithm for detecting a predicate if and only if there
exists a polynomial-time algorithm for computing its slice.
Using this result, we can now compute the slice efficiently
for a larger class of predicates. Note that, since both
predicate detection and computation slicing are NP-com-
plete problems in general, they are already equivalent by
using Cook’s transformation [12]. We show that this notion
of equivalence (based on Cook’s transformation) is weaker
than our notion of equivalence and cannot be used to derive
efficient slicing algorithms in general.

At first glance, it may seem that we are not any better off
than we were before. After all, if predicate detection is
equivalent to computation slicing, then how can slicing be
used to speed up predicate detection? The following

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Fig. 1. (a) A computation and (b) its slice with respect to

ðx1 � 1Þ ^ ðx3 � 3Þ.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

example illustrates that slicing can indeed facilitate pre-
dicate detection. Suppose that we want to detect a predicate
b ¼ b1 ^ b2 in a computation C. Further, assume that b1 can
be detected in an efficient manner, but the same does not
apply for b. To detect b, without computation slicing, we are
forced to search the state space of the computation C to
locate a consistent cut that satisfies b, if it exists. None of the
techniques that we are aware of can take advantage of the
fact that b1 can be detected efficiently when detecting b.
Using computation slicing and the equivalence result in this
paper, we can potentially throw away an exponential
number of consistent cuts by spending only a polynomial
amount of time by first computing the slice S1 of the
computation C with respect to b1. To detect b, it is sufficient
to search the state space of S1 instead of the state space of C,
resulting in an exponential speedup overall. If we can also
detect b2 efficiently, then we can further use it to our
advantage as follows: We compute the slice S2 of the
computation C with respect to the predicate b2 as well.
Using the slice composition algorithms discussed in our
earlier papers [6], [13], we can efficiently compute the
slice S that contains only those consistent cuts that are
common to both S1 and S2. Now, to detect b, clearly, it is
sufficient to search the state space of the slice S, which may
be much smaller than that of S1, as well as S2. Intuitively, by
being able to compute slices efficiently for “simple”
predicates (b1 and b2 in our example), we can potentially
obtain a significant speedup when detecting more “com-
plex” predicates (b in our example) composed from
“simple” predicates using conjunction [6], disjunction [6],
and temporal logic operators [13]. Thus, the equivalence
result in this paper aids in the detection of “complex”
predicates by expanding the class of “simple” predicates for
which the slice can be computed in polynomial time, resulting
in exponential savings overall in general. Our experimental
results in [6] indicate that slicing can indeed lead to an
exponential improvement over existing techniques for
predicate detection in terms of time and space. Note that
other techniques for reducing the time complexity [14] and/
or the space complexity [15] of predicate detection are
orthogonal to slicing and, as such, can be used in
conjunction with it.

The algorithms described in our earlier papers [6], [13],
[16] for computing a slice are all offline in nature: They
assume that the entire set of events is available a priori.
Although this is quite adequate for applications such as
testing and debugging, for other applications such as
software fault tolerance, it is desirable that the slice be
computed incrementally in an online manner: As and when
a new event is generated, the current slice is updated to
reflect its arrival. The reason is that, for software fault
tolerance, it is important to detect the fault while the system
is executing as early as possible before it can cause any
severe damage. At the same time, whenever an event
arrives, the cost of incrementally updating the slice should
be less than the cost of recomputing the slice from scratch
by using an offline algorithm.

In this paper, we also give two efficient algorithms for
computing the slice in an incremental manner. The first
algorithm can be used to compute the slice with respect to a
general predicate, given an efficient (offline) algorithm to
detect the predicate. Its amortized time complexity for

updating the slice on the arrival of a new event is
Oðnðcþ nÞT Þ, where c is the average concurrency in the
computation and OðT Þ is the time complexity of the
detection algorithm. We define average concurrency in a
computation to be the ratio of the number of concurrent
pairs of events (including reflexive pairs) to the number of
events. The average concurrency c in a computation lies
between 1 and jEj, where E denotes the set of events in the
computation. In practice, however, due to interprocess
communication, we expect c to be much smaller than jEj.
The second algorithm can be used to compute the slice for a
special class of predicates, namely, regular predicates
(defined later). Its amortized time complexity for updating
the slice is only Oðn2Þ and is therefore much more efficient
than the first algorithm (note that, unlike in the case of the
first algorithm, there is no term due to the time complexity
of the detection algorithm).

To summarize, our contributions in this paper are given
as follows: First, we prove that the problem of detecting a
predicate in a computation is equivalent to the problem of
computing the slice of the computation with respect to the
predicate. Hence, we extend the class of predicates for
which we can devise efficient slicing algorithms. Second,
we give two efficient algorithms for computing the slice in
an online manner.

In [17], Kshemkalyani described a unifying framework
for viewing a distributed computation at multiple levels of
atomicity. In particular, Kshemkalyani defined an execution
of a system in terms of certain elementary events. System
executions at a coarser level of atomicity are then hier-
archically composed using system executions at finer levels
of atomicity by grouping multiple elementary events
together into a single compound event. However, the system
executions considered by Kshemkalyani are such that either
communication events for the same message are grouped
together or events on the same process are grouped
together. In contrast, in a computation slice, events belong-
ing to multiple messages and/or processes can be grouped
together into a single metaevent depending on the pre-
dicate. Furthermore, our focus is on developing efficient
algorithms for automatically computing the slice of a
computation for a given predicate.

The paper is organized as follows: Section 2 describes
the system model and notation used in this paper. In
Section 3, we discuss the background on computation
slicing necessary to understand the rest of the paper. We
establish the equivalence of the two problems in Section 4.
We also discuss its importance to solving the general
predicate detection problem, which is NP-complete. The
online algorithms for slicing are described in Section 5.
Finally, Section 6 concludes the paper. Due to space
constraints, some of the proofs have been omitted and
can be found in the Appendix, which is available on the
Computer Society Digital Library at http://computer.org/
tpds/archives.htm.

2 MODEL AND NOTATION

We assume a loosely coupled system consisting of n
processes, denoted by P ¼ fp1; p2; . . . ; png, communicating
via asynchronous messages. We do not assume any shared
memory or global clock. We assume that the system is

MITTAL ET AL.: SOLVING COMPUTATION SLICING USING PREDICATE DETECTION 3

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

reliable in the sense that processes do not fail and channels
do not lose messages.

Processes change their states by executing events. Events
on the same process are totally ordered. However, events
on different processes are only partially ordered. Therefore,
traditionally, a distributed computation is modeled as a
partial order on a set of events [18]. In this paper, we relax
the restriction that the order of events must be a partial
order. More precisely, we use directed graphs to model
distributed computations and slices. Directed graphs allow
us to handle both of them in a uniform and convenient
manner.

Given a directed graph G, let VðGÞ and EðGÞ denote the
set of its vertices and edges, respectively. A subset of
vertices of a directed graph forms a consistent cut if the
subset contains a vertex only if it also contains all its
incoming neighbors. Formally,

C is a consistent cut of G ¼�

h8e; f 2 VðGÞ : ðe; fÞ 2 EðGÞ : f 2 C) e 2 Ci:

Note that a consistent cut contains either all vertices in a
strongly connected component or none of them. Let CðGÞ
denote the set of consistent cuts of a directed graph G.
Observe that the empty set ; and the set of vertices VðGÞ
trivially belong to CðGÞ. We call them trivial consistent cuts.
Also, let PðGÞ denote the set of pairs of vertices ðu; vÞ such
that there is a path from u to v in G. We assume that every
vertex has a path to itself.

A distributed computation (or simply a computation) hE;!i
is a directed graph with vertices as the set of events E and
edges as !. To limit our attention to only those consistent
cuts that can actually occur during an execution, we assume
that PðhE;!iÞ contains at least the Lamport’s happened-
before relation [18]. Lamport’s happened-before relation is
defined as the smallest transitive relation satisfying the
following properties: 1) if events e and f occur on the same
process and e occurred before f in real time, then e
happened before f , and 2) if events e and f correspond to
send and receive events, respectively, of the same message,
then e happened before f .

A distributed computation in our model can contain
cycles. This is because, whereas a computation in the
traditional (happened-before) model captures the observable
order of execution of events, a computation in our model
captures the set of possible consistent cuts. Intuitively, each
strongly connected component of a computation constitutes
a metaevent, and all events in a metaevent are executed
atomically.

Let procðeÞ denote the process on which event e occurs.

The predecessor and successor events of e on procðeÞ are

denoted by predðeÞ and succðeÞ, respectively, if they exist.

When two events e and f occur on the same process and e

occured before f in real time, then we write e!P f and let

!P be the reflexive closure of !P . We assume the presence

of fictitious initial and final events on each process. The

initial event on process pi, denoted by ?i , occurs before

any other event on pi. Likewise, the final event on

process pi, denoted by >i, occurs after all other events on

pi. We use final events only to ease the exposition of the

slicing algorithms given in this paper. It does not imply that

processes have to synchronize with each other at the end of

the computation. For convenience, let ? and > denote the

set of all initial events and final events, respectively. We

assume that all initial events belong to the same strongly

connected component. Similarly, all final events belong to

the same strongly connected component. This ensures that

any nontrivial consistent cut will contain all initial events

and none of the final events. Thus, every consistent cut of a

computation in the traditional model is a nontrivial

consistent cut of the corresponding computation in our

model and vice versa. Only nontrivial consistent cuts are of

interest to us. The frontier of a cut C, denoted by

frontierðCÞ, is defined as the set of those events in C

whose successors are not in C. Formally,

frontierðCÞ ¼� f e 2 C j e 62 >) succðeÞ 62 C g:

A global predicate (or simply a predicate) is a Boolean-
valued function on variables of processes. Given a con-
sistent cut, a predicate is evaluated on the state resulting
after executing all events in the cut. If a predicate b

evaluates to true for a consistent cut C, then we say that “C
satisfies b.” We leave the predicate undefined for the trivial
consistent cuts. A global predicate is local if it depends on
the variables of a single process. In this paper, we only
consider state-based nontemporal global predicates.

Example 1. Consider the computation depicted in Fig. 2a. It
has three processes, namely, p1, p2, and p3. The events e1,
f1, and g1 are the initial events, and the events e4, f4, and
g4 are the final events of the computation. The cut A ¼
fe1; e2; e3; e4; f1; g1g is not consistent because g4 ! e4 and
e4 2 A, but g4 62 A. The cut fe1; e2; f1; f2; g1g is consistent.
The events e1, f1, and g1 belong to the same strongly
connected component or metaevent. Processes p1, p2, and
p3 host integer variables x, y, and z, respectively. The
predicate x � 1 is local, whereas the predicate xþ y � z
is not. The consistent cut fe1; f1; g1g satisfies xþ y � z,
but the consistent cut fe1; e2; f1; f2; g1g does not. tu

3 BACKGROUND

In this section, we briefly discuss the concepts pertaining to
computation slicing, which are required to understand this
paper. For a detailed description of computation slicing, the
reader is referred to [6].

3.1 Computation Slice

Informally, a computation slice (or simply a slice) is a concise
representation of all those consistent cuts of the computa-
tion that satisfy a given predicate. For a computation hE;!i
and a predicate b, we use CbðEÞ to denote the subset of those
consistent cuts of CðEÞ that satisfy b. Let I bðEÞ denote the
set of all graphs on vertices E such that, for every graph
G 2 I bðEÞ, CbðEÞ � CðGÞ � CðEÞ. We now define computa-
tion slice formally.

Definition 1 (Slice [6]). A slice of a computation with respect to
a predicate is a directed graph with the least number of
consistent cuts such that the graph contains all consistent cuts

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

of the computation for which the predicate evaluates to true.
Formally, given a computation hE;!i and a predicate b,

S is a slice of hE;!i for b¼� h8ðGÞ :G 2 I bðEÞ : jCðSÞj � jCðGÞji:

We use sliceðhE;!i; bÞ to denote a slice of hE;!i with
respect to b. Note that hE;!i ¼ sliceðhE;!i; trueÞ. There-
fore, a computation can be viewed as a slice. Likewise, a
slice can be viewed as a computation at some level of
abstraction [17]. We show in [6] that the slice of a
computation is uniquely defined for every predicate in the
sense that, if two graphs S and T constitute a slice of hE;!i
for b (as per the definition), then CðSÞ ¼ CðT Þ. Moreover, S
and T have identical metaevents.

Example 2. All consistent cuts of the computation in Fig. 2a
that satisfy the predicate xþ y � z have been shaded in
Fig. 2b. Every consistent cut is labeled with the number
of events that have to be executed on each process to
reach the cut. Furthermore, there is an edge from one
consistent cut to another if the latter can be reached from
the former by executing exactly one event. The slice of the
computation with respect to the predicate xþ y � z is
shown in Fig. 2c. It can be verified that every consistent
cut of the computation that satisfies xþ y � z is indeed a
consistent cut of the slice. The alternative representation
of the slice as a partial order on a set of metaevents is
shown in Fig. 2d. Basically, for every strongly connected

component in a graph representation of a slice (for
example, Fig. 2c), there is a metaevent in the partially
ordered set (poset) representation of the slice (for
example, Fig. 2d) and vice versa. tu
Every slice derived from the computation hE;!i has the

trivial consistent cuts (; and E) among its set of consistent
cuts. A slice is empty if it has no nontrivial consistent cuts
[6]. In the rest of the paper, unless otherwise stated, a
consistent cut refers to a nontrivial consistent cut. Efficient
algorithms for computing the slice for some useful classes of
predicates can be found in our earlier papers [6], [16].

3.2 Skeletal Representation of a Slice

In general, there can be multiple directed graphs with the
same set of consistent cuts. Therefore, more than one graph
may constitute a valid representation of the given slice. We
show in [6] that all such graphs (which have identical sets of
consistent cuts) have the same transitive closure. The proof
depends on the following lemma:

Lemma 1 ([6]). Consider directed graphs G and H on the same
set of vertices. Then, PðGÞ � PðHÞ � CðGÞ 	 CðHÞ.

Clearly, the lemma in turn implies the following:

Lemma 2 ([6]). Consider directed graphs G and H on the same
set of vertices. Then, PðGÞ ¼ PðHÞ � CðGÞ ¼ CðHÞ.

MITTAL ET AL.: SOLVING COMPUTATION SLICING USING PREDICATE DETECTION 5

Fig. 2. (a) A computation. (b) The set of its consistent cuts. (c) The slice of the computation with respect to the predicate xþ y � z represented as a
directed graph on the set of events. (d) The same slice represented as a partial order on the set of metaevents.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

In other words, two directed graphs G and H on

identical sets of vertices are cut equivalent (that is,

CðGÞ ¼ CðHÞ) if and only if they are path equivalent (that is,

PðGÞ ¼ PðHÞ). Typically, the time complexity of an algo-

rithm involving slices depends on the size of the graph used

to represent a slice: The fewer the number of edges in the

graph, the more efficient the slicing algorithm becomes.

Therefore, for efficiency reasons, we consider a special

directed graph for capturing a slice, called the skeletal

representation of a slice [6]. This graph has OðjEjÞ vertices

and only OðnjEjÞ edges, where n is the number of processes

and E is the set of events, and, hence, generally leads to

more efficient algorithms involving slices. Let FbðeÞ be a

vector of events, where the ith entry in the vector denotes

the earliest event on process pi reachable from e in the slice

with respect to predicate b. The skeletal representation of a

slice has the following edges:

1. For each event e 62 >, there is an edge from e to
succðeÞ.

2. For each event e and process pi, there is an edge from
e to FbðeÞ½i
.

Example 3. Consider the slice in Fig. 2c, with b ¼� xþ y � z.
In the example, Fbðe1Þ ¼ ½e1; f1; g1
, Fbðe2Þ ¼ ½e2; f2; g3
,
and Fbðf2Þ ¼ ½e3; f2; g3
. tu

We now prove the equivalence of predicate detection
and computation slicing.

4 THE TWO PROBLEMS

In this section, we study the relationship between two
problems:

. Containing Cut (CONTC) (Predicate Detection).
Given a directed graph G and a predicate b, does
there exist a consistent cut of G that satisfies b?

. Computing Slice (COMPS). Given a directed graph
G and a predicate b, compute the slice of G with
respect to b.

We say that CONTC and COMPS are equivalent if the
following holds for every predicate b: Given an algorithm U
for solving CONTCðG; bÞ for all G, we can derive an
algorithm V for solving COMPSðG; bÞ for all G such that the
time complexity of V is within a polynomial factor of the
time complexity of U and vice versa.

Note that, since both CONTC and COMPS are NP-
complete problems in general, they are equivalent in the
sense that, given an algorithm U to solve CONTCðG; bÞ for
all G and b, we can derive an algorithm V to solve
COMPSðG; bÞ for all G and b such that the time complexity
of V is within a polynomial factor of the time complexity of
U and vice versa.

It can be easily verified that our notion of equivalence is
stronger than the notion of equivalence between NP-
complete problems. Specifically, our notion of equivalence
“fixes” the predicate b, whereas the one that exists between
any two NP-complete problems does not. Therefore, given a
polynomial-time algorithm for detecting b, the “standard”

transformation that exists between any two NP-complete
problems cannot be used in general to derive a polynomial-
time algorithm for computing the slice for b (unless P ¼ NP).

We say that an algorithm is efficient if its (worst case)

time complexity is polynomial in input size. Also, a

predicate is efficiently detectable if there exists an efficient

algorithm to detect the predicate in a computation.

4.1 Equivalence of COMPS and CONTC

From the definition of slice, clearly, it follows that the
slice for a directed graph with respect to a predicate is
nonempty if and only if the graph contains a consistent
cut that satisfies the predicate. Formally, CONTCðG; bÞ �
sliceðG; bÞ is nonempty.

Therefore, COMPSðG; bÞ is at least as hard as
CONTCðG; bÞ. We now prove the converse. Consider a
directed graph G and a predicate b. Now, G and sliceðG; bÞ
are directed graphs on identical sets of vertices. However,
more pairs of vertices are “connected” in sliceðG; bÞ than in
G. In the next lemma, we give a complete characterization
of the pairs of vertices that are “connected” in sliceðG; bÞ.
Let G½e; f
 denote the directed graph obtained by adding an
edge from e to f in G.

Lemma 3. There is a path from an event e to an event f in
sliceðG; bÞ if and only if no consistent cut in CðGÞ n CðG½e; f
Þ
satisfies b.

Proof. We have

there is a path from e to f in sliceðG; bÞ
� {definition of sliceðG; bÞ}

(there is a path from e to f in sliceðG; bÞ)
^ ðCðsliceðG; bÞÞ � CðGÞÞ

� {from Lemma 1 CðsliceðG; bÞÞ � CðGÞ � PðGÞ �
PðsliceðG; bÞÞ}
(there is a path from e to f in sliceðG; bÞ)
^ ðPðGÞ � PðsliceðG; bÞÞÞ

� {definition of G½e; f
}
PðG½e; f
Þ � PðsliceðG; bÞÞ

� {from Lemma 1}

CðsliceðG; bÞÞ � CðG½e; f
Þ
� {CðsliceðG; bÞÞ contains all consistent cuts of CðGÞ

satisfying b}

no consistent cut in CðGÞ n CðG½e; f
Þ satisfies b

This establishes the lemma. tu

Lemma 3 is useful, provided that it is possible to
ascertain efficiently whether some consistent cut in CðGÞ n
CðG½e; f
Þ satisfies b. Let bG½e; f
 denote the directed graph
obtained by adding an edge from f to ?1 and an edge from
>1 to e. Intuitively, bG½e; f
 consists of all those consistent
cuts of G that contain f but not e. It suffices to show the
following:

Lemma 4. Cð bG½e; f
Þ n f;; Eg ¼ CðGÞ n CðG½e; f
Þ.

Combining the two lemmas, we obtain the following:

Theorem 5. There is a path from an event e to an event f in
sliceðG; bÞ if and only if no consistent cut in bG½e; f
 satisfies b;
that is, CONTCð bG½e; f
; bÞ evaluates to false.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Fig. 3 depicts the algorithm for solving COMPS using an

algorithm that solves CONTC. The algorithm constructs a

directed graph that is transitively closed.

Theorem 6. The time complexity of the algorithm for solving

COMPS described in Fig. 3 is OðjEj2T Þ, where E is the set

of events and OðT Þ is the worst case time complexity of

solving CONTC.

Proof. The initialization at line 1 requires OðjEj2Þ time,
where E is the set of events, because G has jEj vertices
and, therefore, OðjEj2Þ edges. The for loop at line 2
executes jEj2 times. Each iteration of the for loop requires
solving an instance of CONTC. The construction of the
particular instance of CONTC involves adding two
edges to G and, therefore, can be done in Oð1Þ time.
Depending on the result of the if statement at line 3, an
edge may be required to be added to K at line 4, which
can be done in Oð1Þ time. At the end of the iteration, the
two edges that were added to G have to be deleted. The
deletion can be accomplished in Oð1Þ time by maintain-
ing pointers to the two edges when using adjacency list
representation. The overall time complexity of the for
loop is therefore given by OðjEj2T Þ, which is also the
time complexity of the algorithm. tu
In order to reduce the time complexity of the algorithm,

we construct the skeletal representation of a slice, as defined

in Section 3.2. It is easy to verify that Fb is order preserving,

which means that, if e! f , then FbðeÞ½i
 !
P

FbðfÞ½i
 for
each process pi [6]. Consequently, it is possible to compute

FbðeÞ½i
 for all events e on a single process by scanning the

computation once from left to right. The algorithm is

presented in Fig. 4. The next theorem establishes that the
time complexity of the algorithm is OðnjEjT Þ.
Theorem 7. The time complexity of the algorithm for computing
FbðeÞ for all events e in Fig. 4 is OðnjEjT Þ, where n is the
number of processes, E is the set of events, and OðT Þ is the
worst case time complexity of solving CONTC.

Proof. Note that the while loop at line 5 terminates in at

most jEij þ jExj iterations, where Ei and Ex denote the

set of events on processes pi and px, respectively. This is

because, between two consecutive iterations of the while

loop, either e or f advances to its next event. Also, the

directed graph bG½e; f
 when f ¼ >i has an edge from the

final event >i to the initial event ?1, implying thatbG½e;>i
 has no nontrivial consistent cut. Therefore,

CONTCð bG½e; f
; bÞ when f ¼ >i will trivially evaluate

to false. This gives a time complexity of OððjEij þ
jExjÞ T Þ for the inner for loop at line 4. Hence, summing

over all possible values for i, the time complexity of the

outer for loop at line 2 is OððjEj þ njExjÞ T Þ. This implies

that the overall time complexity of computing FbðeÞ for

all events e on all processes is OðnjEjT Þ. tu
Recall that, using Fb, the graph corresponding to the

skeletal representation of the slice can be easily constructed
in OðnjEjÞ time [6].

4.2 Discussion

Predicate detection is an important problem in distributed

systems. Efficient detection algorithms have been devel-

oped for several useful classes of predicates. Examples

include stable predicates [19], observer-independent pre-

dicates [20], conjunctive predicates [3], linear predicates [3],

relational predicates [5], and their complements, such as
costable predicates and colinear predicates [21]. In our

earlier paper [6], we gave efficient algorithms for comput-

ing the slice for regular predicates, coregular predicates,

linear predicates, and k-local predicates for constant k.

Using the result of this paper, it is now possible to compute

the slice efficiently for many more classes of predicates

including stable and costable predicates, observer-indepen-

dent predicates, colinear predicates, and relational predi-

cates. For instance, an observer-independent predicate

can be detected in OðnjEjÞ time by using the algorithm

MITTAL ET AL.: SOLVING COMPUTATION SLICING USING PREDICATE DETECTION 7

Fig. 3. An algorithm to solve COMPS by using an algorithm to solve

CONTC.

Fig. 4. An algorithm to compute FbðeÞ for all events e.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

presented in [20]. This implies that its slice can be
computed in Oðn2jEj2Þ time by using the algorithm given
in Section 4.1.

As discussed in Section 1, by being able to compute slices

efficiently for a larger class of predicates, namely, the class

of all efficiently detectable predicates (for example, x1 _ x2

and x3 _ x4), we can potentially obtain a significant speedup

when detecting more “complex” predicates composed from

efficiently detectable predicates by using conjunction [6],

disjunction [6], and temporal logic operators [13] (for

example, ðx1 _ x2Þ ^ ðx3 _ x4Þ). This is achieved by first

computing slices for efficiently detectable predicates and

then composing these slices together to obtain a slice whose

state space is likely to be much smaller than that of the

computation. As a virtue of the equivalence result proved in

Section 4.1, the first step, which involves computing slices,

is guaranteed to have polynomial-time complexity. Note

that the slice obtained after the two steps described above is

in general not the exact slice for the predicate to be detected,

but only an “approximate” slice [6]. The slice is “approx-

imate” in the sense that it may contain consistent cuts not

present in the actual slice [6]. Therefore, to detect the

predicate, it is not enough to test for the emptiness of the

slice, but rather, the entire state space of the slice has to be

searched.

5 ONLINE ALGORITHMS FOR COMPUTING THE

SLICE

In this section, we describe two efficient algorithms for

computing the slice in an online manner. First, we describe

an algorithm to compute the slice for a general predicate by

using an algorithm to detect the predicate. Basically, the

online slicing algorithm is derived from the offline slicing

algorithm described in Section 4.1. Therefore, as in the case

of the offline algorithm, the online slicing algorithm is

efficient whenever the detection algorithm is efficient. Next,

we describe an online algorithm for computing the slice for

a special class of predicates, namely, regular predicates,

which is much more efficient than the first algorithm.

Before describing the algorithms, we state our assump-

tions and introduce some notation. We assume that a newly

arrived event is “enabled” in the sense that all events that

happened before it have already arrived and been incorpo-

rated into the slice. This can be achieved by buffering the

new event (in case that it is not “enabled”) and processing it

later when it becomes “enabled.” Whether an event is

“enabled” can be determined efficiently by examining its

Fidge/Mattern vector time stamp [22], [23].

Initially, the computation consists of only the fictitious

(initial and final) events. Let the kth arriving event, with

k � 1, be denoted by eðkÞ and let GðkÞ denote the resulting

computation. Sometimes, we represent the computation

more explicitly by using hEðkÞ;!i whenever necessary,

where EðkÞ denotes the set of events and ! denotes the

transitive closure of the set of edges in GðkÞ. Note that! on

the set of nonfictitious events defines the Lamport’s

happened-before relation.

Clearly, a nontrivial consistent cut of Gðk�1Þ is a

nontrivial consistent cut of GðkÞ as well. We now present

an online algorithm for computing the slice for a general

predicate.

5.1 Computing the Slice for a General Predicate

Whenever a new event arrives, our online algorithm

computes the new slice by updating FbðeÞ for each

event e. We use F
ðkÞ
b to refer to the value of Fb for the

computation GðkÞ. Now, in order to incorporate an event

into the slice, we may have to recompute the entry FbðeÞ½i

for each event e and every process pi. First, we show that

the new value for an entry cannot move “backward” in the

space-time diagram. Let pik denote the process on which the

event eðkÞ occurs.

Definition 2 (Critical Event). An event e 2 Eðk�1Þ is said to be

a critical event (with respect to eðkÞ) if F
ðk�1Þ
b ðeÞ½ik
 ¼ >ik .

Intuitively, no nonfinal event on pik is reachable from a

critical event e in sliceðGðk�1Þ; bÞ. This may change, however,

on the arrival of eðkÞ because eðkÞ is an event on pik . Let

criticalðeðkÞÞ denote the set of all events in Eðk�1Þ that are

critical with respect to eðkÞ. We have,

Lemma 8. Given an event e 2 Eðk�1Þ and a process pi,

ði 6¼ ikÞ _ ðe =2 criticalðeðkÞÞÞ) F
ðk�1Þ
b ðeÞ½i
 !P F

ðkÞ
b ðeÞ½i
; ð8:1Þ

ði 6¼ ikÞ ^ ðe 2 criticalðeðkÞÞÞ) F
ðkÞ
b ðeÞ½i
 2 feðkÞ;>ig: ð8:2Þ

Lemma 8 may greatly restrict the amount of work that

needs to be done in order to recompute Fb. In particular, to

determine the new value of FbðeÞ½i
 for an event e and a

process pi, rather than starting the scan from ?i, we can

instead start the scan from the old value of FbðeÞ½i
. The next

lemma specifies the conditions under which either FbðeÞ½i

will not change or can be determined cheaply.

Lemma 9. Given an event e 2 Eðk�1Þ and a process pi

ðe! eðkÞÞ ^
�
ði 6¼ ikÞ _ ðe =2 criticalðeðkÞÞÞ

�
) F

ðk�1Þ
b ðeÞ½i
 ¼ F ðkÞb ðeÞ½i
;

ð9:1Þ

ðe! eðkÞÞ ^
�
ði ¼ ikÞ ^ ðe 2 criticalðeðkÞÞÞ

�
) F

ðkÞ
b ðeÞ½i
 ¼ eðkÞ:

ð9:2Þ

Lemma 9 implies that Fb needs to be (re)computed only

for two kinds of events in EðkÞ: first, for the newly arrived

event eðkÞ, and second, for those events in Eðk�1Þ that did not

happen before eðkÞ. Actually, Fb for the newly arrived event

can be determined rather easily. We have,

Lemma 10. Given a process pi,

i 6¼ ik) F
ðkÞ
b ðeðkÞÞ½i
 ¼ F

ðk�1Þ
b ð>ikÞ½i
; ð10:1Þ

i ¼ ik) F
ðkÞ
b ðeðkÞÞ½i
 ¼ minfeðkÞ; F ðk�1Þ

b ð>ikÞ½i
g: ð10:2Þ

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Fig. 5 shows the algorithm to update the slice on the
arrival of a new event. Our online slicing algorithm is
basically derived from the offline slicing algorithm
described in Fig. 4, with the following differences: First,
lines 2-4 in the online version are not present in the offline
version. Second, lines 8-10 in the online version replace
line 4 in the offline version. In lines 1-2, we use Lemma 10
to compute the value of Fb for the new event eðkÞ. In
lines 3-4, we use Lemma 8 to update the ikth entry of Fb
for all events critical with respect to eðkÞ. Intuitively, after
executing lines 2-4 in the online algorithm, the following
holds for all events e 2 EðkÞ:

h8i : 1 � i � n : FbðeÞ½i
 !
P
F
ðkÞ
b ðeÞ½i
i:

In lines 8-9, we use Lemma 9 to start updating Fb for only

those events on process px that did not happen before

eðkÞ instead of unnecessarily examining all events on

px. Finally, in line 10, for computing F
ðkÞ
b ðeÞ½i
, we use the

order-preserving property of Fb and Lemma 8 to advance

f to the latter of F
ðkÞ
b ðpredðeÞÞ½i
 and F

ðk�1Þ
b ðeÞ½i
.

We now analyze the time complexity of the algorithm.
For a set of events X, let Xi denote the subset of those
events that occurred on process pi. Note that, for an event e
in Eðk�1Þ, if eðkÞ ! e, then e 2 >; otherwise, when e was
incorporated into the slice, it was not “enabled,” which is a
contradiction. As a result, events in Eðk�1Þ that did not
happen before eðkÞ consists of either those events that are
concurrent with eðkÞ or the final events. Now, let CðkÞ contain
those events from EðkÞ that are concurrent with eðkÞ. It can be
verified that, given processes pi and px, the number of times
that an instance of CONTC is invoked at line 11 is given by
OðjEðkÞi j þ jCðkÞx jÞ. This is because, between two consecutive
invocations of CONTC, either e or f advances to its next
event. Furthermore, whereas e, if different from >x, is

constrained to be concurrent with eðkÞ, there is no such
constraint on f . Summing over all possible values for i and
x, CONTC is invoked OðnjEðkÞjÞ times. This gives us a time
complexity of OðnjEjT Þ for updating the slice, which is the
same as that of computing the slice from scratch (note that
the earliest event on a process that did not happen before
eðkÞ, that is, at line 8, can be determined in Oð1Þ time by
using the Fidge/Mattern vector time stamp [22], [23]).

To reduce the time complexity further, we proceed

as follows: Suppose that, at line 11, CONTCð bGðkÞ½e; f
; bÞ
evaluates to true and f ! eðkÞ. It can be verified that, in

that case, CONTCð bGðkÞ½e; g
; bÞ will also evaluate to true

for all events g such that g! eðkÞ. Formally,

Lemma 11. Consider an event e 2 Eðk�1Þ and a process pi.

Furthermore, let f be an event on pi, with f ! eðkÞ, such that

F
ðk�1Þ
b ðeÞ½i
 !P f . Then,

ðCONTCð bGðkÞ½e; f
; bÞ evaluates to trueÞ
^
ðg! eðkÞÞ

) CONTCð bGðkÞ½e; g
; bÞ evaluates to true:

Proof. Since f ! eðkÞ, f 2 Eðk�1Þ. Furthermore,

F
ðk�1Þ
b ðeÞ½i
 !P f:

Therefore, from Theorem 5, CONTCð bGðk�1Þ½e; f
; bÞ eval-
uates to false. Equivalently, there is no consistent cut ofbGðk�1Þ½e; f
 that satisfies b. However, CONTCð bGðkÞ½e; f
; bÞ
evaluates to true. This implies that there exists a
consistent cut of bGðkÞ½e; f
, say, C, that satisfies b.
Specifically, C is a consistent cut of GðkÞ, f 2 C, e =2 C,
and C satisfies b. Clearly, eðkÞ 2 C; otherwise, C is a
consistent cut of bGðk�1Þ½e; f
 that satisfies b, which is a
contradiction. Since g! eðkÞ, C also contains g. Therefore,
CONTCð bGðkÞ½e; g
; bÞ also evaluates to true. tu
Therefore, when the condition of the while loop at

line 11 evaluates to true and f ! eðkÞ, rather than advancing

f to succðfÞ, we can advance f directly to the earliest event

on pi that did not happen before eðkÞ. This reduces the

number of times that an instance of CONTC is evaluated to

OðjCðkÞi j þ jCðkÞx j þ 1Þ. The modification is described in

Fig. 6. Now, summing over all possible values for i

and x, when eðkÞ arrives, CONTC needs to be invoked

OðnjCðkÞj þ n2Þ times to update the slice. Next, summing

over the arrival of jEj events, the total number of times that

CONTC is invoked is given by OðnjCj þ n2jEjÞ, where C is

the set of concurrent pairs of events in the computation.

Assuming that the time complexity of solving CONTC

increases with the number of events, the overall time

complexity is given by OðnjCjT þ n2jEjT Þ, where OðT Þ is

the worst case time complexity of solving CONTC for a

computation consisting of jEj events. Note that the time

complexity of executing lines 2-4 over jEj events is given by

MITTAL ET AL.: SOLVING COMPUTATION SLICING USING PREDICATE DETECTION 9

Fig. 5. An online algorithm to update FbðeÞ for all events e on the arrival

of a new event.

Fig. 6. Improving the time complexity of the algorithm in Fig. 5.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

OðjEj2Þ, which can be ignored by assuming that T ¼ �ðjEjÞ.
Finally, the amortized time complexity for updating the

slice once, that is, on the arrival of an event, is given by

Oðnðcþ nÞT Þ, where c ¼ jCj=jEj denotes the average con-

currency in the computation. Formally,

Theorem 12. The time complexity of the algorithm to update the
slice on the arrival of a new event, as described in Figs. 5 and 6,
amortized over jEj events is Oðnðcþ nÞT Þ, where n is the
number of processes, c is the average concurrency in the
computation, and OðT Þ is the worst case time complexity of
solving CONTC for a computation consisting of jEj events.

Observe that the ratio of the time required to incremen-
tally update the slice to the time required to compute the
slice from scratch is given by

Oðnðcþ nÞT Þ=OðnjEjT Þ ¼ Oððcþ nÞ=jEjÞ;

which lies between Oðn=jEjÞ and Oð1Þ. Therefore, even in
the worst case, the (amortized) time complexity of the
online algorithm is within a constant factor of the time
complexity of the offline algorithm. Also, in case c is low,
say, OðnÞ, the ratio is Oðn=jEjÞ ¼ oð1Þ for any nontrivial
computation. In this case, rather than computing the slice
from scratch whenever an event arrives, it is much faster to
update it by using the incremental algorithm.

The online algorithm in this section only assumes that
the predicate can be detected efficiently: No other assump-
tion is made about the structure of the predicate. Next, we
describe a much more efficient algorithm to compute the
slice incrementally, assuming that the predicate is regular.

5.2 Online Algorithm for Computing the Slice for a
Regular Predicate

We say that a predicate is regular if it satisfies the following
property: Given two consistent cuts satisfying the predicate,
the cuts given by their set intersection and set union also
satisfy the predicate [6]. Formally, b is regular if, for all
consistent cuts C and D,

ðC satisfies bÞ ^ ðD satisfies bÞ)
ðC \D satisfies bÞ ^ ðC [D satisfies bÞ:

Some examples of regular predicates include

. conjunctive predicates (which can be expressed as a
conjunction of local predicates) such as “every
process is in the red state” [3] and

. monotonic channel predicates such as “all red messages
have been received” [3].

Our online slicing algorithm for a regular predicate is
derived from the offline slicing algorithm (for a regular
predicate) described in [6]. The offline slicing algorithm in [6]
depends on the notion of Jb, defined as follows: Consider a
computation G ¼ hE;!i and a regular predicate b. Given
an event e, JbðeÞ is defined as the least consistent cut of G
that contains e and satisfies b [6]. In case no consistent cut
containing e that also satisfies b exists or when e 2 >, JbðeÞ
is set to E. We use the nonempty trivial consistent cut E as
a sentinel cut and hereafter refer to it as the default cut. The
offline algorithm for computing the slice for a regular
predicate consists of two steps: First, JbðeÞ is computed for
all events e. Next, FbðeÞ is computed for all events e by

using the results of the first step. As explained earlier in
Section 3, once we know FbðeÞ for all events e, we can easily
construct the skeletal representation of the slice. We
describe how we can incrementally compute/update Jb
and Fb by using only Oðn2Þ amortized time per event.

5.2.1 Updating Jb
We first describe the offline algorithm for computing JbðeÞ
for all events e.

Background: Offline Algorithm for Computing Jb. To
compute JbðeÞ for an event e, we define a predicate be as
follows: be evaluates to true for a cut C if C satisfies b and
contains e. Note that JbðeÞ can be interpreted as the least
consistent cut of G for which be evaluates to true. The
problem of determining JbðeÞ now reduces to the problem
of finding the least consistent cut of G that satisfies be. To
that end, we observe that be is a linear predicate and
therefore satisfies the linearity property [3] defined as
follows: Suppose we are currently at a consistent cut that
does not satisfy be. The linearity property states that there
exists a process p such that, if we do not advance along p,
then we can never “reach” a consistent cut satisfying be if it
exists. The event on p in the frontier of the cut is referred to
as a forbidden event [3]. In most cases, it is possible to
determine a forbidden event in OðnÞ time.

Now, to find the least consistent cut that satisfies be, we
scan the computation G once from left to right. Starting
from the initial consistent cut ?, we move forward one
event at a time until we either reach a consistent cut that
satisfies be or run out of events. In the latter case, JbðeÞ is set
to E. In each step, the event to advance beyond is
determined as follows: If the current cut is consistent, then
we use the linearity property to find a forbidden event and
move beyond that event. Otherwise, if the current cut is not
consistent, then we advance beyond one of the inconsistent
events. This leads to an OðnjEjÞ algorithm to compute JbðeÞ
for a given event e.

We prove in [6] that Jb is order preserving; that is, if
e! f , then JbðeÞ � JbðfÞ. This implies that, when comput-
ing JbðsuccðeÞÞ, rather than starting the scan from the initial
consistent cut, we can start the scan from JbðeÞ. As a result,
it is possible to compute JbðeÞ for all events e on a given
process in a single scan of the computation in OðnjEjÞ time.

Online Algorithm for Updating Jb. We modify the offline
algorithm for computing Jb to update Jb in an incremental
manner. To that end, we categorize events into two: those
for which Jb evaluates to a nontrivial consistent cut and
those for which Jb evaluates to the default cut. Note that, for
a nonfinal event e, JbðeÞ is the default cut if and only if no
consistent cut of the computation satisfies be. We prove that,
given an event e, once JbðeÞ evaluates to a nontrivial
consistent cut, it never changes again.

Lemma 13. For each event e 2 Eðk�1Þ;

J
ðk�1Þ
b ðeÞ is a nontrivial consistent cut of Gðk�1Þ)

J
ðk�1Þ
b ðeÞ ¼ J ðkÞb ðeÞ:

Lemma 13 is significant because it may greatly reduce
the set of events for which Jb has to be recomputed.
Specifically, Jb has to be updated for only those events for
which it currently evaluates to the default cut. This is

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

because, if JbðeÞ is currently set to the default cut for an
event e, then it implies that the current computation does
not contain any consistent cut that contains e and satisfies b.
However, the arrival of a new event may result in the
generation of such consistent cuts in the new computation.

Fig. 7 describes the algorithm for updating Jb on the
arrival of a new event. To be able to efficiently determine
the set of events for which Jb may have to be updated,
for each process pi, we maintain a variable recomputei.
Intuitively, recomputei keeps track of the earliest event on
process pi for which Jb currently evaluates to the default
cut. The order-preserving property of Jb guarantees that, for
every event e on pi before recomputei, the current value of
JbðeÞ is a nontrivial consistent cut, and for every event e on
pi after recomputei, the current value of JbðeÞ is the default
cut. In addition to recomputei, we maintain another variable
currenti that keeps track of how far we have advanced in
our scan of the computation from left to right when
computing JbðrecomputeiÞ. Our online algorithm for com-
puting Jb basically emulates the offline version. However,
we terminate the scan as soon as we realize that the next
step involves advancing the scan to include a final event
(lines 10 and 14). The reason is given as follows: Suppose
the next step in the scan involves moving beyond event e on
process pi to the final event >i. It is possible that more
events may be executed on pi after e in the future. The

offline algorithm, which will have knowledge of all these

events, will never make the corresponding move. We also

terminate the scan if we fail to find a consistent cut that

contains recomputei and satisfies b (line 19). In contrast, in

the offline algorithm, the scan is terminated only after Jb has

been computed for all events on a process.
Initially, for each process pi, recomputei is ?i and

currenti is ? . The correctness of the algorithm follows from

the fact that every step in the online version that advances

the scan to a nonfinal event is a valid step in the offline

version as well.
We now analyze the time complexity of the algorithm.

Let move
ðkÞ
i denote the set of events on process pi, beyond

which recomputei moves on the arrival of the kth event.

Formally,

move
ðkÞ
i ¼

� fe j recomputei advances beyond e on arrival of eðkÞg:

Further, let scanAdvance
ðkÞ
i denote the set of events beyond

which currenti advances on arrival of the kth event.

Formally,

scanAdvance
ðkÞ
i ¼

�

fe j succðeÞ is added to currenti on arrival of eðkÞg:

MITTAL ET AL.: SOLVING COMPUTATION SLICING USING PREDICATE DETECTION 11

Fig. 7. Algorithm to update JbðeÞ for each event e on the arrival of a new event when b is regular.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

The time complexity of the ith iteration of the for loop at
line 3 of the algorithm is given by

Oðnð1þ jmoveðkÞi j þ jscanAdvance
ðkÞ
i jÞÞ:

This is because, once recomputei moves beyond an event e
on process pi, from Lemma 13, Jb of e does not change
again. Moreover, once currenti advances beyond an event e,
e is not considered again for updating Jb of an event
on process pi. Therefore, the overall time complexity of
updating Jb on the arrival of jEj events is given byPjEj

k¼1

Pn
i¼1 Oðnð1þ jmove

ðkÞ
i j þ jscanAdvance

ðkÞ
i jÞÞ

¼ {simplifying and changing the order of summations}

Oðn2jEjÞ þ n
Pn

i¼1

PjEj
k¼1 Oðjmove

ðkÞ
i j þ jscanAdvance

ðkÞ
i jÞ

¼ {there are jEj events in total and jEij events on

process pi}

Oðn2jEjÞ þ n
Pn

i¼1 OðjEij þ jEjÞ
¼ {simplifying}

Oðn2jEjÞ
Hence, the time complexity, when amortized over jEj

events, is given by Oðn2Þ. Our amortized time complexity
analysis assumes that the representation of the default cut
does not change as new events arrive. Otherwise, the time
complexity of the ith iteration of the for loop in line 3 is
given by Oðnð1þ jEij þ jscanAdvanceðkÞi jÞÞ, which results in
the amortized time complexity of OðnjEjÞ. Technically, the
default cut after the arrival of k� 1 events, given by Eðk�1Þ,
is different from the default cut after the arrival of k events,
given by EðkÞ. However, as far as computing Jb is
concerned, they have the same meaning, serve the same
purpose, and can therefore be represented in the same way.

Theorem 14. The amortized time complexity of the algorithm to
update Jb once on the arrival of a new event, described in
Fig. 7, is Oðn2Þ, where n is the number of processes.

5.2.2 Updating Fb
Once the value of Jb is available for all events, the value of
Fb can be computed for all events by using the following
lemma:

Lemma 15. CONTCð bG½e; f
; bÞ evaluates to false � e 2 JbðfÞ.

Lemma 15 implies that Fb can be updated incrementally
by using the online slicing algorithm for a general predicate
described in Figs. 5 and 6 except for line 11, which
is changed from “while ðf 6¼ >1Þ ^ CONTCð bGðkÞ½e; f
; bÞ
do” to “while ðf 6¼ >iÞ ^ ðe =2 JbðfÞÞ do.” The expression
“e =2 JbðfÞ” can be evaluated in Oð1Þ time by comparing the
last event on process px in JbðfÞ with the event e. Therefore,

the amortized time complexity for updating Fb on the
arrival of a new event is given by Oðnðcþ nÞÞ, which can be
as high as OðnjEjÞ in the worst case.

To understand how the amortized time complexity can

be reduced from Oðnðcþ nÞÞ to Oðn2Þ, consider an event

e 2 Eðk�1Þ and a process pi and let f ¼ F ðk�1Þ
b ðeÞ½i
. In case

Jk�1
b ðfÞ evaluates to the default cut, it can be verified that

the value of Fk�1
b ðhÞ½i
 for all events h that occurred after e

on procðeÞ is also f . Formally,

J
ðk�1Þ
b ðfÞ evaluates to the default cut)

h8h 2 Eðk�1Þ : e �!P h : F
ðk�1Þ
b ðhÞ½i
 ¼ fi:

This is depicted in Fig. 8a. Now, consider the arrival of

the next event eðkÞ. Suppose FbðeÞ½i
 changes and advances to

the successor of f (that is, F
ðkÞ
b ðeÞ½i
 ¼ succðfÞ). It can be

verified that the value of FbðhÞ½i
 for all events h with e!P h

will change as well and advance to at least the successor of f

(that is, succðfÞ !P F
ðkÞ
b ðhÞ½i
). In the worst case, the new

value of FbðhÞ½i
 may be succðfÞ for all events h with e!P h.

This behavior may be repeated a number of times. In other

words, every new event that arrives may cause Fb to be

updated for a large number of events on procðeÞ (all events h

with e!P h in our example). This, in turn, implies that a large

number of edges in the slice may have to be updated

whenever a new event arrives, thereby increasing the

amortized time complexity for updating Fb.

Note that the skeletal representation of a slice contains

an edge from every event to its successor. From Lemma 2,

it follows that the subgraph in Fig. 8a can be substituted

with the subgraph in Fig. 8b as far as representing the slice

is concerned. For example, in Fig. 8b, consider an event

h 2 Eðk�1Þ with e!P h. Since there is a path from h to >x
and there is an edge from >x to f , it implies that there is a

path from h to f . Therefore, we define another vector bFb,
which is derived from Fb as follows:

bFbðeÞ½i
 ¼�
FbðeÞ½i
 : ðJbðFbðeÞ½i
Þ is a nontrivial consistent cutÞ or ðe 2>Þ

null : otherwise:

�

Clearly, the graph constructed using bFb instead of Fb
constitutes a valid representation of the slice. Consequently,

it suffices to give an online algorithm for updating bFb on the

arrival of a new event. Note that, once bFbðeÞ½i
, where e 62 >,

attains a nonnull value, it does not change again. Formally,

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Fig. 8. Reducing the time complexity of updating Fb. In the figure, f ¼ F ðk�1Þ
b ðeÞ½i
 and J

ðk�1Þ
b ðfÞ ¼ Eðk�1Þ.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Observation 16. We have

ð bF ðk�1Þ
b ðeÞ½i
 6¼ nullÞ ^ ðe =2 >Þ) bF ðk�1Þ

b ðeÞ½i
 ¼ bF ðkÞb ðeÞ½i
:

The online algorithm for updating bFb on the arrival of a
new event is described in Fig. 9. The main idea is that when
scanning events on processes px and pi from left to right to

compute bFbðeÞ½i
 (lines 8-16), we stop the scan once we reach
an event on process pi for which Jb evaluates to the default
cut (lines 11-13). We now analyze the time complexity of the
algorithm. Given processes px and pi, let AðkÞðx; iÞ denote
the number of times that e is advanced to its next event at
line 16 on the arrival of eðkÞ. Likewise, let BðkÞðx; iÞ denote
the number of times that f is advanced to its next event at
line 10 on the arrival of eðkÞ. Clearly, the number of times
that the while loop at line 8 is executed is given by
Oð1þ jAðkÞðx; iÞj þ jBðkÞðx; iÞjÞ. It can be easily verified that

XjEj
k¼1

jAðkÞðx; iÞj � jExj and
XjEj
k¼1

jBðkÞðx; iÞj � jEij:

Now, the time complexity of updating bFb on the arrival
of jEj events is given byPjEj

k¼1

Pn
x¼1

Pn
i¼1 Oð1þ jAðkÞðx; iÞj þ jBðkÞðx; iÞjÞ

¼ {changing the order of summations}Pn
x¼1

Pn
i¼1

PjEj
k¼1 Oð1þ jAðkÞðx; iÞj þ jBðkÞðx; iÞjÞ

¼ {simplifying}Pn
x¼1

Pn
i¼1 OðjEj þ jExj þ jEijÞ

¼ {simplifying}

Oðn2jEjÞ
Therefore, we have:

Theorem 17. The amortized time complexity of the algorithm to
update bFb once on the arrival of a new event, described in
Fig. 9, is Oðn2Þ, where n is the number of processes.

6 CONCLUSION

In this paper, we proved the equivalence of two problems in
distributed computing, namely, predicate detection and
computation slicing. As a virtue of our equivalence result, it
is now possible to compute the slice efficiently for a much
larger class of predicates. This, in turn, helps reduce the
time and space for detecting more “complex” predicates.
We also presented two efficient online algorithms for
computing the slice. The first algorithm is general in nature
and can be used to incrementally compute the slice for any
predicate for which it is possible to devise an efficient
detection algorithm. The second algorithm can be used to
incrementally compute the slice for a regular predicate.

At present, all of our slicing algorithms, offline and
online, are centralized in nature. For future work, we plan
to develop distributed algorithms for computing the slice.
Furthermore, our focus so far has been on using slicing to
detect a predicate under the possibly modality. Sometimes, it
is desirable to detect a predicate under other modalities as
well, such as definitely, invariant, and controllable [24], [3],

MITTAL ET AL.: SOLVING COMPUTATION SLICING USING PREDICATE DETECTION 13

Fig. 9. An online algorithm to update bFbðeÞ for all events e on the arrival of a new event.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

[25], [26]. For instance, we may want to detect whether a

predicate eventually holds along all paths of a computation

(referred to as the definitely modality) [24], [3]. In the future,

we plan to investigate how slicing can be used to detect

predicates under other modalities.

ACKNOWLEDGMENTS

A preliminary version of this paper appeared in the

Proceedings of the International Parallel and Distributed

Processing Symposium (IPDPS) 2004. This work was done

while Alper Sen was a student in the Department of

Electrical and Computer Engineering at the University of

Texas at Austin. Vijay K. Garg was supported in part by

US National Science Foundation Grants ECS-9907213 and

CCR-9988225, Texas Education Board Grant ARP-320, an

Engineering Foundation Fellowship, and an IBM grant.

REFERENCES

[1] N. Mittal, A. Sen, V.K. Garg, and R. Atreya, “Finding Satisfying
Global States: All for One and One for All,” Proc. 18th Int’l Parallel
and Distributed Processing Symp. (IPDPS ’04), Apr. 2004.

[2] S.D. Stoller and F. Schneider, “Faster Possibility Detection by
Combining Two Approaches,” Proc. Ninth Int’l Workshop Dis-
tributed Algorithms (WDAG ’95), pp. 318-332, Sept. 1995.

[3] V.K. Garg, Elements of Distributed Computing. John Wiley & Sons,
2002.

[4] N. Mittal and V.K. Garg, “On Detecting Global Predicates in
Distributed Computations,” Proc. 21st IEEE Int’l Conf. Distributed
Computing Systems (ICDCS ’01), pp. 3-10, Apr. 2001.

[5] C. Chase and V.K. Garg, “On Techniques and Their Limitations
for the Global Predicate Detection Problem,” Proc. Ninth Int’l
Workshop Distributed Algorithms (WDAG ’95), pp. 303-317, Sept.
1995.

[6] N. Mittal and V.K. Garg, “Techniques and Applications of
Computation Slicing,” Distributed Computing, vol. 17, no. 3,
pp. 251-277, Feb. 2005.

[7] M. Weiser, “Programmers Use Slices When Debugging,” Comm.
ACM, vol. 25, no. 7, pp. 446-452, 1982.

[8] G. Venkatesh, “Experimental Results from Dynamic Slicing of C
Programs,” ACM Trans. Programming Languages and Systems,
vol. 17, no. 2, pp. 197-216, 1995.

[9] B. Korel and J. Rilling, “Application of Dynamic Slicing in
Program Debugging,” Proc. Third Int’l Workshop Automatic Debug-
ging (AADEBUG ’97), M. Kamkar, ed., pp. 43-57, May 1997.

[10] J. Cheng, “Slicing Concurrent Programs—A Graph-Theoretical
Approach,” Proc. First Int’l Workshop Automated and Algorithmic
Debugging (AADEBUG ’93), pp. 223-240, 1993.

[11] H.F. Li, J. Rilling, and D. Goswami, “Granularity-Driven Dynamic
Predicate Slicing Algorithms for Message Passing Systems,”
Automated Software Eng., vol. 11, no. 1, pp. 63-89, Jan. 2004.

[12] S.A. Cook, “The Complexity of Theorem Proving Procedures,”
Proc. Third Ann. ACM Symp. Theory of Computing (STOC ’71),
pp. 151-158, 1971.

[13] A. Sen and V.K. Garg, “Formal Verification of Simulation Traces
Using Computation Slicing,” IEEE Trans. Computers, vol. 56, no. 4,
pp. 511-527, Apr. 2007.

[14] S.D. Stoller, L. Unnikrishnan, and Y.A. Liu, “Efficient Detection of
Global Properties in Distributed Systems Using Partial-Order
Methods,” Proc. 12th Int’l Conf. Computer Aided Verification
(CAV ’00), pp. 264-279, July 2000.

[15] S. Alagar and S. Venkatesan, “Techniques to Tackle State
Explosion in Global Predicate Detection,” IEEE Trans. Software
Eng., vol. 27, no. 8, pp. 704-714, Aug. 2001.

[16] A. Sen and V.K. Garg, “Partial Order Trace Analyzer (POTA) for
Distributed Programs,” Proc. Third Workshop Runtime Verification
(RV ’03), vol. 89, 2003.

[17] A.D. Kshemkalyani, “A Framework for Viewing Atomic Events in
Distributed Computations,” Theoretical Computer Science, vol. 196,
nos. 1-2, pp. 45-70, Apr. 1998.

[18] L. Lamport, “Time, Clocks and the Ordering of Events in a
Distributed System,” Comm. ACM, vol. 21, no. 7, pp. 558-565, July
1978.

[19] K.M. Chandy and L. Lamport, “Distributed Snapshots: Determin-
ing Global States of Distributed Systems,” ACM Trans. Computer
Systems, vol. 3, no. 1, pp. 63-75, Feb. 1985.

[20] B. Charron-Bost, C. Delporte-Gallet, and H. Fauconnier, “Local
and Temporal Predicates in Distributed Systems,” ACM Trans.
Programming Languages and Systems, vol. 17, no. 1, pp. 157-179,
1995.

[21] A. Sen and V.K. Garg, “Detecting Temporal Logic Predicates in
the Happened-Before Model,” Proc. 16th Int’l Parallel and
Distributed Processing Symp. (IPDPS ’02), Apr. 2002.

[22] F. Mattern, “Virtual Time and Global States of Distributed
Systems,” Parallel and Distributed Algorithms: Proc. Third Int’l
Workshop Distributed Algorithms (WDAG ’89), pp. 215-226, 1989.

[23] C.J. Fidge, “Logical Time in Distributed Computing Systems,”
Computer, vol. 24, no. 8, pp. 28-33, Aug. 1991.

[24] R. Cooper and K. Marzullo, “Consistent Detection of Global
Predicates,” Proc. ACM/ONR Workshop Parallel and Distributed
Debugging (WPDD ’91), pp. 163-173, 1991.

[25] A. Sen and V.K. Garg, “On Checking Whether a Predicate
Definitely Holds,” Proc. Third Workshop Formal Approaches to
Testing of Software (FATES ’03), pp. 15-29, July 2003.

[26] A. Tarafdar and V.K. Garg, “Predicate Control: Synchronization in
Distributed Computations with Look Ahead,” J. Parallel and
Distributed Computing, vol. 64, no. 2, pp. 219-237, Feb. 2004.

Neeraj Mittal received the BTech degree in
computer science and engineering from the
Indian Institute of Technology, Delhi, in 1995
and the MS and PhD degrees in computer
science from the University of Texas at Austin in
1997 and 2002, respectively. He is currently an
assistant professor in the Department of Com-
puter Science and a codirector of the Advanced
Networking and Dependable Systems Labora-
tory (ANDES) at the University of Texas at

Dallas. His research interests include distributed systems, mobile
computing, networking, and databases. He is a member of the IEEE
Computer Society.

Alper Sen received the BSc and MSc degrees
in electrical and electronics engineering from the
Middle East Technical University, Ankara, Tur-
key, in 1995 and 1997, respectively, and the
PhD degree in electrical and computer engineer-
ing from the University of Texas at Austin in
2004. He is currently a researcher in the
Verification Tools Research and Development
group at Freescale Semiconductor Inc., Austin.
His research interests include hardware and

software verification, concurrent and distributed systems, and formal
methods. He is a member of the IEEE.

Vijay K. Garg received the BTech degree in
computer science from the Indian Institute of
Technology, Kanpur, in 1984 and the MS and
PhD degrees in electrical engineering and
computer science from the University of Califor-
nia, Berkeley, in 1985 and 1988, respectively.
He is currently a full professor in the Department
of Electrical and Computer Engineering and the
director of the Parallel and Distributed Systems
Laboratory at the University of Texas at Austin.

His research interests are in the areas of distributed systems and
discrete event systems. He is the author of the books Elements of
Distributed Computing (John Wiley & Sons, 2002) and Principles of
Distributed Systems (Kluwer, 1996) and a coauthor of the book
Modeling and Control of Logical Discrete Event Systems (Kluwer,
1995). He is a fellow of the IEEE.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

