
On Finding Hyperyles in Chemial Reation NetworksCan �OzturanDepartment of Computer Eng., Bogazii University, Istanbul, TurkeyTel: (90)-212-358-7225, e-mail: ozturaa�boun.edu.tr( Revised May 25th, 2007. )AbstratDireted hyperyles have reently been used to model hemial reation networks. We presentan NP-ompleteness proof for the problem of �nding a hyperyle in a direted hypergraph.This sheds some light to some open questions posed by Zeigarnik [1℄ who modelled hemialreations by direted hypergraphs.Keywords: direted hypergraphs, hyperyles, hemial reation networks1. IntrodutionDireted hypergraphs have been used for modelling problems from diverse appliation domainssuh as hemial reation modelling [1℄, propositional logi, relational databases, urban transitsystems [2, 3℄, parsing [4℄, seret transfer protools [5℄ and bartering [6℄.Monomoleular hemial reation networks have been modelled by direted graphs and havebeen studied extensively in the literature [7, 8℄. Zeigarnik [1℄ modelled multimoleular reationsby using direted hypergraphs. In [1℄ Zeigarnik presented open problems about hyperylesand hyperiruits in the ontext of hemial reation networks. This paper sheds some light tothese questions answering in partiular the following problem posed by Zeigarnik: \De�ne theriterion that says if a direted hypergraph ontains a hyperiruit". We show in this paper thatthe problem of �nding out whether a direted hypergraph ontains a hyperyle is NP-omplete.Hene, any riterion proposed that says whether a direted hypergraph ontains a hyperiruitwill neessarily require the solution of an NP-omplete problem.Given n moleules (speies) and m reations, a stoihiometri n � m matrix [7℄ P an beonstruted in whih rows orrespond to moleules and olumns orrespond to reations. EahoeÆient of this matrix Ps;r represents the number of moleules of s produed (if Ps;r > 0)or onsumed (if Ps;r < 0) or 0 otherwise. Let x be an m-dimensional vetor. Suppose that ahyperyle is formed by a set of reations C = fr1; r2; : : : ; rkg. Vetor x an be used to expressthis hyperyle by letting xr = 1 for eah r 2 C and setting xr = 0 otherwise. If x represents a1



hyperyle, then Px = 0, i.e. x will be in the nullspae of P . The problem of solving Px = 0with x � 0 also arises in the losely related metaboli pathways analysis [9℄.In Setion 2, we �rst present direted hypergraph and hyperyle de�nitions that are used.In Setion 3, we establish the omplexity of hyperyle existene problem whih is the mainontribution of this paper.2. De�nitionsA direted hypergraph H(V;E) onsists of two sets, V and E where V is a set of verties and E isa set of hyperars. Eah hyperar e =<Vt; Vh> is an ordered pair of non-empty disjoint subsets Vtand Vh of V . Here, Vt and Vh are the sets of verties that appear respetively in the tail and headof the hyperar e . An example showing a set of reations and its direted graph representationis given in Figure 1. The in-degree(v) (out-degree(v)) of vertex v is de�ned to be the number oftimes vertex v appears in the heads (tails) of hyperars. The set of verties that appear in the tailor head of a hyperar is alled a hypernode. An E0 � E indued direted subhypergraph H 0(V 0; E0)of E(V;E) is de�ned as a direted hypergraph with V 0 = (Se2E0 head(e))S(Se2E0 tail(e)).Direted hypergraphs are also known as AND/OR graphs [10, p. 21℄. In the AND/ORgraph representation, a bipartite direted graph is onstruted with two types of nodes: ANDnodes whih represent hyperars and OR nodes whih represent verties. Figure 1() shows theAND/OR graph representation of the example in Figure 1(b). In the �gure, the white nodesrepresent the AND nodes and the blak nodes represent the OR nodes. We will use the notationG(Vo; Va; A) to represent the AND/OR graph orresponding to a direted hypergraph H(V;E)with Vo = V , Va = E and A = f<o; a>: o 2 Vo and a 2 Va with o 2 tail(a)g S f<a; o>:o 2 Vo and a 2 Va with o 2 head(a)g. In this paper, we will all a direted hypergraphonneted if the underlying undireted graph (eah direted edge replaed by an undireted one)of its AND/OR representation is onneted.A yle in a direted graph is a onneted subgraph in whih for all verties v in the subgraph,we have in-degree(v) = out-degree(v) = 1. Depending on the appliation, a hyperyle indireted hypergraphs has been de�ned in di�erent ways [2, 3, 5, 11℄. These de�nitions annotorretly model hemial reations. Zeigarnik's hyperiruit de�nition based on requiring all theverties in hyperiruit to have their in-degree to be equal to their out-degree and whih also allowsmultiple units of elements (i.e. multiple unit verties) orretly models hyperiruits in hemial2
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H + I GFigure 1: Example reations (a), its direted hypergraph representation (b) and its AND/ORgraph representation ()reations. In this paper, we prove a omplexity result for hyperyles and not hyperiruits sinethe result for hyperyles an be immediately extended to hyperiruits. We formally give ourde�nition of hyperyle as follows: A hyperyle is de�ned as a onneted subhypergraph of thedireted hypergraph in whih for all verties v in the subhypergraph, we have in-degree(v) = out-degree(v) = 1. For a hyperiruit, we would have similar de�nition with in-degree(v) = out-degree(v). In Figure 1, reation sets C1 = fr1; r2; r3; r4; r5g and C2 = fr6; r7g are hyperyles.3. Complexity of the Hyperyle ProblemGiven a onneted direted hypergraph H(V;E), in order to answer Zeigarnik's open question,we ask the following deision question: Does there exist a hyperyle in H(V;E) ? We abbreviatethis problem as HYC problem. The omplexity of this problem is given as follows:Theorem 1. HYC problem is NP-omplete.Proof. Clearly, HYC problem is in NP sine we an guess a set of hyperars and hek inpolynomial time whether they form a onneted subhypergraph and the verties appearing inhead and tail sets of these hyperars have in-degree and out-degree both equal to 1. For provingits NP-hardness, we transform the 3SAT problem [12, p. 48℄ to the HYC problem. Let U =fu1; u2; : : : ; umg be a set of variables and and C = f1; 2; : : : ; ng be a set of lauses in onjuntivenormal form (CNF) with eah lause i having three literals. Also let �U = f�u1; �u2; : : : ; �umgrepresent the set of omplemented variables. We onstrut a direted hypergraph representingan arbitrary instane of 3SAT as follows:(i) A hyperar <fCg; f1; 2; : : : ; ng> is onstruted whih represents the onjuntion of lauses.3



(ii) A given lause i = (a+ b+ ) with a; b;  2 U [ �U and where + represents the OR funtion,is true if at least one of the three literals is true. For this to our, we have 7 possibilities :(�a + �b+ ),(�a + b + �), (�a + b+ ),(a + �b + �),(a + �b + ), (a + b + �), and (a+ b + ). Let0i;j with j = 1 : : : 7 denote these possibilities. For eah lause, we onstrut 7 hyperars:<fig; f0i;jg>.(iii) Let Li ( �Li) be the set of all loal literal ourenes orresponding to the variable ui (�ui) thatappear in the heads of hyperars onstruted in (ii). Let also si with i = 1; : : : ;m denotesome dummy verties. A hyperar <Li; fsig> (< �Li; fsig>) for eah variable ui ( for eahnegation �ui) is onstruted.(iv) Finally, a hyperar<fs1; s2; : : : ; smg; fCg> whih onnets the seleted literals to the lausesis onstruted.The above onstrution takes polynomial time. Note that eah hyperar ats as if ANDingthe verties in the tail and ANDing the verties in head sets. Eah vertex, on the other hand,ORs exlusively (i.e. hooses) just a single inoming hyperar and a single outgoing hyperar. Asa result, in (i) we AND all lauses. In (ii), we selet one on�guration whih leads to truthnessof a lause. In (iii), we ombine all loal literal on�gurations and selet a value si whih iseither true or false indiated by seleting ui or �ui respetively. The instane of the 3SAT is thensatis�able if there exists a hyperyle in the direted hypergraph onstruted.Conversely, we also show that a hyperyle in the direted hypergraph an be onstrutedif the orresponding instane of 3SAT is satis�able. In this ase, note that there exists a truthassignment suh that at least one literal in eah lause is set to true. The assigned values in eahlause an be represented by exatly one of the 7 possibilities stated in (ii) above. This meansthat there is exatly one <fig; f0i;jg> hyperar for eah lause i, i = 1; : : : ; n. The in-degreeof eah loal literal ourrene appearing in the heads of these hyperars will be 1 and thosethat do not appear in the heads of these hyperars will be 0. The hyperar onstruted in step(iii) will AND all the loal literals with in-degree 1 of the same literal. Depending on whether avariable was assigned true or false, only one of ui or �ui will be seleted in aordane with theaformentioned literal. Then, all these will be ANDed into the C vertex in step (iv). Finally, thehyperar in step (i) will onnet C to all the lauses. It is lear from this onstrution that weend up with a hyperyle, i.e., a onneted direted subhypergraph in whih for all verties v in4



this subhypergraph, we have in-degree(v) = out-degree(v) = 1. �
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s1Figure 2: Direted hypergraph for satis�ability of lauses 1 = (x+ y) and 2 = (�x+ y).To illustrate the hypergraph onstrution we prefer to give an example involving lauses withtwo literals (i.e. polynomially solvable 2SAT example), sine 3SAT's 3 literal lause exampleslooks messy with a lot of nodes in the �gure. Constrution of the hypergraph in both ases,however, is the same exept that hyperar onstrution in (ii) now has 3 possibilities instead of7. The hypergraph onstruted is for the satis�ability of lauses 1 = (x + y) and 2 = (�x + y)and is given in Figure 2. Note that here, we use the direted bipartite graph representation (asin Figure 1() of the hypergraph - the white nodes represent the hyperars and the blak nodesrepresent the verties). As an example, if we hoose �x and y as inoming hyperars to s1 ands2 respetively, then a hyperyle an be formed. This orresponds to the values x = false andy = true. On the other hand, the hoie of x and �y does not lead to any hyperyle.We an onlude our paper as follows: In Zeigarnik [1℄, a semi-hypergraph is onstruted froma direted hypergraph by removing the diretions on hyperars. Our NP-ompleteness proofan be extended immediately to hyperyle in semi-hypergraph problem by removing diretionson hyperars in our transformation. One of Zeigarnik's main motivation is to ome up with ahyperyle formulation that will obey Euler's Formula for the ylomati number. Sine thisformula involves one addition and a subtration operation (i.e. it is polynomially omputed),it would give us yes/no answer about the existene of hyperyles. However, from our NP-5



ompleteness result and its extension to semi-hypergraphs, we an onlude that one annot omeup with a general hyperyle formulation (i.e. one that will be in the nullspae of stoihiometrimatrix) that an be polynomially omputed and that also preserves Euler's formula unless P=NP.Referenes[1℄ A. V. Zeigarnik. On hyperyles and hyperiruits in hypergraphs. In Disrete MathematialChemistry (DIMACS Series in Disrete Mathematis and Theoretial Computer Siene),vol. 51, pages 377{383. AMS, 2000.[2℄ G. Ausiello, R. Giaio, G. F. Italiano, and U. Nanni. Optimal traversal of direted hyper-graphs. Teh. Rep. TR-92-073, The International Comp. Si. Inst., Berkeley, CA, 1992.[3℄ G. Gallo, G. Longo, S. Nguyen, and S. Pallottino. Direted hypergraphs and appliations.Disrete Appl. Math., (40):177{201, 1993.[4℄ D. Klein and C. Manning. Parsing and hypergraphs. In Proeedings of the 7th InternationalWorkshop on Parsing Tehnologies (IWPT-2001), 2001.[5℄ M. Thakur and R. Tripathi. Complexity of linear onnetivity problems in direted hyper-graphs. In Pro. Foundations of Software Tehnology and Theoretial Computer Si., 24thInternational Conferene, Chennai, India, pages 481{493, 2004.[6℄ C. Ozturan. Resoure bartering in data grids. Sienti� Programming, 12(3):155{168, 2004.[7℄ P. M. Gleiss, P. F. Stadler, A. Wagner, and D. A. Fell. Relevant yles in hemial reationnetworks. Advaned Complex Systems, 4:207{226, 2001.[8℄ O. Temkin, A. Zeigarnik, and D. Bonhev. Chemial Reation Networks: A Graph TheoretialApproah. CRC Press, 1996.[9℄ J. A. Papin, N. D. Prie, S. J. Wilbak, D. A. Fell, and B. O. Palsson. Metaboli pathwaysin the post-genome era. Trends in Biohemial Sienes, 28(5):250{258, 2003.[10℄ J. Pearl. Heuristis. Addison Wesley, 1984.[11℄ Berge C. Hypergraphs: Combinatoris of Finite Sets. Elsevier, North Holland, 1989.[12℄ M. Garey and D. S. Johnson. Computers and Intratability, A Guide to the Theory ofNP-Completeness. W. H. Freeman and Company, 1979.6


