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I wish to thank Assoc. Prof. Tunga Güngör for encouraging me towards pursuing

graduate studies in computer engineering and for believing in me.

I want to thank my friends Aybüke Özgün, Deniz Nemli, Ezgi Işınay, Serhat
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ABSTRACT

REAL-TIME VECTOR AUTOMATA

Finite automaton has been one of the most studied models in automata theory.

The limited power of the standard model has led researchers to make various extensions

to the standard model. Counter automaton, automaton with multiplication, finite

automaton over groups are some of the examples of such extensions. In this thesis, we

study the computational power of real-time finite automaton that has been augmented

with a vector of dimension k, and programmed to multiply this vector at each step by

an appropriately selected k× k matrix. Only one entry of the vector can be tested for

equality to 1 at any time. We study the classes of languages recognized by deterministic,

nondeterministic, and “blind” versions of these machines and compare them with each

other. It turns out that these machines are closely related to some of the classical

models like counter automata and generalized finite automata.
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ÖZET

GERKÇEK ZAMANLI VEKTÖR MAKİNELER

Sonlu durum makinesi otomata teorisinin en çok incelenen modellerinden biri

olmuştur. Standart modelin gücünün sınırlı olması araştırmacıları bu standart mod-

elin üzerine farklı eklemeler yapmaya itmiştir. Sayaçlı makineler, çarpımlı sonlu durum

makineleri, grup üzerinde tanımlı sonlu durum makineleri bu eklemelere örnektir. Bu

tezde k boyutlu bir vektörle güçlendirilmiş ve her adımda bu vektörü uygun k× k ma-

trislerle çarpmaya programlanmış gerçek zamanlı sonlu durum makineleri incelenmiştir.

Bir adımda vektörün sadece tek bir girdisi 1’e eşit mi diye kontrol edilebilir. Makinelerin

belirlenimci, belirlenimci olmayan, “kör” versiyonları tarafından tanınan diller ince-

lenmiş ve birbirleriyle karşılaştırılmışlardır. Bu makineler ile, sayaçlı makinelerin ve

genellenmiş sonlu durum makinelerin birbirleriyle yakından ilişkili olduğu ortaya çıkmıştır.
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1. INTRODUCTION

It is well known that viewing computation as multiplications of matrices induced

by the transition functions of the machines under consideration is a useful approach

in the study of, for instance, probabilistic and quantum models. The standard way

to trace a program in this manner [1] is to use a vector which has a separate entry

for each possible configuration of the simulated machine, necessitating matrices whose

dimensions depend on the configuration space of the automaton. In this paper, we

consider the alternative of using fixed-size matrices, and representing the infinitely

many different configurations employing the values of the entries of a fixed-size vector.

We introduce the vector automaton, which is linked to many generalizations of the

standard deterministic finite automaton model like counter automata, automata with

multiplication, and generalized stochastic automata [2–5].

A vector automaton is a finite automaton endowed with a k-dimensional vector,

and the capability of multiplying this vector with an appropriately selected matrix

at every computational step. Only one of the entries of the vector can be tested for

equality to 1 at any step. Since equipping these machines with a “one-way” input

head, which is allowed to pause on some symbols during its left-to-right traversal of

the input, would easily make them Turing-equivalent, we focus on the case of real-

time input, looking at the deterministic and nondeterministic versions of the model.

We make a distinction between general vector automata and “blind” ones, where the

equality test can be performed only at the end of the computation.

Chapter 2 begins with the preliminaries in which the notation and some basic

information are presented that will be useful throughout the thesis. We review some

classical models like multicounter automata, generalized finite automata with their

formal definitions.
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We introduce our model in Chapter 3. We state a generalization which allows

us to test any entry of the vector for equality to any desired number c. We give

some examples of language recognition by real-time vector automaton to familiarize

the reader with the model.

We start further examining real-time deterministic vector automata in Section

3.1. We make comparisons between the real-time deterministic automata and the

closely related multicounter automata. The case where the dimension of the vector

k is equal to 1 corresponds to the real-time version of one-way deterministic finite

automata with multiplication introduced by Ibarra et al. in [4]. We show that real-

time deterministic vector automata are more powerful when k > 1.

In Section 3.2, we look at the deterministic blind version of the model which turns

out to be equivalent to Turakainen’s generalized finite automata [5] in one language

recognition mode. We state a hierarchy result based on the number of states and the

vector dimension k. Restricting k to 1, we obtain the real-time version of Ibarra et

al.’s one-way deterministic finite automata with multiplication without equality and

the two models turn out to be equivalent.

We look at the real-time nondeterministic vector automata in Section 3.3 and

we show that even the blind versions can recognize some NP-complete languages. We

conclude that it is highly likely that they are more powerful than their deterministic

versions since the equivalence of the two models would yield the result P=NP.

Chapter 4 is the conclusion of the thesis. We state some open questions which

will guide us for the future studies.
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2. PREVIOUS WORK

2.1. Preleminaries

Throughout the paper, the following notation will be used: Q is the set of states,

where q0 ∈ Q denotes the initial state, Qa ⊂ Q denotes the set of accept states, and

Σ is the input alphabet. An input string w is placed between two end-marker symbols

(except for GFA’s) on an infinite tape in the form ¢w$. For a given string w, |w|

denotes the length of the string and wr is the reverse of the string.

For a given machine, δ is the transition function which specifies the next move

based on the current state and the input symbol read. The next move may also depend

on the specific properties of the machine such as the status of its counters.

Status of the counters is described by the set {0,±} where 0 denotes that the

value of the counter is equal to 0 and ± denotes that the value of the counter is non-

zero. For a machine with k counters, value of the counters is a k-tuple from the set

{0,±}k.

For the machines with registers, the symbol = indicates that the value of the

register is equal to 1 and the symbol 6= indicates that the register value is not equal to

1.

A machine can be real-time, 1-way or 2-way depending on the allowed tape head

movements. The set {↓,→,←} represents the possible head directions. The tape head

can stay in the same position (↓), move one square to the right (→), or move one square

to the left (←) in one step. A machine which is allowed to move in both directions

and stay put is said to be a 2-way machine. If the tape head is allowed only to move

right and stay put, then the machine is 1-way. A machine is real-time if the tape head

can move only right at each step. Note that there is no need to specify tape head
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movement in the transition function for the real-time machines.

{−1, 0, 1} is the set of counter operations, where −1 indicates that the value

of the counter is decremented by 1, 0 indicates that the value of the counter is not

changed, and 1 indicates that the value of the counter is increased by 1.

For a machine model A, L(A) denotes the class of languages recognized by au-

tomata of type A.

For a matrix M , M(i, j) denotes the entry in the i’th row and j’th column of M .

Let Ei
k(c) denote the matrix obtained by setting the i’th entry of the first column of

the k × k identity matrix to c. For a row vector v, the product vEi
k(c) is the vector

obtained by adding c times the i’th entry of v to the first entry when i > 1, and the

vector obtained by multiplying the first entry of v by c when i = 1.

2.2. Multicounter Automata.

A real-time deterministic multicounter automaton (rtDkCA) [2] is a 5-tuple

M = (Q,Σ, δ, q0, Qa).

The transition function δ of M is specified so that δ(q, σ, θ) = (q′, c) means that

M moves the head to the next symbol, switches to state q′, and updates its counters

according to the list of increments represented by c ∈ {−1, 0, 1}k, if it reads symbol

σ ∈ Σ, when in state q ∈ Q, and with the counter values having signs as described

by θ ∈ {0,±}k. At the beginning of the computation, the tape head is placed on the

symbol ¢, and the counters are set to 0. At the end of the computation, that is, after

the right end-marker $ has been scanned, the input is accepted if M is in an accept

state.
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A real-time deterministic blind multicounter automaton (rtDkBCA) [3] M is a

rtDkCA which can check the value of its counters only at the end of the computation.

Formally, the transition function is now replaced by δ(q, σ) = (q′, c). The input is

accepted at the end of the computation if M enters an accept state, and all counter

values are equal to 0.

A real-time nondeterministic multicounter automaton (rtNkCA) is a rtDkCA

which is allowed to make nondeterministic moves. A real-time nondeterministic blind

multicounter automaton (rtNkBCA) is a rtNkCA which can check the value of its

counters only at the end of the computation.

2.3. Finite Automata With Multiplication.

A one-way deterministic finite automaton with multiplication (1DFAM) [4] is a

6-tuple

M = (Q,Σ, δ, q0, Qa,Γ),

where Γ is a finite set of rational numbers (multipliers). The transition function δ is

defined as δ : Q × Σ × Ω → Q × {↓,→} × Γ, where Ω = {=, 6=}. M has a register

which can store any rational number, and is initially set to 1. Reading input symbol

σ ∈ Σ in state q ∈ Q, M compares the current value of the register with 1, thereby

calculating the corresponding value ω ∈ Ω, and switches its state to q′ ∈ Q, moves

its head in direction d ∈ {↓,→}, and multiplies the register by γ ∈ Γ, in accordance

with the transition function value δ(q, σ, ω) = (q′, d, γ). The input string is accepted

if M enters an accept state with the register value equaling 1 after it scans the right

end-marker symbol.

A 1DFAM without equality (1DFAMW) is a 1DFAM which can not check whether

or not the register has value 1 during computation. One can think of 1DFAMW as

a blind 1DFAM since it can check the value of its register only at the end of the
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computation. The transition function δ is replaced by δ(q, σ) = (q′, d, γ). The accept

condition of the 1DFAMW is the same with the 1DFAM.

A one-way nondeterministic finite automaton with multiplication (1NFAM) is a

1DFAM which is allowed to make nondeterministic moves. A 1NFAM without equality

(1NFAMW) is a 1NFAM which can not check whether or not the register has value 1

during the computation.

2.4. Finite Automata Over Groups

Let K = (M, ◦, e) be a group under the operation denoted by ◦ with the neutral

element denoted by e.

A (deterministic) finite automaton over the group K [6] is a 6-tuple,

A = {Q,Σ, δ,K, q0, Qa}.

The transition function δ is defined as Q × Σ → Q ×M . We can think of A as

having a register in which any element of M can be stored. The transition function

is specified as δ(q, σ) = (q′,m) so that reading input symbol σ ∈ Σ, when in state

q ∈ Q, A moves the head to the next symbol, switches to state q′ ∈ Q and writes

in the register x ◦ m where m ∈ M and x is the old content of the register. At the

beginning of the computation, the register is initialized to e, the neutral element of the

group K. The input string is accepted at the end of the computation if A enters an

accept state, and the register value is equal to e.
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2.5. Probabilistic Finite Automata

A real-time probabilistic finite automaton (rtPFA) [7] is a 5-tuple

P = (Q,Σ, Aσ∈Σ̃, q0, Qa)

where Σ̃ = Σ ∪ {¢, $} and Aσ∈Σ̃’s are real-valued stochastic transition matrices for

symbol σ, that is, Aσ(i, j) is the transition probability from state qi to state qj when

reading symbol σ.

The computation of P can be traced using a row vector v, where the i’th entry

corresponds to the i’th state. q0 is the initial state and v0 is the initial vector whose first

entry is equal to 1. A given input string w ∈ Σ∗ is placed as w̃ = ¢w$ on the tape. After

reading the i’th symbol, the vector is equal to vi = v0Aw̃1Aw̃2 . . . Aw̃i
where w̃i is the

i’th symbol of w̃. The acceptance probability for w is defined as fP(w) =
∑

qi∈Qa
v|w̃|(i)

where v|w̃|(i) denotes the i’th entry of the vector.

A probabilistic finite automaton whose tape head can move in both directions

and can also stay in place is called a two-way probabilistic finite automaton (2PFA) [8].

2.6. Generalized Finite Automata.

A generalized finite automaton (GFA) [5] is a 5-tuple

G = (Q,Σ, {Aσ∈Σ}, v0, f),

where the Aσ∈Σ’s are |Q| × |Q| are real valued transition matrices, and v0 and f are

the real valued initial row vector and final column vector, respectively. The acceptance

value for an input string w ∈ Σ∗ is defined as fG(w) = voAw1 . . . Aw|w|f .

A GFA whose components are restricted to be rational numbers is called a Tu-
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rakainen finite automaton (TuFA) in [9].

2.7. Language Recognition

The language L ⊆ Σ∗ is said to be recognized by machineM with bounded error

[10] if there exists an ε such that 0 ≤ ε < 1
2

if

� fM(w) ≥ 1− ε when w ∈ L

� fM(w) ≤ ε when w /∈ L.

The class of languages recognized by 2PFA’s with bounded error is denoted as

L(2PFA) .

The language L ⊆ Σ∗ recognized by machine M with cutpoint λ ∈ R is defined

as [10]

L = (M, > λ) = {w ∈ Σ∗|fM(w) > λ}.

When M is a probabilistic finite automaton, λ is restricted so that 0 ≤ λ < 1

since the components of a probabilistic finite automaton are stochastic. For a GFA

with cutpoint λ1 ∈ R, there exists a rtPFA with cutpoint λ2 ∈ [0, 1) such that the

two recognizes the same language [5]. Similarly, for a 2PFA with cutpoint λ2 ∈ [0, 1),

there exists a rtPFA with cutpoint λ2 ∈ [0, 1) such that the two recognizes the same

language [11]. rtPFA’s, 2PFA’s and GFA’s recognize the same class of languages with

cutpoint, the class of stochastic languages denoted by S>.

Furthermore, S= is the class of languages of the form

L = (M,= λ) = {w ∈ Σ∗ | fM(w) = λ}
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where M is a rtPFA (GFA or 2PFA) and λ ∈ R . [12]

S=
Q is the class of the languages of the form

L = (G,= λ) = {w ∈ Σ∗ | fG(w) = λ}

where G is a Turakainen finite automaton and λ ∈ Q. [5]
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3. VECTOR AUTOMATA

A real-time deterministic vector automaton of dimension k (rtDVA(k)) is a 6-

tuple

V = (Q,Σ, δ, q0, Qa, v),

where v is a k-dimensional initial row vector, and the transition function δ is defined

as

δ : Q× Σ× Ω→ Q× S,

where S is the set of k×k rational-valued matrices, and Ω = {=, 6=}, as in the definition

of 1DFAM’s.

Specifically, δ(q, σ, ω) = (q′,M) means that when V is in state q reading symbol

σ ∈ Σ, and the first entry of its vector corresponds to ω ∈ Ω (with ω having the value

= if and only if this entry is equal to 1), V moves to state q′, multiplying its vector

with the matrix M ∈ S. As in the definition of 1DFAM’s, ω is taken to be = if the first

entry of the vector equals 1, and 6= otherwise. The string is accepted if V enters an

accept state, and the first entry of the vector is 1, after processing the right end-marker

symbol $.

Remark 3.1. The designer of the automaton is free to choose the initial setting v of

the vector, where v ∈ Qk.

In the definition, it is stated that the machine can only check the first entry of the

vector for equality to 1. Sometimes we find it convenient to design programs that check

for equality to some number other than 1. One may also wish that it were possible to

check not the first, but some other entry of the vector. In the following theorem, we
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show that we can assume our rtDVA(k)’s have that flexibility. For the purposes of that

theorem, let a rtDVA(k)ic be a machine similar to a rtDVA(k), but with a generalized

definition that enables it to check the i’th entry, for equality to the number c.

Theorem 3.2. (i) Given a rtDVA(k)i1 recognizing a language L, one can construct

a rtDVA(k) that recognizes L. (ii) For any c ∈ Q, given a rtDVA(k)1
c recognizing a

language L, one can construct a rtDVA(k+1) that recognizes L.

Proof. (i) Suppose that we are given a rtDVA(k)i1 V = (Q,Σ, δ, q0, Qa, v). We will

construct an equivalent rtDVA(k) V ′ = (Q,Σ, δ′, q0, Qa, v
′). Let J denote the matrix

obtained from the k × k identity matrix by interchanging the first and i’th rows. We

will use multiplications with J repeatedly to swap the first and i’th entries of the vector

when it is time for that value to be checked, and then to restore the vector back to its

original order, so that the rest of the computation is not affected. The initial vector

of V ′ has to be a reordered version of v to let the machine check the correct entry at

the first step, so v′ = vJ . We update the individual transitions so that if V has the

move δ(q, σ, ω) = (q′,M), then V ′ has the move δ′(q, σ, ω) = (q′, JMJ) for every q ∈ Q,

σ ∈ Σ, and ω ∈ Ω.

(ii) Suppose that we are given a rtDVA(k)1
c V = (Q,Σ, δ, q0, Qa, v). We construct

an equivalent rtDVA(k+1) V ′ = (Q,Σ, δ′, q0, Qa, v
′). The idea is to repeatedly subtract

(c−1) from the first entry of the vector when it is time for that value to be checked, and

then add (c− 1) to restore the original vector. We will use the additional entry (which

will always equal 1 throughout the computation) in the vector of V ′ to perform these

additions and subtractions, as will be explained soon. Let v′′ be a (k + 1)-dimensional

vector equaling [v1, v2, ..., vk, 1], where v = [v1, v2, ..., vk]. The initial vector of V ′ has to

be a modified version of v′′ to accommodate the check for equality to 1 in the first step,

so v′ = v′′Ek+1
k+1(−c + 1). For every individual transition δ(q, σ, ω) = (q′,M) of V , V ′

has the move δ′(q, σ, ω) = (q′, Ek+1
k+1(c− 1)NEk+1

k+1(−c+ 1)), where the (k+ 1)× (k+ 1)

matrix N has been obtained by adding a new row-column pair to M , i.e. Ni,j = Mi,j for

i, j = 1, ..., k, N(k+1)j = 0 for j = 1, ..., k, Ni(k+1) = 0 for i = 1, ..., k and N(k+1)(k+1) = 1.
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Note that when c 6= 0, there is an alternative method for constructing an equiv-

alent rtDVA(k) which does not require an extra entry in the vector, where the first

entry is modified simply by repeated multiplications with E1
k(1/c) and E1

k(c) when

necessary.

We conclude this section with two examples that will familiarize us with the

programming of rtDVA(k)’s.

Example 3.3. UFIBONACCI = {an | n is a Fibonacci number} ∈ L(rtDVA(5)).

Proof. We construct a rtDVA(5) V recognizing UFIBONACCI as follows: We let the

initial vector equal [0, 1, 0, 0, 1]. Reading each a, we multiply the vector with the matrix

M1 if the first entry of the of the vector is equal to 0, and with M2 otherwise.

M1 =



0 0 0 0 0

1 1 1 0 0

1 1 0 0 0

−1 0 0 1 0

−1 0 0 1 1


M2 =



0 0 0 0 0

1 1 0 0 0

0 0 1 0 0

−1 0 0 1 0

−1 0 0 1 1


.

After reading the i’th a, the fourth entry of the vector equals i. The second and third

entries of the vector hold consecutive Fibonacci numbers. The first entry is equal to

0 whenever i equals the second entry, which triggers the next Fibonacci number to

be computed and assigned to the second entry in the following step. Otherwise, the

second and third entries remain unchanged until i reaches the second entry. V accepts

if the computation ends with the first entry equaling 0, which occurs if and only if the

input length n is a Fibonacci number.

Theorem 3.4. UGAUSS = {an2+n | n ∈ N} ∈ L(rtDVA(2)).
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Proof. We construct a rtDVA(2) V with initial vector [1, 1]. If the input is the empty

string, V accepts. Otherwise, V increments the first entry of the vector by multiplying

it by 2 on reading the first a which is performed by multiplying the vector with the

matrix M1 = E1
2(2).

M1 =

 2 0

0 1


It then repeats the following procedure for the rest of the computation: Decrement

the first entry of the vector by multiplying it by 1
2

until it reaches one, while parallelly

incrementing the second entry of the vector by multiplying it by 2 with the help of

matrix M2. The second entry stops increasing exactly when the first counter reaches

1. Then the directions are swapped, with the second entry now being decremented,

and the first entry going up by multiplying the vector with the matrix M3.

M2 =

 1
2

0

0 2

M3 =

 2 0

0 1
2



When the second entry of the vector reaches 1, the first entry of the vector is

multiplied by 2 one more time with the help of matrix M1. Throughout this loop, the

accept state is entered only when the first entry of the vector is equal to 1.

Suppose that at some step, the value of the vector is [1, 2c]. If the input is

sufficiently long, 2c + 2 steps will pass before the first counter reaches 1 again, with

the vector having the value [1, 2c+1]. On an infinite sequence of a’s, the accept state

will be entered after reading the second a, and then again with intervals of 2c + 2

symbols between subsequent entrances, for c = 1, 2, 3.... Doing the sum, we conclude

that strings of the form an
2+n, n ∈ N, are accepted.
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3.1. Deterministic vector automata

We start by specializing a fact stated by Ibarra et al. in [4] in the context of

1DFAM’s to the case of rtDVA(1)’s. For this purpose, we will use the following well-

known fact about counter machines.

Fact 3.5. [2] Given any k-counter automaton A with the ability to alter the contents

of each counter independently by any integer between +c and −c in a single step (for

some fixed integer c), one can effectively construct a k-counter automaton which can

modify each counter by at most one unit at every step, and which recognizes the same

language as A in precisely the same number of steps.

Fact 3.6. rtDVA(1)’s are equivalent in language recognition power to real-time de-

terministic multicounter automata which can only check if all counters are equal to 0

simultaneously.

Proof. Let us simulate a given rtDVA(1) V by a real-time deterministic multicounter

automaton M. Let S = {m1,m2, ...,mt} be the set of numbers the single-entry “vec-

tor” can be multiplied with during the computation. Let P = {p1, p2, ..., pk} be the

set of prime factors of the denominators and the numerators of the numbers in S. M

will have k counters c1, ..., ck to represent the current value of the vector. When V

multiplies the vector with ni = a
b
, where a = px11 p

x2
2 . . . pxkk and b = py11 p

y2
2 . . . pykk , the

counters of M are updated by the values (x1 − y1, x2 − y2, ..., xk − yk). As stated in

Fact 3.5, we can update the counter values by any integer between c and −c, where c

here is equal to the largest exponent in the prime decomposition of the numbers in S.

When V checks if the value of the vector is equal to 1, M checks if the current value

of the counters is (0, 0, ..., 0), since the value of the vector is equal to 1 exactly when

all the counters are equal to 0.

For the other direction, we should simulate a rtDkCA M that can only check

if all counters are equal to 0 simultaneously with a rtDVA(1) V . For each counter ci

of V , we assign a distinct prime number pi for i = 1, ..., k. We multiply the “vector”
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with pi and 1
pi

, when the i’th counter ci is incremented and decremented, respectively.

Whenever M has all counters equal to 0, V ’s vector has value 1, so it can mimic M

as required.

We now prove a fact about rtDkCA’s that will be helpful in the separation of the

classes of languages associated with these machines and rtDVA(1)’s.

Theorem 3.7. UGAUSS = {an2+n | n ∈ N} ∈ L(rtD2CA).

Proof. We construct a real-time deterministic automatonM with two counters recog-

nizing UGAUSS. The idea of the proof is the same with the proof of Theorem 3.4. If

the input is the empty string, M accepts. Otherwise, M increments the first counter

on reading the first a. It then repeats the following procedure for the rest of the compu-

tation: Decrement the first counter until it reaches zero, while parallelly incrementing

the second counter. The second counter stops increasing exactly when the first counter

reaches 0. The counters then swap directions, with the second counter now being

decremented, and the first counter going up. When the second counter reaches 0, the

first counter is incremented one more time.

Throughout this loop, the accept state is entered only when the first counter is

zero.

Suppose that at some step, the value of the counter pair is (0, c). If the input

is sufficiently long, 2c + 2 steps will pass before the first counter reaches zero again,

with the pair having the value (0, c + 1). On an infinite sequence of a’s, the accept

state will be entered after reading the second a, and then again with intervals of 2c+ 2

symbols between subsequent entrances, for c = 1, 2, 3.... Doing the sum, we conclude

that strings of the form an
2+n, n ∈ N, are accepted.

For k ≥ 1, let LNGk = {w ∈ {a0, a1, ..., ak}∗ | |w|a0 = |w|a1 = ... = |w|ak}, where

|w|x denotes the number of occurrences of symbol x in w.
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Fact 3.8. [13] LNGk ∈ L(rtDkCA), and LNGk /∈ L(rtD(k-1)CA), for every k ≥ 1.

Fact 3.9. [4] 1DFAM’s can only recognize regular languages on unary alphabets.

We are now able to state several new facts about the computational power of

rtDVA(k)’s:

Theorem 3.10. For any fixed k > 0, L(rtDVA(1)) and L(rtDkCA) are incomparable.

Proof. From Fact 3.8, we know that LNGk+1 can not be recognized by any rtDkCA.

We can construct a rtDVA(1) V recognizing LNGk+1 as follows: We choose k + 1

distinct prime numbers p1, ..., pk, pk+1, each corresponding to a different symbol ai in

the input alphabet, where i ∈ {1, ..., k+1}. When it reads an ai with i in that range, V

multiplies its single-entry vector with pi. When it reads an a0, V multiplies the vector

with 1
p1p2···pkpk+1

. The input string w is accepted if the value of the vector is equal to

1 at the end of the computation, which is the case if and only if w ∈ LNGk+1. We

conclude that LNGk+1 ∈ L(rtDVA(1)).

From Theorem 3.7, we know that rtDkCA’s can recognize some nonregular lan-

guages on a unary alphabet. By Fact 3.9, we know that rtDVA(1)’s, which are addi-

tionally restricted 1DFAM’s, can only recognize regular languages in that case. Hence,

we conclude that the two models are incomparable.

Theorem 3.11. L(rtDVA(1)) (
⋃
k L(rtDkCA).

Proof. By the argument in the proof of Fact 3.6, any rtDVA(1) can be simulated by

a rtDkCA for some k. The inclusion is proper, since we know that a rtD2CA can

recognize a nonregular language on a unary alphabet (Theorem 3.7), a feat that is

impossible for rtDVA(1)’s by Fact 3.9.

Theorem 3.12. L(rtDVA(2)) *
⋃
k L(rtDkCA).
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Proof. Let GEQ = {ambn|m ≥ n ≥ 1}, and let GEQ∗ be the Kleene closure of GEQ. It

is known that no rtDkCA can recognize GEQ∗ for any k, due to the inability of these

machines to set a counter to 0 in a single step [14].

We will construct a rtDVA(2) V that recognizes GEQ∗. The idea is to use the

first entry of the vector as a counter, and employ matrix multiplication to set this

counter to 0 quickly when needed. V rejects strings that are not in the regular set

(a+b+)∗ easily. The vector starts out as [0, 1]. When it reads an a, V multiplies the

vector with the “incrementation” matrix Ma to increment the counter. When reading

a b, V rejects if the first entry is zero, since this indicates that there are more b’s than

there were a’s in the preceding segment. Otherwise, it multiplies the vector with the

“decrementation” matrix Mb.

Ma =

 1 0

1 1

Mb =

 1 0

−1 1


When an a is encountered immediately after a b, the counter has to be reset to 0, so

the Ma in the processing of such a’s is preceded by the “reset” matrix M0.

M0 =

 0 0

1 1


V accepts if it reaches the end of the input without rejecting.

We have mentioned that no multicounter automata can recognize GEQ∗ in real-

time due to the inability of these machines to set a counter to 0 in a single step. Let us

briefly talk about reset multicounter automaton introduced by Petersen in [15], which

are counter machines with the additional capability that each counter can be reset

to zero. With this additional capability, GEQ∗ is real-time recognizable by a reset

counter machine with one counter. Now, let us present a result comparing the power

of rtDkCA’s and reset counter machines. Let us denote a real-time deterministic reset

multicounter automaton with k counters as rtDkRCA.
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Theorem 3.13. L(rtDVA(3)) *
⋃
k L(rtDkRCA).

Proof. Let BIN = {0v(w)cwr|w ∈ 1{0, 1}∗} where v(w) denotes the number represented

by w in binary encoding. It is known that no rtDkRCA can recognize BIN for any

k [15].

We will construct a rtDVA(3) V that recognizes BIN. V ’s initial vector is [0 0 1].

Reading each 0, V first increments the first entry of the vector at each step. After

reading c, while reading wr the number represented by w is encoded in the second

entry of the vector. V multiplies the vector with matrix M0 (resp. M1) for each

scanned 0 (resp. 1).

M0 =


1 0 0

0 1 0

0 0 2

M1 =


1 0 0

0 1 0

0 1 2



After reading the input string, V subtracts the second entry from the first entry

by multiplying the vector with the matrix E3
4(−1). V accepts if the first entry of the

vector is equal to 0, and rejects otherwise.

We are now able to compare the power of rtDVA(1)’s with their one-way versions,

namely, the 1DFAM’s of Ibarra et al [4].

Theorem 3.14. L(rtDVA(1)) ( L(1DFAM).

Proof. We construct a 1DFAMM recognizing the language GEQ∗ that we saw in the

proof of Theorem 3.12. M uses its register to simulate the counter of a one-way single-

counter automaton. When it reads an a,M multiplies the register by 2. When reading

a new b,M rejects if the register has value 1, and multiplies with 1
2

otherwise. When a

new block of a is seen to start, M pauses its input head while repeatedly multiplying
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the register with 1
2

to set its value back to 1 before processing the new block. M

accepts if it has processed the whole input without rejecting.

By the already mentioned fact that no rtDkCA for any k can recognize GEQ∗,

and Theorem 3.11, we conclude that GEQ∗ /∈ L(rtDVA(1)).

We can say the following about the power of rtDVA(k)’s when we increase k.

Corollary 3.15. L(rtDVA(1)) ( L(rtDVA(2)).

Proof. Note that Fact 3.9 and Theorem 3.4 let one conclude that rtDVA(2)’s outper-

form rtDVA(1)’s when the input alphabet is unary.

A language L is in class TISP(t(n), s(n)) if there is a deterministic Turing Machine

that is both t(n)-time bounded and s(n)-space bounded and that decides L. It is easy

to state the following simultaneous Turing machine time-space upper bound on the

power of deterministic real-time vector automata:

Theorem 3.16.
⋃
k L(rtDVA(k)) ⊆ TISP(n3, n).

Proof. A Turing machine that multiplies the vector with the matrices corresponding

to the transitions of a given rtDVA(k) requires only linear space, since the numbers

in the vector can grow by at most a fixed number of bits for each one of the O(n)

multiplications in the process. Using the primary-school algorithm for multiplication,

this takes O(n3) overall time.

If one gave the capability of one-way traversal of the input tape to vector au-

tomata of dimension larger than 1, one would gain a huge amount of computational

power. Even with vectors of dimension 2, such machines can simulate one-way 2-

counter automata, and are therefore Turing equivalent [16]. This is why we focus on

real-time vector automata.
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3.2. Blind vector automata

A real-time deterministic blind vector automaton (rtDBVA(k)) is a rtDVA(k)

which is not allowed to check the entries of the vector until the end of the computation.

Formally, a rtDBVA(k) is a 6-tuple

V = (Q,Σ, δ, q0, Qa, v),

where the transition function δ is defined as δ : Q × Σ → Q × S, with S as defined

earlier. δ(q, σ) = (q′,M) means that when V reads symbol σ ∈ Σ in state q, it will

move to state q′, multiplying the vector with the matrix M ∈ S. The acceptance

condition is the same as for rtDVA(k)’s.

Let us begin with an example of programming with rtDBVA(k)’s.

Example 3.17. PAL = {w|w = wr, w ∈ {a, b}∗} ∈ L(rtDBVA(4)).

Proof. We construct a rtDBVA(4) V recognizing the palindrome language PAL as

follows. We let the initial vector equal [0,1,0,1]. While reading the input string w, V

encodes w and wr using the matrices Ma and Mb.

Ma =


1 0 0 0

1 10 0 0

0 0 10 0

0 0 1 1

 and Mb =


1 0 0 0

2 10 0 0

0 0 10 0

0 0 2 1


Each time reading an a and b, V multiplies the vector with the matrices Ma and Mb

respectively. Note that Ma and Mb consist of 2 blocks of submatrices. We use

Ma1 =

1 0

1 10

 and Mb1 =

1 0

2 10


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to encode wr and

Ma2 =

10 0

1 1

 and Mb2 =

10 0

2 1


to encode w. The encoding is done so that each a is represented by 1 and each b is

represented by 2. When we finish reading the string, we get wr encoded in the first

entry and w encoded in the third entry. When reading the right end-marker $, the

vector is multiplied with E3
4(−1). V accepts if the computation ends with the first

entry equaling 0, which occurs if and only if w = wr so that the encodings of w and

wr are equal.

Remark 3.18. Let us note that L(rtDBVA(1)) =
⋃
k L(rtDkBCA), unlike the gen-

eral case considered in Theorem 3.11. Since blind counter automata only check if all

counters are zero at the end, the reasoning of Fact 3.6 is sufficient to conclude this.

Let us now present a result stating the equivalence between 1DFAMW’s and

rtDBVA(1).

Theorem 3.19. L(rtDBVA(1)) = L(1DFAMW).

Proof. A rtDBVA(1) is clearly a 1DFAMW, so we look at the other direction of the

equality. Given a 1DFAMW V1, we wish to construct a rtDBVA(1) Vr which mimics

V1, but without spending more than one computational step on any symbol. When V1

scans a particular input symbol σ for the first time in a particular state q, whether it

will ever leave this symbol, and if so, after which sequence of moves, are determined

by its program. This information can be precomputed for every state/symbol pair by

examining the transition function of V1. We program Vr so that it rejects the input

if it ever determines during computation that V1 would have entered an infinite loop.

Otherwise, upon seeing the simulated V1 moving on a symbol σ while in state q, Vr
simply retrieves the aforementioned information from a lookup table, moves the head

to the right, entering the state that V1 would enter when it moves off that σ, and
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multiplies its single-entry vector with the product of the multipliers corresponding to

the transitions V1 executes while the head is pausing on σ.

Remark 3.20. In [6], it is noted that 1DFAMW can be regarded as a finite automa-

ton over the multiplicative group of non-null rational numbers. Having proven that

1DFAMW and rtDBVA(1) are equivalent models, rtDBVA(1) can be also regarded

analogously. With a similar reasoning, in [17] it is stated that blind multicounter au-

tomata are finite automata over the monoid Zn (a group where the elements do not

necessarily have inverses).

We now give a full characterization of the class of languages recognized by real-

time deterministic blind vector automata.

Theorem 3.21.
⋃
k L(rtDBVA(k)) = S=

Q.

Proof. For any language L ∈ S=
Q, we can assume without loss of generality that L =

(G,=1) [5] for some TuFA G with, say, m states. Let us construct a rtDBVA(k) V

simulating G. We let k = m, so that the vector is in Qk. The initial vector values

of V and G are identical. V has only one state, and the vector is multiplied with the

corresponding transition matrix of G when an input symbol is read. When processing

the right end-marker, V multiplies the vector with a matrix whose first column is the

final vector f of G. V accepts input string w if the first entry of the vector is 1 at the

end of the computation, which happens only if the acceptance value fG(w) = 1.

For the other direction, let us simulate a rtDBVA(k) V recognizing some language

L by a TuFA G. If V has m states, then G will have km states. For any symbol σ,

the corresponding transition matrix A is constructed as follows. View A as being tiled

to m2 k × k submatrices called Ai,j, for i, j ∈ {0, 1, ...,m − 1} which can be seen in

Figure 3.2. If V moves from qi to qj by multiplying the vector with the matrix M when

reading symbol σ, then Ai,j will be set to equal M . All remaining entries of A are

zeros. The initial vector v′ of G will be a row vector with km entries, viewed as being

segmented to m blocks of k entries. The first k entries of v′, corresponding to the initial
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Figure 3.1. Matrix A and submatrices Ai,j

A0,0 A0,1 . . . A0,m−1

A1,0 A1,1 . . . A1,m−1

...
...

. . .
...

Am−1,0 Am−1,1 . . . Am−1,m−1

state of V , will equal v, and the remaining entries of v′ will equal 0. The km entries of

the final column vector f of G will again consist of m segments corresponding to the

states of V . The first entry of every such segment that corresponds to an accept state

of V will equal 1, and all remaining entries will equal 0. G imitates the computation

of V by keeping the current value of the vector of V at any step within the segment

that corresponds to V ’s current state in the vector representing the portion of G’s own

matrix multiplication up to that point. We therefore have that L = (G,=1).

Remark 3.22. Note that if the components of a rtDBVA(k) are not restricted to be

rational, then one can obtain the fact that
⋃
k L(rtDBVA(k)) = S=.

In the next theorem, we prove that general real-time vector automata are strictly

more powerful than their blind versions.

Theorem 3.23.
⋃
k L(rtDBVA(k)) (

⋃
k L(rtDVA(k))

Proof. It is obvious that any rtDBVA(k) can be simulated by a rtDVA(k). In order to

prove that the inclusion is strict, we are going to construct a rtDVA(1) V that recognizes

the language NH = {axbay1bay2 · · · ayk |∃m, 1 ≤ m ≤ k,
∑m

i=1 yi = x}. Starting with the



24

initial value 0, V increases the vector by 1 at each step until reading the first b. After

the first b is encountered, the vector is decremented while reading each a. When V

reads a b, it checks if the current value of the vector is equal to 0. The input string

is accepted if the value of the vector becomes 0 at any time of the computation and

rejected otherwise. In [18], it is proven that NH is nonstochastic, meaning that there

exists no probabilistic finite automaton recognizing NH. Since
⋃
k L(rtDBVA(k)) = S=

Q

by Theorem 3.21, and S=
Q is a proper subset of stochastic languages S< [19], we conclude

the result.

We can also give a characterization for the case where the alphabet is unary,

thanks to the following fact, which is implicit in the proof of Theorem 7 in [20]:

Fact 3.24. All languages on a unary alphabet in S=
Q are regular.

Note that in order to prove Theorem 3.23, we could also use the above fact

that the unary languages recognized by blind vector automata are regular. Since we

have already showed that some nonregular unary languages can be recognized by the

standard model, the result follows.

Now, we can say the following about the effect of increasing k on the power of

rtDBVA(k)’s:

Theorem 3.25. L(rtDBVA(1)) ( L(rtDBVA(2)).

Proof. Let us construct a rtDBVA(2) V recognizing the marked palindrome language

MPAL = {wcwr|w ∈ {a, b}∗}. We let the initial vector equal [0, 1]. A similar construc-

tion is given in Example 3.17 for the palindrome language. While reading the input

string, V first encodes the string w in the first entry of the vector using the matrices

Ma1 and Mb1 of Example 3.17.

Upon reading the symbol c, V finishes reading w and starts reading the rest of

the string. V now makes a reverse encoding and multiplies the vector with Ma2 and
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Mb2 each time it reads an a and a b, respectively.

Ma2 =

 1
10

0

− 1
10

1

Mb2 =

 1
10

0

− 2
10

1



When the computation ends, the first entry of the vector is equal to 0 iff the

string read after the symbol c is the reverse of the string w so that the input string is

in MPAL.

Now, we are going to prove that MPAL /∈ L(2PFA). Suppose for a contradiction

that there exists a 2PFA M recognizing MPAL with bounded error. Then it is not

hard to show that PAL can be recognized by a 2PFAM′ such thatM′ sees the input,

say w, as u = wcw and then executes M on u. Note that M accepts u if and only if

w is a member of PAL. Since PAL /∈ L(2PFA) [21], we get a contradiction. Hence, we

conclude that MPAL can not be in L(2PFA).

It is known [22] that L(2PFA) includes all languages recognized by one-way de-

terministic blind multicounter automata, and we already stated that rtDBVA(1) and

rtDkBCA are equivalent models in Remark 3.18. Since MPAL /∈ L(2PFA), MPAL can-

not be in L(rtDBVA(1)). Having proven that MPAL ∈ L(rtDBVA(2)), we conclude

that L(rtDBVA(1)) ( L(rtDBVA(2)).

For an m-state rtDBVA(k) V , we define the size of V to be the product mk. For

all i ≥ 1, let L(rtDBVASIZE(i)) denote the class of languages that are recognized by

real-time deterministic blind vector automata whose size is i. We use the following fact

to prove a language hierarchy on this metric.

Fact 3.26. [23] (Recurrence Theorem) Let L be a language belonging to S=
Q in the alpha-

bet Σ. Let G be a TuFA recognizing L such that L = (G,= λ) for some λ ∈ Q and let n

be the number of states of G. Then for any words x, y, z ∈ Σ∗, if yz, yxz, ..., yxn−1z ∈ L,
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then yxmz ∈ L for any m ≥ 0. 1

Theorem 3.27. For every i > 1, L(rtDBVASIZE(i− 1))( L(rtDBVASIZE(i)).

Proof. We first establish a hierarchy of complexity classes for TuFA’s based on the

number of states, and use this fact to conclude the result.

Let us construct a k state TuFA G recognizing MODk = {ai | i 6= 0 mod k} ∈ S=
Q

such that MODk = (G,= 0). Note that since MODk is a regular language, what we

actually do is to simulate the deterministic finite automaton recognizing it. Let v0 be

the 1 × k initial vector of G which is equal to [1,0,. . . ,0]. Transition matrix Aa is as

follows:

Aa =



0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...

0 0 0 0 . . . 1

1 0 0 0 . . . 0



In the beginning of the computation, G is in the initial state q0. Reading each a,

G will move to the next state until it reaches qk−1. When in qk−1, reading one more a

G will move back to the initial state q0 and the same procedure will be repeated for the

rest of the computation. G will enter q0 with intervals of k symbols between subsequent

entrances. v0Aa
i is the vector describing the current state of G after reading i many

a’s, whose j’th entry is equal to 1 if G is in state qj−1. An input string w is accepted if

G is not in q0 at the end of the computation. The acceptance value for string w is equal

to fG(w) = v0Aa
|w|f where f is the final column vector whose first entry is equal to 1

1Recurrence Theorem in [23] is stated for the languages in S=. We were able to adapt it to our
case since the theorem also works for the languages in S=Q .
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and remaining entries are equal to 0. fM(w) will be equal to 0 iff M is not in state

q0 at the end of the computation which will guarantee that the strings of the form ai

where i 6= 0 mod k are accepted.

Having proven that MODk ∈ S=
Q, we claim that any TuFA G recognizing MODk

such that MODk = (G,= λ) should have at least k states. In order to prove our claim,

we are going to use Fact 3.26 as follows: Let n be the number of states of G ′ and let us

suppose that n < k. Let x = a, y = a and let z be the empty string. Since the strings

a, a2, ..., an are in MODk, by Fact 3.26 we see that the strings of the form a+ are also

in MODk and we get a contradiction. Hence, we conclude that n ≥ k should hold, and

that G should have at least k states.

By Theorem 3.21 there exists a real-time blind deterministic vector automaton

with size k (a rtDBVA(k) with just one state) recognizing the same language. Suppose

that there exists another real-time blind vector automaton V with size k′ such that

k′ < k. Then by Theorem 3.21, there exists a TuFA with k′ states recognizing MODk.

Since we know that any TuFA recognizing MODk should have at least k states, we get

a contradiction.

Hence, for every i > 1, we have showed that there is a language (MODi) which

is in L(rtDBVASIZE(i)), but not in L(rtDBVASIZE(i -1)) .

3.3. Nondeterministic vector automata

We now define the real-time nondeterministic vector automaton (rtNVA(k)) by

adding the capability of making nondeterministic choices to the rtDVA(k). The tran-

sition function δ is now replaced by δ : Q×Σ×Ω→ P(Q×S), where P(A) denotes the

power set of the set A. We will also study blind versions of these machines: A real-time

nondeterministic blind vector automaton (rtNBVA(k)) is just a rtNVA(k) which does

not check the vector entries until the end of the computation.



28

We start by showing that it is highly likely that rtNVA(k)’s are more powerful

than their deterministic versions.

Theorem 3.28. If
⋃
k L(rtNVA(k)) =

⋃
k L(rtDVA(k)), then P=NP.

Proof. We construct a rtNBVA(3) V recognizing the NP-complete language SUBSET-

SUM, which is the collection of all strings of the form t#a1#...#an#, such that t and

the ai’s are numbers in binary notation (1 ≤ i ≤ n), and there exists a set I ⊆ {1, ..., n}

satisfying
∑

i∈I ai = t, where n > 0. V ’s initial vector is [0, 0, 1]. The main idea of the

construction is similar to the one performed in 3.13 that we can encode the numbers

appearing in the input string to certain entries of the vector, and perform arithmetic

on them, all in real time. We use a similar encoding given in [24]. When scanning the

symbols of t, V multiplies the vector with the matrix M0 (resp. M1) for each scanned

0 (resp. 1).

M0 =


2 0 0

0 1 0

0 0 1

M1 =


2 0 0

0 1 0

1 0 1


When V finishes reading t, the vector equals [t, 0, 1]. In the rest of the computation,

V nondeterministically decides which ai’s to subtract from the second entry. Each

selected ai is encoded in a similar fashion to the second entry of the vector, using the

matrices

N0 =


1 0 0

0 2 0

0 0 1

N1 =


1 0 0

0 2 0

0 1 1


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After encoding the first selected ai, the vector equals [t, ai, 1]. V subtracts the second

entry from the first entry by multiplying the vector with the matrix E2
3(−1). After this

subtraction, the second entry is reinitialized to 0. V chooses another aj if it wishes,

and the same procedure is applied. At the end of the input, V accepts if the first entry

of the vector is equal to 0, and rejects otherwise.

If
⋃
k L(rtNVA(k))=

⋃
k L(rtDVA(k)), then SUBSETSUM would be in P by The-

orem 3.16, and we would have to conclude that P=NP.

We can say the following when we restrict k to 1.

Theorem 3.29. L(rtDVA(1)) ( L(rtNVA(1)).

Proof. We construct a rtNVA(1) V recognizing the language ISK = {anbn|n ≥ 1} ∪

{anb2n|n ≥ 1} as follows. V nondeterministically branches into two, multiplying its

single-entry vector with 2 in the first branch and with 4 in the second branch while

reading each a. While reading b’s, V multiplies the single-entry vector by 1
2
. At the

end of the computation, the string is accepted if one of the branches leads to an accept

state with the single-entry vector having value 1.

In [4], it is proven that the language ISK can not be recognized by a 1DFAM.

Having proven that L(rtDVA(1)) ( L(1DFAM) in Theorem 3.14, we conclude the

result.

Now we move our consideration to nondeterministic blind vector automata.

Remark 3.30. Let us note that L(rtNBVA(1)) =
⋃
k L(rtNkBCA), similar to the

deterministic case considered in Remark 3.18. We can similarly state the equivalence

L(rtNBVA(1)) = L(1NFAMW) for the nondeterministic case. The idea of Theorem

3.19 is enough to conclude this.
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Having stated the above remark, the following fact allows us to make a charac-

terization for rtNBVA(1)’s where the alphabet is unary.

Fact 3.31. [4] All 1NFAMW recognizable languages over a one letter alphabet are

regular.

Let us first prove a separation result between the blind and non-blind versions.

Theorem 3.32. L(rtNBVA(1)) ( L(rtNVA(1)).

Proof. We construct a rtDVA(1) V recognizing the language EQ∗ = {anbn|n ≥ 0}∗.

Reading each a and b, V multiplies its single-entry vector by 2 and 1
2

respectively which

is initially set to 1. After finishing reading a block of b’s, V checks if the single-entry

of the vector is equal to 1 and rejects the input string if this is not the case. An input

string is accepted if V can process the string without rejecting.

It is known that EQ∗ can not be recognized by a 1NFAMW [4]. Having stated

that L(rtDVA(1)) ( L(rtNVA(1)) in Theorem 3.29 and recalling that L(rtNBVA(1)) =

L(1NFAMW), the result follows. (Note that it also follows that L(rtDBVA(1)) (

L(rtDVA(1)).)

Now, we prove the following unconditional separation between the deterministic

and nondeterministic versions.

Theorem 3.33. L(rtNBVA(2)) *
⋃
k L(rtDBVA(k)).

Proof. Let us construct a rtNBVA(2) V recognizing the language POW = {ak+2k | k >

0}. The initial value of V ’s vector is [1, 1]. V ’s computation consists of two stages.

In the first stage, V doubles the value of the first entry for each a that it scans, by

multiplying the vector with the matrix M1. At any step, V may nondeterministically

decide to enter the second stage. In the second stage, V decrements the first entry by
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1, for each a that is scanned, using the matrix M2, and accepts if the first entry equals

0 at the end.

M1 =

 2 0

0 1

M2 =

 1 0

−1 1


If the input length is n, and if V decides to enter the second stage right after the k’th

a, the vector value at the end of the computation equals [2k − (n− k), 1]. We see that

2k − (n− k) = 0 if and only if n = k + 2k for some k.

Having proven that the nonregular language POW ∈ L(rtNBVA(2)), we note

that POW can not be in
⋃
k L(rtDBVA(k)), by Theorem 3.21, and Fact 3.24.

We can also state the following corollary by the same reasoning:

Corollary 3.34. L(rtNBVA(1)) ( L(rtNBVA(2)).

Proof. We have already stated that unary languages recognized by rtNBVA(1)’s are

regular in Fact 3.31. Having proven that POW ∈ rtNBVA(2) in Theorem 3.33, we

conclude the result.
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4. CONCLUSIONS

4.1. Open Questions and Future Work

� Can we show a hierarchy result based on the dimension of the vector for general

deterministic vector automata or for nondeterministic vector automata? Theorem

3.27 suggests that such a hierarchy can be possible based on the “size” of the

automata which we defined as the number of states times the dimension of the

vector.

� We have proved that for the deterministic case real-time vector automata are

more powerful than their blind versions. Is this also true for the nondeterministic

case?

� We have proved that the class of languages recognized by deterministic blind

vector automata correspond to S=
Q. Would properly defined probabilistic versions

of vector automata correspond to larger classes? Would quantum vector automata

outperform the probabilistic ones?

� Can we show any succinctness results with vector automata? Is it possible to

recognize some regular languages with fewer states? Can we simulate a finite

automaton using a deterministic blind vector automaton so that the size of the

vector automaton is smaller than the number of states of the finite automaton?

� We have mentioned that we focus on real-time computation since one-way de-

terministic vector automaton would be Turing-equivalent. Is it possible to make

time efficient Turing Machine simulation using a one-way deterministic vector

automaton?

� Assume that we limit the number of queries made to the vector so that we can

check the value of the vector only a constant number of times. Can we show

hierarchy results based on the number of queries? Similarly, what happens when

we limit the number of queries made to the counters in a multicounter automaton?

Will the obtained model be more powerful than the blind version?

� If we change the = comparison with > in the deterministic blind vector automata,
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we obtain the class of stochastic languages. Can we properly make a modification

to the = control so that the class of languages recognized will correspond to the

languages recognized by bounded error?

� The real-time vector automaton has a limitation that we can only check one of the

entries of the vector at each step. This limitation prevents us from simulating a

real-time deterministic multicounter automaton since we can not detect the status

of the counters in a single step. What happens if we allow to check multiple entries

of the vector? Would it be as powerful as the one-way model if all entries of the

vector can be checked in a single step?
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