
Fast System Level Benchmarks for Multicore
Architectures

Alper Sen∗, Gokcehan Kara∗ Etem Deniz∗, Smail Niar†
∗Department of Computer Engineering, Bogazici University, Istanbul, Turkey 34342

†ISTV2 UVHC, Campus Mont Houy - 59313, Valenciennes Cedex 9, France

alper.sen@boun.edu.tr, gokcehan.kara@boun.edu.tr, etem.deniz@boun.edu.tr, smail.niar@univ-valenciennes.fr

Abstract—We present a framework that automatically gener-
ates system level synthetic benchmarks from traditional bench-
marks. Synthetic benchmarks have similar performance behavior
as the original benchmarks that they are generated from and
they can run faster. Synthetics can also be used as proxies
where original applications are not available in source form.
In experiments we observe that not only are our system level
benchmarks much smaller than the real benchmarks that they
are generated from but they are also much faster. For example,
when we generate synthetic benchmarks from the well-known
multicore benchmark suite, PARSEC, our benchmarks have an
average speedup of 149x over PARSEC benchmarks. We also
observe that the performance behavior of synthetics have more
than 85% similarity to the real benchmarks.

Index Terms—Synthetic benchmarks, SystemC, Parallel pat-
terns, Performance evaluation, Multicore architecture

I. INTRODUCTION

The cost of performance evaluation has been gradually

increasing with the increasing complexities of the systems and

the benchmarks that run on them. System level approaches,

such as virtual platforms, are commonly used to tackle the

complexity problem in design automation. There is also a need

to develop system level performance evaluation techniques

to speed-up the design process and avoid costly redesigns.

In system level performance evaluation, abstract system level

models of hardware and software components are used with

added timing details to provide relative figures for comparing

different design options in early design phases. During later

design phases accurate techniques are used for more precise

estimations, however these techniques require a lot of imple-

mentation details. In this paper, we develop techniques that

allow us to perform system-level performance evaluation using

synthetic benchmarks.

A synthetic benchmark is a small, simple and accurate

program that mimics the performance characteristics of an

original benchmark that it is derived from. Synthetic bench-

marks have multiple advantages over traditional benchmarks

in performance evaluation. First, synthetic benchmarks can

be used for speeding up early architectural exploration and

performance analysis. Although Transaction Level Models

(TLM) [1] of hardware are fast, these models are slower when

timing details are added for performance studies. Therefore,

benchmarks that run on these hardware models need to be

fast and synthetic benchmarks can provide this speed by

abstracting the functional behavior of the original benchmark.

Second, since developing new benchmarks from scratch in a

new domain is a labor-intensive process, automatic synthetic

benchmark generation can help relieve this burden. For ex-

ample, it is desirable to automatically generate system level

synthetics for applications in well-known multicore benchmark

suites such as PARSEC [2]. This process can essentially create

an “equivalent” of these benchmark suites at the system level.

Third, synthetic benchmarks can act as a proxy, hence allowing

the sharing of proprietary IPs. For example, our synthetics

are generated using the binary of the original application (not

the source code) and will not have any resemblance to the

source code of the original application. Therefore, the use of

synthetic benchmarks also avoids disclosing the source code

of the application. Design space exploration by a third party

may be implemented using only the synthetic code.

The main motivation to use synthetic benchmarks comes

from the slow-downs resulting from the co-simulation of

SystemC and Pthreads programs since different simulators

need to be accurately synchronized in co-simulation. In this

scenario, the original application uses the Pthreads library

and the synthetic application uses the SystemC library. We

obtain a system level synthetic version of an original mul-

tithreaded application, say from PARSEC benchmark suite,

that can be plugged into an existing SystemC design. This

capability is important because multithreaded applications are

commonly used in performance evaluation of newly developed

architectures including virtual platforms that contain hardware

and software components. In these virtual platforms, Sys-

temC is commonly used to describe hardware components.

Furthermore, PARSEC benchmarks are large and slow even

in a non-co-simulation environment, and this has led to the

development of non-system-level synthetic benchmarks from

PARSEC suite as described in related work. Hence, rather than

doing architectural exploration or performance evaluation of

an existing SystemC design using a potentially large and slow

Pthreads application in a co-simulation environment, we can

accomplish the same performance evaluation using a small

and fast synthetic SystemC application that is similar to the

Pthreads application and without the need for co-simulation.

We perform experiments on original benchmarks from PAR-

SEC suite. The average speedup of our SystemC synthetics

is 149x compared to the original PARSEC benchmarks. All

our benchmarks are similar to the original benchmarks on

average 85%, where the similarity is defined as the average of

2014 17th Euromicro Conference on Digital System Design

978-1-4799-5793-4/14 $31.00 © 2014 IEEE

DOI 10.1109/DSD.2014.16

635

the error percentage between the synthetic and the original

using instructions-per-cycle (IPC), cache-miss-rate (CMR),

and branch-misprediction-rate (BMR).

Note that our work is orthogonal to the more precise

performance estimations that require a lot of implementation

details. One can use synthetic benchmarks during early design

phases to compare different design options. Precise estimations

still need to be performed when the implementation details are

available.

To the best of our knowledge, this is the first work

on automatically generating synthetic benchmarks from real

benchmarks at the system level.

II. RELATED WORK

There are numerous studies on benchmark cloning and syn-

thetic benchmark generation using workload characterization.

Hoste et al. [3] compare micro-architecture dependent and

micro-architecture independent characteristics for commonly

used benchmarks. Joshi et al. [4] propose a method to analyze

workloads of proprietary applications. Our work is similar to

Deniz et al. [5] who generate synthetic benchmarks based on

software architectural patterns for Pthreads programs and use

binary instrumentation. However, they do not target system

level benchmarks like us. That is, we can generate SystemC

synthetics from Pthreads programs using a new system-level

back-end.

Several studies estimate the performance and workload char-

acteristics of SystemC and TLM models. SESAME [6] uses

Kahn process networks for multimedia application modeling.

TAPES [7] is a performance evaluation tool using transaction

level simulation in SystemC. In TAPES, the applications are

modeled as traces whose specification is a manual process.

Similarly, Streubuhr et al. [8] propose a methodology for het-

erogeneous multiprocessor systems-on-chip specified at ESL

level. Kreku et al. [9], [10] developed a framework which uses

UML and SystemC for system-level performance evaluation.

They have an abstract workload model of applications obtained

using several approaches such as analytical modeling, simula-

tion traces, and measurements. The workloads are modeled at

a low level, that is, at the basic block level and contain read,

write, execute instructions; whereas, we model workloads at a

high level and capture the parallel pattern of the original ap-

plication. They manually add counters, timers, and probes for

measuring performance, whereas we obtain program behavior

through automatic instrumentation and hardware counters.

Their processor models have a cycles per instruction (CPI)

parameter similar to us, which is used in estimating the

execution time of the workloads. Grammatikakis et al. [11]

developed a method to estimate the power usage of cycle

and bit accurate TLM models. Number of transactions and

bit transitions at each clock cycle is used to compute the

relative power dissipation. Greaves et al. [12] describe a power

estimation add-on to SystemC TLM modeling.

Our work differs from above mentioned SystemC/TLM

works in that our goal is to generate synthetic versions of real

applications with similar performance characteristics. We do

�����

�����	
��
�
�����

�����	
��
�
�������������	�	��

�����	
��
�
������������

�	���� ������	�� �	���� ������	��

����
�������	��

�	�	 ����
!��"���

#������	�
��������	�	��

������	��
����

�	���	��

�	���� ������	��

$����%&���
!��� 	���	��

Fig. 1. Classification of Parallel Patterns [14]

not develop a system level platform model rather we develop

synthetic system level applications. Our synthetics do not work

at the basic block level instead we generate a synthetic based

on high level parallel pattern of the application. Also, we do

not depend on the source code of the application but just the

binary of it. Our synthetics are regular C programs which

make them portable, unlike low level assembly programs used

for synthetics previously [13]. Similar to above approaches,

we abstract the functionality of the application as synthetic

benchmarks do not perform any useful function. None of

the above SystemC/TLM works generate synthetics from real

benchmarks.

III. WORKLOAD CHARACTERISTICS

In this section, we describe high-level (parallel patterns) and

low-level workload characteristics used in our framework.

Patterns are high quality solutions to commonly encountered

problems. Parallel software patterns are simply those that

are applicable to problems related to concurrent programs.

Different problems require different parallel patterns for their

implementations. Mattson et al. [14] present a set of parallel

patterns that are commonly used in the literature that are

shown in Fig. 1.

A parallel pattern is a high level characteristic of a parallel

program, hence these characteristics allow us to improve

portability of our synthetic benchmarks on different platforms

while preserving thread communication and data sharing be-

haviors as demonstrated by our experiments. Whereas, low

level characteristics are dependent on the particular platform

that they are obtained from. Different parallel programming

patterns can be implemented in SystemC or Pthreads.

We also use low-level characteristics in determining whether

the synthetic is similar to the original benchmark. The most

commonly used low level characteristics for hardware per-

formance evaluation are; Instruction-Per-Cycle (IPC), which

denotes the average number of instructions per CPU cy-

cle, Cache-Miss-Rate (CMR), which denotes the average

number of cache misses per cache reference, and Branch-

Misprediction-Rate (BMR), which denotes the average number

of branch misses per branch instruction.

IV. SYSTEM LEVEL SYNTHETIC BENCHMARK

GENERATION

We developed a synthetic benchmark generation framework

that takes as input a binary program and outputs a synthetic

636

���������	

�����
�	��
�
��������

������	����	�����

�
�
����	�
�����
����������

����������

�����
�	��
�
��������	

���������

 �!��
���"	�������

�
�
����	�
�����
����������

 "�������	#����!
��
 "����$����

"�$

��

�	%��
�	�&�
�	#&�

�	'
�
	 �
����
�	(���
�	��!!����
����
�)����
�	(���
����

�	(
$�	�
�
����
�	'�����	
��	���*���
�)��!�����	'���!��$�����
�	�����$���	'
�

�	��������
�	+�����,
$��	�������
����

 "�������	#����!
��

-�����
�	#����!
��

 "$��!	�����	
 "�������	#����!
��

���������	

�����
�	��
�
��������

������	����	�����

����������

�����
�	��
�
��������	

���������

������

������

�����	

�����

������

Fig. 2. System Level Synthetic Benchmark Generation Flow

program that mimics the behaviors of the input program. Our

algorithm is an adaptation of the algorithm in [5] to SystemC.

The steps in our synthesis process are namely:

Step 1: Original Benchmark Characterization

Step 2: Original Benchmark Pattern Recognition

Step 3: Synthetic Benchmark Synthesis

Step 4: Synthetic Benchmark Characterization and Pattern

Recognition

Step 5: Original-Synthetic Similarity Comparison

Our workflow begins with collecting the characteristics of

the original benchmark. Afterwards, we use this information to

generate an initial version of the synthetic benchmark with the

same recognized parallel pattern as the original one. We then

instrument the synthetic benchmark so that we can converge

to similar performance values as the original by iteratively

adding necessary code blocks to the synthetic benchmark.

This evolutionary algorithm continues until the user specified

similarity thresholds are satisfied.

V. EXPERIMENTS

We implemented our system level synthetic benchmark

generation techniques in a tool. Note that none of the works in

the literature generate system level benchmarks hence we can-

not use those works for comparison purposes. We generated

SystemC synthetics from Pthreads originals, which were taken

from the well-known PARSEC multicore benchmark suite [2].

We generated the synthetics on HW1, which has Intel Xeon

e5520 processors (8 cores and 8MB cache) with 32GB RAM

running Ubuntu 12.04. After a successful synthetic generation

on HW1, we used two different machines to test the portability

of these synthetic programs. HW2 has Intel Core i5 processor

(2 cores and 3MB cache) with 4GB RAM running Ubuntu

12.04 and HW3 has Intel Xeon e5-2680 processors (16 cores

and 20MB cache) with 32GB RAM running OpenSuse 12.03.

The maximum number of iterations for synthetic generation

was set to 100 and a timeout of 1 hour was used. Also,

the minimum overall and individual IPC, BMR, and CMR

similarity scores were set to 80% and 70%, respectively.

Table I shows the parallel patterns and lines of code of the

original and synthetic benchmarks as well as the speedup on

HW1 and the number of iterations to obtain the synthetic. For

PARSEC benchmarks we use medium inputs. Note that the

penalty due to synthetic generation time is small compared to

the number of times a typical benchmark is run during the

design process. Hence, the resulting fast synthetic leads to

speedup in the overall design time.

Similarity and portability of synthetics: Our experimental

results are shown in Figure 3. All our benchmarks are similar

to the original benchmarks on average 85% and above. It can

be seen that the synthetic is following the behavior of the

original on all three hardware configurations. That is, when

the IPC, CMR, or BMR of the original increases or decreases,

the synthetic changes similarly on a new configuration. The

average error in IPC is less than 30%, in the branch prediction

rate is less than 1% and in the cache hit rate is less than 25%

for all three architectures as expected. Note that the cache

size of HW3 is much larger than the other two architectures

resulting in larger errors. Overall the experiments show that

similarity of our benchmarks is high, hence they can be used

for performance evaluation. We observe that the similarity

is higher for original benchmarks that are large. This is

because both our high-level and low-level performance metrics

work better when the sample size that is proportional to the

execution time of the benchmark is large.

Speedup of synthetics: The average speedup of our syn-

thetics is 149x for HW1, 145x for HW2, and 129x for HW3.

We observe that task parallel applications have the highest

speedup. This is because communication is minimal in task

parallel applications hence it is possible to completely take

advantage of parallelism in this case.

VI. CONCLUSIONS AND FUTURE WORK

We presented a framework to generate system level syn-

thetic benchmarks from multithreaded applications. To the

best of our knowledge, this is the first work on generating

synthetic benchmarks from real benchmarks at the system

level. Our synthetic benchmarks are smaller and faster than the

original benchmarks, while maintaining similar performance

characteristics as the original benchmarks. Specifically, we

developed system level synthetics of multicore benchmarks

from the well-known PARSEC suite and obtained an average

speedup of 149x. In the future, we plan to generate Pthreads

synthetics from SystemC original models that will speed up

the execution of SystemC models.

637

ORIGINAL (Pthreads) SYNTHETIC (SystemC)
Benchmark Loc Parallel Pattern Loc Parallel Pattern Speedup #iterations
Facesim 20275 Task Parallel 414 Task Parallel 1115 6
Fluidanimate 2784 Geometric Decomposition 415 Geometric Decomposition 29 7
Bodytrack 7696 Geometric Decomposition 397 Geometric Decomposition 59 84
Blackscholes 1262 Task Parallel 223 Task Parallel 47.5 13
Swaptions 1095 Task Parallel 788 Task Parallel 230.6 11
Ferret 10765 Pipeline 386 Pipeline 44.5 29

TABLE I
PARSEC (PTHREADS) ORIGINAL TO SYSTEMC SYNTHETIC RESULTS

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

facesim fluidanimate bodytrack blackscholes swaptions ferret

Instruction-per-cycle (IPC)

Original IPC - System I Synthetic IPC - System I

Original IPC - System II Synthetic IPC - System II

Original IPC - System III Synthetic IPC - System III

0
1
2
3
4
5
6
7

facesim fluidanimate bodytrack blackscholes swaptions ferret

Branch-miss-rate (BMR)

Original BMR (%) - System I Synthetic BMR (%) - System I

Original BMR (%) - System II Synthetic BMR (%) - System II

Original BMR (%) - System III Synthetic BMR (%) - System III

0
10
20
30
40
50
60
70
80

facesim fluidanimate bodytrack blackscholes swaptions ferret

Cache-miss-rate (CMR)

Original CMR (%) - System I Synthetic CMR (%) - System I

Original CMR (%) - System II Synthetic CMR (%) - System II

Original CMR (%) - System III Synthetic CMR (%) - System III

Fig. 3. Performance metrics of original (Pthreads, PARSEC) and synthetic (SystemC) benchmarks on 3 different hardware configurations

VII. ACKNOWLEDGEMENTS

This research was supported by Bogazici University Re-

search Fund 7223 and the Turkish Academy of Sciences.

REFERENCES

[1] “Accelera Systems Initiative, http://www.accelera.org/,” 2012.
[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark

Suite: Characterization and Architectural Implications,” in International
Conference on Parallel Architectures and Compilation Techniques, 2008.

[3] K. Hoste and L. Eeckhout, “Microarchitecture-independent workload
characterization,” IEEE Micro, vol. 27, no. 3, pp. 63–72, 2007.

[4] A. Joshi, L. Eeckhout, R. H. Bell,Jr., and L. K. John, “Distilling the
essence of proprietary workloads into miniature benchmarks,” ACM
Trans. Archit. Code Optim., vol. 5, no. 2, pp. 10:1 – 10:33, 2008.

[5] E. Deniz, A. Sen, J. Holt, and B. Kahne, “Using software architectural
patterns for synthetic embedded multicore benchmark development,” in
IEEE International Symposium on Workload Characterization (IISWC),
2012.

[6] M. Thompson and A. D. Pimentel, “Towards multi-application workload
modeling in sesame for system-level design space exploration,” in
International conference on Embedded computer systems: architectures,
modeling, and simulation (SAMOS), 2007.

[7] T. Wild, A. Herkersdorf, and G.-Y. Lee, “Tapes-trace-based architecture
performance evaluation with systemc,” Design Automation for Embed-
ded Systems, vol. 10, no. 2-3, pp. 157–179, Sep. 2005.

[8] M. Streubuhr, R. Rosales, R. Hasholzner, C. Haubelt, and J. Teich, “ESL
power and performance estimation for heterogeneous MPSOCS using
SystemC,” in Forum on Specification and Design Languages (FDL),
2011.

[9] J. Kreku, M. Hoppari, T. Kestila, Y. Qu, J.-P. Soininen, P. Andersson,
and K. Tiensyrja, “Combining uml2 application and systemc platform
modelling for performance evaluation of real-time embedded systems,”
EURASIP J. Embedded Syst., vol. 2008, pp. 6:1–6:18, Jan. 2008.

[10] J. Kreku, K. Tiensyrjä, and G. Vanmeerbeeck, “Automatic workload
generation for system-level exploration based on modified gcc compiler,”
in Proceedings of the Conference on Design, Automation and Test in
Europe, 2010.

[11] M. Grammatikakis, S. Politis, J.-P. Schoellkopf, and C. Papadas,
“System-level power estimation methodology using cycle- and bit-
accurate tlm,” in Design, Automation Test in Europe Conference Ex-
hibition (DATE), 2011.

[12] D. Greaves and M. Yasin, “Tlm power3: Power estimation methodology
for systemc tlm 2.0,” in Forum on Specification and Design Languages
(FDL), 2012.

[13] K. Ganesan and L. K. John, “Automatic generation of miniaturized
synthetic proxies for target applications to efficiently design multicore
processors,” IEEE Transactions on Computers, vol. 99, no. PrePrints,
p. 1, 2013.

[14] T. Mattson, B. Sanders, and B. Massingill, Patterns for parallel pro-
gramming. Addison-Wesley Professional, 2004.

638

