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Abstract

Directed hypercycles have recently been used to model chemical reaction networks. We present
an NP-completeness proof for the problem of finding a hypercycle in a directed hypergraph.
This sheds some light to some open questions posed by Zeigarnik [1] who modelled chemical
reactions by directed hypergraphs.
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1. Introduction

Directed hypergraphs have been used for modelling problems from diverse application domains
such as chemical reaction modelling [1], propositional logic, relational databases, urban transit
systems [2, 3], parsing [4], secret transfer protocols [5] and bartering [6].

Monomolecular chemical reaction networks have been modelled by directed graphs and have
been studied extensively in the literature [7, 8]. Zeigarnik [1] modelled multimolecular reactions
by using directed hypergraphs. In [1] Zeigarnik presented open problems about hypercycles
and hypercircuits in the context of chemical reaction networks. This paper sheds some light to
these questions answering in particular the following problem posed by Zeigarnik: “Define the
criterion that says if a directed hypergraph contains a hypercircuit”. We show in this paper that
the problem of finding out whether a directed hypergraph contains a hypercycle is NP-complete.
Hence, any criterion proposed that says whether a directed hypergraph contains a hypercircuit
will necessarily require the solution of an NP-complete problem.

Given n molecules (species) and m reactions, a stoichiometric n x m matrix [7] P can be
constructed in which rows correspond to molecules and columns correspond to reactions. Each
coefficient of this matrix Py, represents the number of molecules of s produced (if P, > 0)
or consumed (if Ps, < 0) or 0 otherwise. Let z be an m-dimensional vector. Suppose that a
hypercycle is formed by a set of reactions C' = {r,r9,...,rp}. Vector z can be used to express

this hypercycle by letting x, = 1 for each r € C' and setting =, = 0 otherwise. If = represents a



hypercycle, then Pz = 0, i.e. x will be in the nullspace of P. The problem of solving Pz = 0
with 2 > 0 also arises in the closely related metabolic pathways analysis [9].

In Section 2, we first present directed hypergraph and hypercycle definitions that are used.
In Section 3, we establish the complexity of hypercycle existence problem which is the main

contribution of this paper.

2. Definitions

A directed hypergraph H(V, E) consists of two sets, V and F where V is a set of vertices and FE is
a set of hyperarcs. Each hyperarc e =<V}, V},> is an ordered pair of non-empty disjoint subsets V;
and V}, of V. Here, V; and V), are the sets of vertices that appear respectively in the tail and head
of the hyperarc e . An example showing a set of reactions and its directed graph representation
is given in Figure 1. The in-degree(v) (out-degree(v)) of vertex v is defined to be the number of
times vertex v appears in the heads (tails) of hyperarcs. The set of vertices that appear in the tail
or head of a hyperarc is called a hypernode. An E' C E induced directed subhypergraph H'(V', E')
of E(V,E) is defined as a directed hypergraph with V' = (¢ head(e)) U(U,pcp tail(e)).

Directed hypergraphs are also known as AND/OR graphs [10, p. 21]. In the AND/OR
graph representation, a bipartite directed graph is constructed with two types of nodes: AND
nodes which represent hyperarcs and OR nodes which represent vertices. Figure 1(c) shows the
AND/OR graph representation of the example in Figure 1(b). In the figure, the white nodes
represent the AND nodes and the black nodes represent the OR nodes. We will use the notation
G(Vy, Vg, A) to represent the AND/OR graph corresponding to a directed hypergraph H(V, E)
with V, =V, V, = E and A = {<0,a>: 0 € V, and a € V, with o € tail(a)} |J {<a,o>:
o € V,and a € V, with o € head(a)}. In this paper, we will call a directed hypergraph
connected if the underlying undirected graph (each directed edge replaced by an undirected one)
of its AND/OR representation is connected.

A cycle in a directed graph is a connected subgraph in which for all vertices v in the subgraph,
we have in-degree(v) = out-degree(v) = 1. Depending on the application, a hypercycle in
directed hypergraphs has been defined in different ways [2, 3, 5, 11]. These definitions cannot
correctly model chemical reactions. Zeigarnik’s hypercircuit definition based on requiring all the
vertices in hypercircuit to have their in-degree to be equal to their out-degree and which also allows

multiple units of elements (i.e. multiple unit vertices) correctly models hypercircuits in chemical
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Figure 1: Example reactions (a), its directed hypergraph representation (b) and its AND/OR
graph representation (c)

reactions. In this paper, we prove a complexity result for hypercycles and not hypercircuits since
the result for hypercycles can be immediately extended to hypercircuits. We formally give our
definition of hypercycle as follows: A hypercycle is defined as a connected subhypergraph of the
directed hypergraph in which for all vertices v in the subhypergraph, we have in-degree(v) = out-
degree(v) = 1. For a hypercircuit, we would have similar definition with in-degree(v) = out-

degree(v). In Figure 1, reaction sets Cy = {r1,r9,r3,74,75} and Cy = {rg,r7} are hypercycles.

3. Complexity of the Hypercycle Problem

Given a connected directed hypergraph H(V, E), in order to answer Zeigarnik’s open question,
we ask the following decision question: Does there exist a hypercycle in H(V, E) 7 We abbreviate

this problem as HYC problem. The complexity of this problem is given as follows:
Theorem 1. HYC problem is NP-complete.

Proof. Clearly, HYC problem is in NP since we can guess a set of hyperarcs and check in
polynomial time whether they form a connected subhypergraph and the vertices appearing in
head and tail sets of these hyperarcs have in-degree and out-degree both equal to 1. For proving
its NP-hardness, we transform the 3SAT problem [12, p. 48] to the HYC problem. Let U =
{u1,ug,...,uy} be aset of variables and and C' = {c;, co, ..., ¢, } be a set of clauses in conjunctive
normal form (CNF) with each clause ¢; having three literals. Also let U = {iuy, g, ..., Uy}
represent the set of complemented variables. We construct a directed hypergraph representing

an arbitrary instance of 3SAT as follows:

(i) A hyperarc <{C},{c1,ca,...,c,}> is constructed which represents the conjunction of clauses.



(4i) A given clause ¢; = (a4 b+ c¢) with a,b,c € U UU and where + represents the OR function,
is true if at least one of the three literals is true. For this to occur, we have 7 possibilities :

(@+b+c)(@a+b+¢e), (@a+b+c)a+b+eé),(a+b+c), (a+b+¢),and (a+b+c). Let

/
(2%

i}, {c ;1>

¢, . with 5 = 1...7 denote these possibilities. For each clause, we construct 7 hyperarcs:

(ii7) Let L; (L;) be the set of all local literal occurences corresponding to the variable u; (u;) that
appear in the heads of hyperarcs constructed in (ii). Let also s; with i = 1,....m denote
some dummy vertices. A hyperarc <L;, {s;}> (<L;, {s;}>) for each variable u; ( for each

negation u;) is constructed.

(iv) Finally, a hyperarc <{si, so, ..., s}, {C}> which connects the selected literals to the clauses

1s constructed.

The above construction takes polynomial time. Note that each hyperarc acts as if ANDing
the vertices in the tail and ANDing the vertices in head sets. Each vertex, on the other hand,
ORs exclusively (i.e. chooses) just a single incoming hyperarc and a single outgoing hyperarc. As
a result, in (i) we AND all clauses. In (i), we select one configuration which leads to truthness
of a clause. In (4i7), we combine all local literal configurations and select a value s; which is
either true or false indicated by selecting u; or u; respectively. The instance of the 3SAT is then
satisfiable if there exists a hypercycle in the directed hypergraph constructed.

Conversely, we also show that a hypercycle in the directed hypergraph can be constructed
if the corresponding instance of 3SAT is satisfiable. In this case, note that there exists a truth
assignment such that at least one literal in each clause is set to true. The assigned values in each
clause can be represented by exactly one of the 7 possibilities stated in (i7) above. This means
that there is exactly one <{¢;}, {c;’j}> hyperarc for each clause ¢;, i = 1,...,n. The in-degree
of each local literal occurrence appearing in the heads of these hyperarcs will be 1 and those
that do not appear in the heads of these hyperarcs will be 0. The hyperarc constructed in step
(737) will AND all the local literals with in-degree 1 of the same literal. Depending on whether a
variable was assigned true or false, only one of u; or u; will be selected in accordance with the
aformentioned literal. Then, all these will be ANDed into the C vertex in step (iv). Finally, the
hyperarc in step (i) will connect C to all the clauses. It is clear from this construction that we

end up with a hypercycle, i.e., a connected directed subhypergraph in which for all vertices v in



this subhypergraph, we have in-degree(v) = out-degree(v) = 1. [ |

Figure 2: Directed hypergraph for satisfiability of clauses ¢; = (z + y) and ¢3 = (T + y).

To illustrate the hypergraph construction we prefer to give an example involving clauses with
two literals (i.e. polynomially solvable 2SAT example), since 3SAT’s 3 literal clause examples
looks messy with a lot of nodes in the figure. Construction of the hypergraph in both cases,
however, is the same except that hyperarc construction in (i7) now has 3 possibilities instead of
7. The hypergraph constructed is for the satisfiability of clauses ¢; = (z +y) and ¢3 = (T + y)
and is given in Figure 2. Note that here, we use the directed bipartite graph representation (as
in Figure 1(c) of the hypergraph - the white nodes represent the hyperarcs and the black nodes
represent the vertices). As an example, if we choose Z and y as incoming hyperarcs to s; and
so respectively, then a hypercycle can be formed. This corresponds to the values z = false and
y = true. On the other hand, the choice of z and y does not lead to any hypercycle.

We can conclude our paper as follows: In Zeigarnik [1], a semi-hypergraph is constructed from
a directed hypergraph by removing the directions on hyperarcs. Our NP-completeness proof
can be extended immediately to hypercycle in semi-hypergraph problem by removing directions
on hyperarcs in our transformation. One of Zeigarnik’s main motivation is to come up with a
hypercycle formulation that will obey Euler’s Formula for the cyclomatic number. Since this
formula involves one addition and a subtraction operation (i.e. it is polynomially computed),

it would give us yes/no answer about the existence of hypercycles. However, from our NP-

5



completeness result and its extension to semi-hypergraphs, we can conclude that one cannot come

up with a general hypercycle formulation (i.e. one that will be in the nullspace of stoichiometric

matrix) that can be polynomially computed and that also preserves Euler’s formula unless P=NP.
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