CMPE 478: Parallel Processing Fall 2013, Homework 2

(This project can be done in groups of 2 students)

In this project, you will use OpenMP to parallelize Google's ranking process and apply it on the Erdos Web Graph which can be downloaded at http://web-graph.org/. The ranking will be done by carrying out the following iteration:

$$r^{(0)}=egin{bmatrix}1\1\...\1\end{bmatrix}$$

Repeat
 $r^{(t+1)}=lpha\,Pr^{(t)}+(1-lpha)\,c$
until $||r^{(t+1)}-r^{(t)}||_1\,\leq\,\,arepsilon$

Here

•
$$c = \begin{bmatrix} 1 \\ 1 \\ \dots \\ 1 \end{bmatrix}$$

- Take α as 0.2
- $||r^{(t+1)} r^{(t)}||_1 = \sum |r_i^{(t+1)} r_i^{(t)}|$ ε is a small number, e.g. 10^{-5}

The matrix P is to be stored in CSR format. CSR format is explained below. You should provide a write-up of how you implemented your project and the following results:

a) The timings obtained:

Test	Scheduling	Chunk	No. of	Timings in secs							
No.	Method	Size	Iterations	for each number of threads							
				1	2	3	4	5	6	7	8
1											
2											

b) The first 5 hosts that have the highest rankings.

Google Ranking Process

You can take a look at the following to learn about the Google ranking process.

- http://www.cmpe.boun.edu.tr/~ozturan/etm555/google.pdf
- http://infolab.stanford.edu/~backrub/google.html
- http://www.rose-hulman.edu/~bryan/googleFinalVersionFixed.pdf

CSR Matrix Storage Format

Consider the following sparse matrix storage scheme, called compressed sparse row (CSR) format. An example of a matrix represented in this format is given below:

$$P = \begin{bmatrix} 11 & 0 & 13 & 14 & 0 \\ 0 & 0 & 23 & 24 & 0 \\ 31 & 32 & 33 & 34 & 0 \\ 0 & 42 & 0 & 44 & 0 \\ 51 & 52 & 0 & 0 & 55 \end{bmatrix}$$

The above matrix will be stored as follows:

Let N stand for the number of nonzero entries in the matrix and n stand for the number of rows. The array **values** contains non-zero entries in the matrix in row wise order. The array **col_indices** gives the corresponding column indices of these values. The array **row_begin** of size n+1 stores the beginning index of each row in the **values** (and **col_indices** arrays). The last entry in **row_begin** stores N+1 so that the expression **row_begin[i+1]-row_begin[i]** gives the number of nonzeros in row i.