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tDire
ted hyper
y
les have re
ently been used to model 
hemi
al rea
tion networks. We presentan NP-
ompleteness proof for the problem of �nding a hyper
y
le in a dire
ted hypergraph.This sheds some light to some open questions posed by Zeigarnik [1℄ who modelled 
hemi
alrea
tions by dire
ted hypergraphs.Keywords: dire
ted hypergraphs, hyper
y
les, 
hemi
al rea
tion networks1. Introdu
tionDire
ted hypergraphs have been used for modelling problems from diverse appli
ation domainssu
h as 
hemi
al rea
tion modelling [1℄, propositional logi
, relational databases, urban transitsystems [2, 3℄, parsing [4℄, se
ret transfer proto
ols [5℄ and bartering [6℄.Monomole
ular 
hemi
al rea
tion networks have been modelled by dire
ted graphs and havebeen studied extensively in the literature [7, 8℄. Zeigarnik [1℄ modelled multimole
ular rea
tionsby using dire
ted hypergraphs. In [1℄ Zeigarnik presented open problems about hyper
y
lesand hyper
ir
uits in the 
ontext of 
hemi
al rea
tion networks. This paper sheds some light tothese questions answering in parti
ular the following problem posed by Zeigarnik: \De�ne the
riterion that says if a dire
ted hypergraph 
ontains a hyper
ir
uit". We show in this paper thatthe problem of �nding out whether a dire
ted hypergraph 
ontains a hyper
y
le is NP-
omplete.Hen
e, any 
riterion proposed that says whether a dire
ted hypergraph 
ontains a hyper
ir
uitwill ne
essarily require the solution of an NP-
omplete problem.Given n mole
ules (spe
ies) and m rea
tions, a stoi
hiometri
 n � m matrix [7℄ P 
an be
onstru
ted in whi
h rows 
orrespond to mole
ules and 
olumns 
orrespond to rea
tions. Ea
h
oeÆ
ient of this matrix Ps;r represents the number of mole
ules of s produ
ed (if Ps;r > 0)or 
onsumed (if Ps;r < 0) or 0 otherwise. Let x be an m-dimensional ve
tor. Suppose that ahyper
y
le is formed by a set of rea
tions C = fr1; r2; : : : ; rkg. Ve
tor x 
an be used to expressthis hyper
y
le by letting xr = 1 for ea
h r 2 C and setting xr = 0 otherwise. If x represents a1



hyper
y
le, then Px = 0, i.e. x will be in the nullspa
e of P . The problem of solving Px = 0with x � 0 also arises in the 
losely related metaboli
 pathways analysis [9℄.In Se
tion 2, we �rst present dire
ted hypergraph and hyper
y
le de�nitions that are used.In Se
tion 3, we establish the 
omplexity of hyper
y
le existen
e problem whi
h is the main
ontribution of this paper.2. De�nitionsA dire
ted hypergraph H(V;E) 
onsists of two sets, V and E where V is a set of verti
es and E isa set of hyperar
s. Ea
h hyperar
 e =<Vt; Vh> is an ordered pair of non-empty disjoint subsets Vtand Vh of V . Here, Vt and Vh are the sets of verti
es that appear respe
tively in the tail and headof the hyperar
 e . An example showing a set of rea
tions and its dire
ted graph representationis given in Figure 1. The in-degree(v) (out-degree(v)) of vertex v is de�ned to be the number oftimes vertex v appears in the heads (tails) of hyperar
s. The set of verti
es that appear in the tailor head of a hyperar
 is 
alled a hypernode. An E0 � E indu
ed dire
ted subhypergraph H 0(V 0; E0)of E(V;E) is de�ned as a dire
ted hypergraph with V 0 = (Se2E0 head(e))S(Se2E0 tail(e)).Dire
ted hypergraphs are also known as AND/OR graphs [10, p. 21℄. In the AND/ORgraph representation, a bipartite dire
ted graph is 
onstru
ted with two types of nodes: ANDnodes whi
h represent hyperar
s and OR nodes whi
h represent verti
es. Figure 1(
) shows theAND/OR graph representation of the example in Figure 1(b). In the �gure, the white nodesrepresent the AND nodes and the bla
k nodes represent the OR nodes. We will use the notationG(Vo; Va; A) to represent the AND/OR graph 
orresponding to a dire
ted hypergraph H(V;E)with Vo = V , Va = E and A = f<o; a>: o 2 Vo and a 2 Va with o 2 tail(a)g S f<a; o>:o 2 Vo and a 2 Va with o 2 head(a)g. In this paper, we will 
all a dire
ted hypergraph
onne
ted if the underlying undire
ted graph (ea
h dire
ted edge repla
ed by an undire
ted one)of its AND/OR representation is 
onne
ted.A 
y
le in a dire
ted graph is a 
onne
ted subgraph in whi
h for all verti
es v in the subgraph,we have in-degree(v) = out-degree(v) = 1. Depending on the appli
ation, a hyper
y
le indire
ted hypergraphs has been de�ned in di�erent ways [2, 3, 5, 11℄. These de�nitions 
annot
orre
tly model 
hemi
al rea
tions. Zeigarnik's hyper
ir
uit de�nition based on requiring all theverti
es in hyper
ir
uit to have their in-degree to be equal to their out-degree and whi
h also allowsmultiple units of elements (i.e. multiple unit verti
es) 
orre
tly models hyper
ir
uits in 
hemi
al2



r
1

r
2

r
3

r
4

r
5 r

7r
6

r
7

r
1

r
2

r
3

r
4

r
5

r
6

r

r

r

r

r

r

r

1

2

3

4

5

6

7

(c)

I

B C

E F

G

HD

A

(b)

F

A

B C

D E H I

G

(a)

(

(

(

(

(

(

)

)

)

)

)

)

)(

B + C −−> D + E + F

−−>

−−>

−−>

−−>

−−>

−−>

A B

D + E A

G C

GF

G H + I

H + I GFigure 1: Example rea
tions (a), its dire
ted hypergraph representation (b) and its AND/ORgraph representation (
)rea
tions. In this paper, we prove a 
omplexity result for hyper
y
les and not hyper
ir
uits sin
ethe result for hyper
y
les 
an be immediately extended to hyper
ir
uits. We formally give ourde�nition of hyper
y
le as follows: A hyper
y
le is de�ned as a 
onne
ted subhypergraph of thedire
ted hypergraph in whi
h for all verti
es v in the subhypergraph, we have in-degree(v) = out-degree(v) = 1. For a hyper
ir
uit, we would have similar de�nition with in-degree(v) = out-degree(v). In Figure 1, rea
tion sets C1 = fr1; r2; r3; r4; r5g and C2 = fr6; r7g are hyper
y
les.3. Complexity of the Hyper
y
le ProblemGiven a 
onne
ted dire
ted hypergraph H(V;E), in order to answer Zeigarnik's open question,we ask the following de
ision question: Does there exist a hyper
y
le in H(V;E) ? We abbreviatethis problem as HYC problem. The 
omplexity of this problem is given as follows:Theorem 1. HYC problem is NP-
omplete.Proof. Clearly, HYC problem is in NP sin
e we 
an guess a set of hyperar
s and 
he
k inpolynomial time whether they form a 
onne
ted subhypergraph and the verti
es appearing inhead and tail sets of these hyperar
s have in-degree and out-degree both equal to 1. For provingits NP-hardness, we transform the 3SAT problem [12, p. 48℄ to the HYC problem. Let U =fu1; u2; : : : ; umg be a set of variables and and C = f
1; 
2; : : : ; 
ng be a set of 
lauses in 
onjun
tivenormal form (CNF) with ea
h 
lause 
i having three literals. Also let �U = f�u1; �u2; : : : ; �umgrepresent the set of 
omplemented variables. We 
onstru
t a dire
ted hypergraph representingan arbitrary instan
e of 3SAT as follows:(i) A hyperar
 <fCg; f
1; 
2; : : : ; 
ng> is 
onstru
ted whi
h represents the 
onjun
tion of 
lauses.3



(ii) A given 
lause 
i = (a+ b+ 
) with a; b; 
 2 U [ �U and where + represents the OR fun
tion,is true if at least one of the three literals is true. For this to o

ur, we have 7 possibilities :(�a + �b+ 
),(�a + b + �
), (�a + b+ 
),(a + �b + �
),(a + �b + 
), (a + b + �
), and (a+ b + 
). Let
0i;j with j = 1 : : : 7 denote these possibilities. For ea
h 
lause, we 
onstru
t 7 hyperar
s:<f
ig; f
0i;jg>.(iii) Let Li ( �Li) be the set of all lo
al literal o

uren
es 
orresponding to the variable ui (�ui) thatappear in the heads of hyperar
s 
onstru
ted in (ii). Let also si with i = 1; : : : ;m denotesome dummy verti
es. A hyperar
 <Li; fsig> (< �Li; fsig>) for ea
h variable ui ( for ea
hnegation �ui) is 
onstru
ted.(iv) Finally, a hyperar
<fs1; s2; : : : ; smg; fCg> whi
h 
onne
ts the sele
ted literals to the 
lausesis 
onstru
ted.The above 
onstru
tion takes polynomial time. Note that ea
h hyperar
 a
ts as if ANDingthe verti
es in the tail and ANDing the verti
es in head sets. Ea
h vertex, on the other hand,ORs ex
lusively (i.e. 
hooses) just a single in
oming hyperar
 and a single outgoing hyperar
. Asa result, in (i) we AND all 
lauses. In (ii), we sele
t one 
on�guration whi
h leads to truthnessof a 
lause. In (iii), we 
ombine all lo
al literal 
on�gurations and sele
t a value si whi
h iseither true or false indi
ated by sele
ting ui or �ui respe
tively. The instan
e of the 3SAT is thensatis�able if there exists a hyper
y
le in the dire
ted hypergraph 
onstru
ted.Conversely, we also show that a hyper
y
le in the dire
ted hypergraph 
an be 
onstru
tedif the 
orresponding instan
e of 3SAT is satis�able. In this 
ase, note that there exists a truthassignment su
h that at least one literal in ea
h 
lause is set to true. The assigned values in ea
h
lause 
an be represented by exa
tly one of the 7 possibilities stated in (ii) above. This meansthat there is exa
tly one <f
ig; f
0i;jg> hyperar
 for ea
h 
lause 
i, i = 1; : : : ; n. The in-degreeof ea
h lo
al literal o

urren
e appearing in the heads of these hyperar
s will be 1 and thosethat do not appear in the heads of these hyperar
s will be 0. The hyperar
 
onstru
ted in step(iii) will AND all the lo
al literals with in-degree 1 of the same literal. Depending on whether avariable was assigned true or false, only one of ui or �ui will be sele
ted in a

ordan
e with theaformentioned literal. Then, all these will be ANDed into the C vertex in step (iv). Finally, thehyperar
 in step (i) will 
onne
t C to all the 
lauses. It is 
lear from this 
onstru
tion that weend up with a hyper
y
le, i.e., a 
onne
ted dire
ted subhypergraph in whi
h for all verti
es v in4



this subhypergraph, we have in-degree(v) = out-degree(v) = 1. �
c2

C
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x yx y x yx y

s2
s1Figure 2: Dire
ted hypergraph for satis�ability of 
lauses 
1 = (x+ y) and 
2 = (�x+ y).To illustrate the hypergraph 
onstru
tion we prefer to give an example involving 
lauses withtwo literals (i.e. polynomially solvable 2SAT example), sin
e 3SAT's 3 literal 
lause exampleslooks messy with a lot of nodes in the �gure. Constru
tion of the hypergraph in both 
ases,however, is the same ex
ept that hyperar
 
onstru
tion in (ii) now has 3 possibilities instead of7. The hypergraph 
onstru
ted is for the satis�ability of 
lauses 
1 = (x + y) and 
2 = (�x + y)and is given in Figure 2. Note that here, we use the dire
ted bipartite graph representation (asin Figure 1(
) of the hypergraph - the white nodes represent the hyperar
s and the bla
k nodesrepresent the verti
es). As an example, if we 
hoose �x and y as in
oming hyperar
s to s1 ands2 respe
tively, then a hyper
y
le 
an be formed. This 
orresponds to the values x = false andy = true. On the other hand, the 
hoi
e of x and �y does not lead to any hyper
y
le.We 
an 
on
lude our paper as follows: In Zeigarnik [1℄, a semi-hypergraph is 
onstru
ted froma dire
ted hypergraph by removing the dire
tions on hyperar
s. Our NP-
ompleteness proof
an be extended immediately to hyper
y
le in semi-hypergraph problem by removing dire
tionson hyperar
s in our transformation. One of Zeigarnik's main motivation is to 
ome up with ahyper
y
le formulation that will obey Euler's Formula for the 
y
lomati
 number. Sin
e thisformula involves one addition and a subtra
tion operation (i.e. it is polynomially 
omputed),it would give us yes/no answer about the existen
e of hyper
y
les. However, from our NP-5




ompleteness result and its extension to semi-hypergraphs, we 
an 
on
lude that one 
annot 
omeup with a general hyper
y
le formulation (i.e. one that will be in the nullspa
e of stoi
hiometri
matrix) that 
an be polynomially 
omputed and that also preserves Euler's formula unless P=NP.Referen
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