
www.elsevier.com/locate/ecra

Electronic Commerce Research and Applications 5 (2006) 66–77
Efficient indexing technique for XML-based electronic product catalogs

Arzucan Özgür, Taflan _I. Gündem *

Computer Engineering Department, Boğaziçi University, 34342 Bebek, _Istanbul, Turkey

Received 22 April 2003; received in revised form 12 February 2004; accepted 10 October 2005
Available online 2 November 2005
Abstract

Electronic product catalogs are considered as one of the main components of e-commerce applications. Efficient processing of queries
on product catalogs is important for customer satisfaction. In this paper, we present an indexing structure for processing queries effi-
ciently on natively stored XML-based electronic product catalogs. We also present the performance comparison of our index structure
with two alternative approaches. The first is the extended inverted index technique, used in information retrieval and also in product
catalogs. The second is the traditional way of traversing the entire XML document for query processing via SAX. The research done
in the literature on efficient storage structure for XML is on generic XML documents. In this paper, we focus on efficient index structures
for XML-based product catalogs considering their specific needs and properties.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Electronic product catalogs; Semi-structured XML document; Indexing; Efficient query processing
1. Introduction

The Extensible Markup Language (XML) is becoming a
standard for Internet data representation as a mark-up lan-
guage and for data exchange over the Internet [1]. XML is
also used for storing semi-structured data such as product
catalogs [2]. XML allows users to ask very powerful queries
on the web. For example, doing a keyword search of ‘‘uni-
versity’’, ‘‘America’’, ‘‘biology’’ will probably return thou-
sands of documents most of which are irrelevant. However,
asking a query such as ‘‘Find the universities in America
that offer a biology degree and have an annual fee below
$20,000.’’ using an XML based query language such as
XML-QL [3], XQuery [4], XQL [5] or LOREL [6] allows
the user to get relevant results.

Product catalog is one of the most important compo-
nents of an e-commerce business as it is the main link
between the customer and the supplier. Here the customer
stands for the web user, who searches in the product cata-
log for specific products and has a tendency to purchase
them. Supplier stands for the organizations, who sell their
1567-4223/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.elerap.2005.10.007

* Corresponding author. Tel.: +90 212 3596605; fax: +90 212 2872461.
E-mail address: gundem@boun.edu.tr (T._I. Gündem).
products on the web. The current trend is to store the prod-
uct catalogs in relational database management systems
and allow keyword-based search. However due to XML�s
current popularity, we expect XML to replace at least par-
tially the relational databases for product catalogue repre-
sentation in the near future. XML can easily represent
semi-structured data present in product catalogs and
allows precise and powerful queries to be posed over
semi-structured data. Also if the product catalogue is
stored in XML, there is no need to a transformation of
the information in the product catalogue in data exchange,
since XML is fast becoming a standard in data exchange.
Thus, in this paper, we propose to store product catalogs
in the form of XML documents which we think will be
the trend in the future.

In order to increase customer satisfaction, products or
product groups should be accessible in an efficient way.
The proper choice of the physical storage structure of an
XML document and the indexing technique used are cru-
cial for efficient query processing. A lot of research has
been done to design efficient storage structures and index-
ing techniques for XML-based documents. In the litera-
ture, the index and storage structures proposed such as in
[2,7–16] are for generic XML documents and they do not

mailto:gundem@boun.edu.tr

A. Özgür, T.I_. Gündem / Electronic Commerce Research and Applications 5 (2006) 66–77 67
consider the semantics and the special properties of prod-
uct catalogs. In this paper, considering the peculiarities of
product catalogs and the queries most frequently posed
to them, we designed an efficient indexing technique for
XML-based electronic product catalogs stored in their ori-
ginal format.

As discussed in [2] there are mainly three approaches for
storing XML documents. One approach is to store XML
documents in a relational or object-oriented database sys-
tem. In [7–9] it is examined how to map and store XML
documents in a relational database system. A version of
Lore [10] examined the use of an object-oriented database
system O2 [11] for storing semi-structured data. It is stated
in [2] that storing and accessing XML documents via an
SQL interface poses an overhead not related to storage.
Thus using an object manager such as Shore [12] to store
XML data is proposed as an alternative approach. How-
ever, object managers do not offer the portability supplied
by Relational DBMS [2]. The third and perhaps one of the
most frequently used approaches is to store each XML
document in a text file. In this approach when an XML
query is evaluated against the document, the document is
read and parsed into a tree such as a DOM tree first and
then this structure is navigated to get the results of the
query. The main advantages of this approach can be sum-
marized as follows. It is easy to implement and there is no
need for an underlying database or object manager system.
However, in this approach the XML file has to be parsed
each time a query is evaluated. Also the parsed file must
be memory resident during query processing. Thus using
DOM is not suitable for disk-resident large product cata-
logs. As a solution external indices are used.

Storing XML-based product catalogs in relational or in
object-oriented database system or using an object manager
requires extra work in mapping XML data to relational or
object data models. In addition when a portion of the docu-
ment or the whole document is required, which is frequently
the case for product catalogs when they are exchanged or
browsed, there is the extra time and effort for reconstruction
and loading. Therefore, in this paper, we suggest to store
XML-based product catalogs in their original format and
propose an indexing structure for this storage.

A lot of research has been done on indexing techniques
for efficient query processing of natively stored XML doc-
uments in the literature. Some important examples are
DataGuides [13], the indexing technique used in the Lore
system [10], 1-Indexes and 2-Indexes [14], and the widely
used Inverted Indexing technique in information retrieval
[15,16]. DataGuides store each path in the XML document
starting from the root. They increase the performance of
queries that involve navigation of the document from the
root by reducing the portion of the document to be
scanned. However, DataGuides do not provide any infor-
mation about the parent–child relationship among ele-
ments and attributes of the document. Thus they cannot
be used for path queries that do not start from the root.
The same problem is also faced by 1-Index. The Lore sys-
tem proposes a solution to this problem by two additional
indexes, Bindex and Lindex [10]. However, since the overall
path structure is not stored as in DataGuides, the forward
and backward navigation over large datasets causes exten-
sive look-ups and joins. The Inverted Indexing technique
[15], which is very popular in traditional information retrie-
val systems to speed search operations, is extended for
XML documents in [16]. This Extended Inverted Indexing
technique preserves parent–child and ancestor–descendant
relationships among elements and attributes of the XML
document and also supports the processing of path queries
starting from any arbitrary node. Among the general tech-
niques to index XML documents, this technique seems to
be suitable for XML-based product catalogs. Thus it has
been used to enhance query processing over XML-based
product catalogs in the Agent-Based Electronic Commerce
System (ABECOS) Project [17].

In this paper, first an overview of product catalogs in
electronic commerce is given. The advantages of storing
and presenting catalogs in XML format and the main
problem of standardization are discussed in Section 2.
The most common query types asked over product catalogs
are discussed in Section 3. In Section 4, the Extended
Inverted Indexing technique [16] is described. The pro-
posed indexing technique is examined in Section 5. In Sec-
tion 6, we present the performance comparison of the
proposed indexing technique with the traditional system
as a baseline, which does not use indices but traverses the
entire XML document sequentially for query processing
and with the Extended Inverted Indexing technique pro-
posed in [16] and used in [17] for product catalogs. Finally,
we discuss the results and conclude in Section 7.

2. Product catalogs in e-commerce

Despite the huge growth of the e-commerce industry
and the success of the new businesses such as Amazon,
Yahoo or eBay, business-to-consumer e-commerce area
has many problems and requires research and improve-
ments especially from the database community.

An electronic commerce application such as a virtual
store, typically involves several types of actors such as cus-
tomers and suppliers. In addition, it also involves a signif-
icant amount of data such as product information stored in
product catalogs, customer information, order and pur-
chase information, payment and credit card information,
delivery information and invoice information. In this
paper, we concentrate on electronic product catalogs,
which are usually the most significant link between the cus-
tomer and the supplier and therefore are very important for
customer satisfaction. That�s why the storage, presentation,
design and organization of catalog information are criti-
cally important to create brand recognition [18].

In this paper, we view the product catalogs from the
point of view of databases. To achieve customer satisfac-
tion the efficiency of query processing over the product cat-
alogs is very important. We suggest storing product

68 A. Özgür, T.I_. Gündem / Electronic Commerce Research and Applications 5 (2006) 66–77
catalogs in XML format and propose an efficient indexing
structure to increase the efficiency of query processing. In
this section the main advantages and drawbacks of storing
and retrieving electronic product catalogs in XML format
are discussed briefly.

Storing product catalogs in XML format provides rich
product content, product classification, simplicity, flexibil-
ity, query optimization and interoperability. These are the
main requirements a good product catalog should possess
[18,19]. In the following paragraphs, we discuss how
XML meets these requirements.

Product or service information stored in a product cat-
alog may be in the format of text, images, videos, and
PDF�s among others. A usable catalog should include rich
structured product content. Product content must include
detailed product specifications (attributes) that may apply
to only a subset of the products, in addition to fields of
information common to all the products in the catalog such
as product ID and price [18]. These properties make the
content of product catalogs semi-structured data. The most
suitable form of representing and storing semi-structured
data is in the form of XML documents.

The products should be organized and classified into an
arbitrary hierarchy of categories and subcategories, which
may contain any number of levels [18]. This hierarchy leads
to parent–child relationships, which may be perfectly repre-
sented by XML format. In addition XML allows the defi-
nition of new tags, which can identify the type of each data
field stored in the catalog [19]. In this way the product
properties are described in a more comprehensive and flex-
ible way.

Another advantage of using XML for storing and pre-
senting product catalogs is its simplicity and flexibility.
XML stores information not in a binary format, but in a
character-based format. This feature allows the informa-
tion to be read or modified by any text editor without
any need for format conversion [19]. XML allows the infor-
mation of the catalog to be separated from the presenta-
tion. The catalog may be presented using different layouts
and formats without modifying the original file where the
information is stored [19].

To achieve customer satisfaction, the customer should
be able to locate individual products or groups of products
quickly and efficiently. This is why the lookup queries over
the product catalogs should be executed accurately and effi-
ciently. Since a specific tag identifies each data field in an
XML-based catalog, the client application can use the
information in the tags when formulating queries. In this
way, more relevant results are obtained when compared
to keyword-based lookup operations. This is how XML
allows query optimization over product catalogs.

Since customers may use different hardware and soft-
ware platforms, product catalogs should be interoperable
with any platform. This requirement is also supported by
XML [18,19].

However the main drawback of storing electronic prod-
uct catalogs in XML format is the lack of standardization.
XML is an extensible language and each supplier is free to
define his own tags. There is no approved standard that
agrees on common tags with common semantics among
XML-based product catalogs yet. However, a lot of effort
is being spent to find a solution to this problem. Two of the
most important ones are RosettaNet [20] and eCo Frame-
work [21].
3. Common query types in product catalogs

There are mainly two types of accesses executed over
electronic product catalogs. The first type of access is
update such as deletion, insertion or modification. Updates
are executed by the vendor or creator (administrator) of the
product catalog. The vendor may decide to insert or delete
a category type or a product. The vendor may also want to
modify a property of a product or category type. However
update queries are rare. As stated in [22], the frequency of
update queries is approximately 10% of the whole queries.
The remaining 90% of queries fall into the second category.
The second category of accesses is lookup operations. The
efficient processing of lookup queries is very important for
customer satisfaction. The customer should be able to
locate individual products or groups of products quickly
and efficiently. The customer should be able to find prod-
ucts by submitting any property or properties of the
searched product. As a result of the lookup query, the com-
plete information requested about a specific product or
products should be returned.

We classify the main lookup query types executed over
product catalogs into four types. The queries are expressed
in XPath standard [23]:

� Type 1: In Type 1 queries the customer wants to retrieve
the products that have specific properties. Some exam-
ples of this type of queries are given below:
Q1: /catalog/category[@name = �books�]/product-
[name = �The Brothers Karamazov�]
This query returns all the products in the �books� cat-
egory that have name �The Brothers Karamazov�.
Q2: /catalog//product[price[@currency = �$�] < 15]
This query returns all the products in the catalog
whose prices are less than $15.
Q3: /catalog/category[@name = �books�]/product-
[name = �The Brothers Karamazov� and author =
�Fyodor Dostoyevsky�]
This query returns all the products in the product cat-
alog, which are in the �books� category that have
name �The Brothers Karamazov� and author �Fyodor
Dostoyevsky�.

� Type 2: In Type 2 queries the customer wants to retrieve
all of the values of a property of a certain type of product.
Some examples of this type of queries are given below:
Q4: //category[@name = �books�]//author
This query retrieves the list of authors whose books
are present in the catalog.

A. Özgür, T.I_. Gündem / Electronic Commerce Research and Applications 5 (2006) 66–77 69
Q5: /catalog/category[@name = �books�]/product/
name
This query retrieves the list of the names of the books
in the product catalog.

� Type 3: Type 3 queries are very common in product cat-
alogs. In this type of queries the customer wants to
retrieve all the products in a specific category in the
product catalog. Some examples of Type 3 queries are
given below:
Q6: /catalog/category[@name = �books�]
This query lists all the products in the �books�
category.
Q7: /catalog/category[@name = �CDs�]
This query lists all the products in the �CDs� category.

� Type 4: In this type of query, the customer gives a spe-
cific property or properties of a product and wants to
retrieve some other property or properties of the prod-
uct. Some examples of Type 4 queries are given below:
Table 1
Inverted Tag Index for a portion of the sample product catalog in
Appendix A

Element start_offset end_offset Level

Catalog 1 207026 0
Category 2 106 1
Name 2 2 2
Product 3 25 4

Table 2
Inverted Term Index for a portion of the sample product catalog in
Appendix A

Term term_no Level

Books 2 3
1 3 6
The Brothers Karamazov 4 6
Fyodor Dostoyevsky 6 6
Q8: /catalog/category[@name = �books�]/product-
[name = �The Brothers Karamazov�]/price
In this query the price of the book with name �The
Brothers Karamazov� is asked.
Q9: /catalog/category[@name = �widgets�]/product-
[name = �umbrella�]/description. In this query the
description of the product in the �widgets� category
with name �umbrella� is asked.

4. Extended inverted indexing technique

Inverted indexing technique [15] has been used in IR
(information retrieval) systems widely to speed search
operations. It is based on indexing text words and their
positions in the documents. Inverted indexing technique
has been extended in [16] for XML documents.

This technique preserves the parent–child and ancestor–
descendant relationship among elements and attributes. It
allows processing of path queries starting from any arbitrary
node. Inverted indexing technique has been used widely in
IR systems. This extended version seems to be the most suit-
able technique to index XML-based product catalogs
among the general purpose indexing techniques for XML
documents discussed in the introduction. We are not aware
of any other indexing technique used in indexing XML
based product catalogs. This technique is used to enhance
query processing over XML-based product catalogs in
Agent-Based Electronic Commerce System (ABECOS) Pro-
ject [17]. Therefore, we have chosen to compare this tech-
nique with our proposed method in the performance study.

4.1. The structure of the extended inverted indexing

technique

The extended inverted index is composed of a suite of
indexes namely inverted tag index and inverted term index.
The former is for indexing the elements and attributes in
the XML document and the letter is for indexing the values
of them. In [16], term is defined to be each text word in the
document.However,wedefine it here as the value of each ele-
ment or attribute to make it comparable with our system.
Another modification we adapt is to remove the document
IDfield from the indexes, sincewe assume that a product cat-
alog consists of a singleXMLdocument onwhich the queries
are evaluated. Thesemodifications increase the performance
of the extended inverted index for product catalogs.

In Table 1, we display the inverted tag index for portion
of the sample product catalog given in Appendix A. The ele-
ment field stores the name of elements and attributes for
each occurrence in the document. Start_offset and end_off-
set is the beginning and ending position of that element or
attribute in the document. For ease of implementation, we
take begin and end line of elements and attributes as their
start and end offsets (byte offsets can also be used). The level
field indicates the nesting depth of that element or attribute
in the document. For instance the nesting depth of the root
element ‘‘catalog’’ is 0 and of ‘‘category’’ element is 1 for the
sample product catalog in Appendix A.

Table 2, displays the inverted term index for a portion of
the sample product catalog in Appendix A. In this index,
each occurrence of an element or attribute is indexed by
its value in the term field. Term_no denotes the position
of the term within the document. For ease of implementa-
tion we again take it to be the beginning line number of the
term. As in the inverted tag index, level stores the nesting
depth of the term within the document.

4.2. Query evaluation via the extended inverted indexing

technique

This is an indexing technique for generic XML docu-
ments. So, like other generic indexing techniques the pecu-
liarities of product catalogs, discussed in Sections 2 and 5,
and the most frequently asked query types over product
catalogs, discussed in Section 3, are not considered. There-
fore all the four types of queries are processed in the same
way. Another drawback is that the number of join opera-
tions performed to evaluate a query is proportional to

70 A. Özgür, T.I_. Gündem / Electronic Commerce Research and Applications 5 (2006) 66–77
the path length of the query. This leads to a serious prob-
lem for large XML documents. As an example let us
evaluate query Q1 (/catalog/category[@name = �books�]/
product[name = �The Brothers Karamazov�]) of Type 1.
As seen below six join operations are performed:

� �catalog� and �category� (retrieve category elements who
have catalog element as parent)
self-join on InvertedTagIndex
join condition:
catalog.start_offset 6 category.start_offset and
catalog.end_offset P category.end_offset and
catalog.level = category.level -1

� �category� and �name� (retrieve name attributes who have
category element as parent)
self-join on InvertedTagIndex
join condition:
category.start_offset 6 name.start_offset and
category.end_offset P name.end_offset and
category.level = name.level -1

� �name� and �books� (retrieve name elements with value
�books�)
join InvertedTagIndex with InvertedTermIndex
join condition:
name.start_offset 6 books.term_no and
name.end_offset P books.term_no and
name.level = books.level -1

� �category� and �product� (retrieve product elements who
have category element as parent)
self-join on InvertedTagIndex
join condition:
category.start_offset 6 product.start_offset and
category.end_offset P product.end_offset and
category.level = product.level -1

� �product� and �name� (retrieve name attributes who have
product element as parent)
self-join on InvertedTagIndex
join condition:
product.start_offset 6 name.start_offset and
product.end_offset P name.end_offset and
product.level = name.level -1

� �name� and �The Brothers Karamazov� (retrieve name
elements with value �The Brothers Karamazov�)
join InvertedTagIndex with InvertedTermIndex
join condition:
name.start_offset 6 The Brothers Karamazov.term_
no and
name.end_offset P The Brothers Karamazov.term_
no and
name.level = The Brothers Karamazov.level -1
Table 3

Category Index for a portion of the sample product catalog in Appendix A

category_path category_start_
offset

category_end_
offset

/catalog/category[@name = �books�] 2 106
/catalog/category[@name = �CDs�] 111 163
/catalog/category[@name = �widgets�] 169 7073
5. Indexing technique for XML-based product catalogs

We designed the proposed efficient indexing structure
for XML-based electronic product catalogs by considering
the most frequently asked queries over product catalogs,
discussed in Section 3; and the typical data stored in a typ-
ical product catalog, as discussed in the following.

Since, there is no approved standard that agrees on the
common tags with common semantics for XML-based
electronic product catalogs, each vendor names product
attributes with different semantics. This poses a big chal-
lenge in designing an efficient storage structure for XML-
based product catalogs. However, by examining different
product catalogs and different product types, we have
decided that the most flexible and presentable way to orga-
nize product catalogs is to group products into categories.
All the products have some common properties such as cat-
egory name, product name, product description, keywords,
product price, on sale date, shipping information, image or
clip of the product. Thus, we have decided to index this
information with the exception of the image and clip infor-
mation because they are not searchable. On the other hand,
each product may have some properties specific to itself
such as author or publication information for a book and
hardware information for a computer. In our indexing
scheme we also index this type of information specific to
a product.

5.1. The structure of the proposed indexing technique

We use four types of indexes. The indexes are stored as
tables in a relational DBMS for implementation simplicity.
In the following subsections we discuss the four index
types.

5.1.1. Category index

In electronic commerce applications, category searches
are very common. Customers very often query to view all
the products associated with a specific category. For
instance a customer may want to view all the books or
all the CD�s present in the product catalog (queries of Type
3). Thus, we decided to have a separate category index. In
Table 3, category index for a portion of the sample product
catalog in Appendix A is given.

To create the category index, the XML-based product
catalog is parsed and each path of a category is stored in
the form of XPath [23] expression in the category_path field
of the category index. In the category_start_offset and cat-

egory_end_offset fields, the start offset and end offset of the
category element in the XML file are stored.

Table 4
Path Index for a portion of the sample product catalog in Appendix A

Path path_id

/catalog/category[@name = �books�]/product/name 1
/catalog/category[@name = �books�]/product/author 2
/catalog/category[@name = �books�]/product/publication 3
/catalog/category[@name = �books�]/product/publisher/name 4

Table 6
Product Index for a portion of the sample product catalog in Appendix A

product_id start_offset end_offset

1 3 25
2 26 48
3 49 74
4 76 104
5 112 129

A. Özgür, T.I_. Gündem / Electronic Commerce Research and Applications 5 (2006) 66–77 71
5.1.2. Path index

In Table 4, Path Index for a portion of the sample prod-
uct catalog in Appendix A is given.

To create this index the XML-based catalog is traversed
and the paths that have attribute or element values are
inserted in XPath format [23] as string values into the path
field of the path index. A unique ID is assigned to each dif-
ferent path and stored in the path_id field.

5.1.3. Value index

The value index stores the value of each element or attri-
bute in the product catalog as a string in the value field of
the index; the product ID of the product which this element
or attribute belongs in the product_id field; and the path ID
of the XPath path leading to this element or attribute in the
path_id field. In Table 5, we give a portion of the value
index for the product catalog a part of which is given in
Appendix A.

To create the value index the XML-based product cata-
log is parsed and the path ID of the path leading to the spe-
cific element is retrieved from the path index. This path ID
is stored in the path_id field of the value index. The value of
the element is stored in the value field of the value index
and the ID of the product which this element or attribute
belongs is stored in the product_id field of the value index.
For instance, the path leading to the element value ‘‘The
Brothers Karamazov’’ is: �/catalog/category[@name =
�books�]/product/name�. The path_id of this path is
obtained from the path index and is 1. The product ID
of the product with name ‘‘The Brothers Karamazov’’ is
1. This forms the first entry in the value index.

5.1.4. Product index

In the product index, the unique product ID of each
product is stored in the product_id field of the index.
The start and end offsets of each product element are
stored in the start_offset and end_offset fields of the prod-
Table 5
Value Index for a portion of the sample product catalog in Appendix A

path_id Value product_id

1 The Brothers Karamazov 1
2 Fyodor Dostoyevsky 1
3 1 1
4 Penguin classics 1
5 1993 1
uct index. To construct the product index the XML-based
product catalog is parsed using the SAX (Simple API For
XML) standard and the start and end offsets of each
product element together with the product ID are inserted
to the product index. In Table 6, product index for a por-
tion of the sample product catalog in Appendix A is
given.

5.2. Query evaluation via the proposed indexing technique

The implementation of the storage and indexing struc-
ture of the XML-based electronic product catalog is done
using JAVA. The queries are processed using XPath [23].
The original XML document is parsed using the SAX
model (which is used only once while creating the indices).
While processing a query, first the query is parsed and the
path ID of the path is found from the path index. The
product ID and element value are returned according to
the path ID from the value index. The portion of the
XML-based product catalog that stores the relevant prod-
uct or products is returned using the start offset and end
offset obtained from the product index.

In electronic commerce applications, it is required to
return the result of a query in XML format so that it
can be presented to the customer with an appropriate
style sheet. Therefore, in the system we developed, when
there is a lookup operation for specific products with spe-
cific properties, the matched product elements are
returned in XML format (queries of Type 1). This is
the reason why the start and end offsets of product ele-
ments are stored in the product index. If specific values
need to be returned, such as the names of all books (que-
ries of Type 2 or Type 4), they are returned directly from
the index structure, without accessing the original XML
file. Since the queries such as listing all the products in
a specific category are very common and frequent (queries
of Type 3), the separate category index is useful. When
the list of all the products of a specific category is queried,
the portion of the XML document specified by the cate-
gory_start_offset and category_end_offset is returned.
Storing start and end offsets of products and categories,
reduces the portion of the XML-based product catalog
file to be scanned.

Since the paths are stored as strings in XPath format,
path matching is a simple string matching operation. Thus,
extensive join operations such as in the extended inverted
index are not performed. Furthermore, the path in the sub-
mitted XPath query need not start from the root and it

72 A. Özgür, T.I_. Gündem / Electronic Commerce Research and Applications 5 (2006) 66–77
need not consist of just direct parent–child relationships (�/�
operator) but it can also contain ancestor–descendant rela-
tionships (�//� operator). In these cases partial string match-
ing is performed.
5.2.1. Evaluating queries of Type 1
Suppose we want to evaluate query Q1 (/catalog/

category[@name = �books�]/product[name = �The Brothers
Karamazov�]) of Type 1 (type of queries for retrieving
products with specific given properties). The following
operations are performed:

� join PathIndex with ValueIndex to obtain the prod-
uct_ids of the products with the specified properties
join condition:
PathIndex.path = ‘‘/catalog/category[@name =
�books�]/product/name’’ and
PathIndex.path_id = ValueIndex.path_id and
ValueIndex.value = ‘‘The Brothers Karamazov’’

� join ValueIndex with ProductIndex to obtain the
start_offsets and end_offsets of the products with the
product_ids obtained from the previous join operation
join condition:
ProductIndex.product_id = ValueIndex.product_id
� Return the portion of the XML-based product catalog
between the start_offsets and end_offsets found in the
previous step

Only two join operations are performed. Only the por-
tion of the XML-based product catalog between the
obtained start-offsets and end-offsets is scanned.

5.2.2. Evaluating queries of Type 2

Suppose we want to evaluate query Q5 (catalog/cate-
gory[@name = �books�]/product/name), that retrieves the
list of the names of the books in the product catalog, of
Type 2 (type of queries for retrieving all the values of a spe-
cific given property of products of certain type). The fol-
lowing operations are performed:

� join PathIndex with ValueIndex to obtain the values of
the given property (names of the books in the catalog)
join condition:
PathIndex.path = ‘‘/catalog/category[@name =
�books�]/product/name’’ and
PathIndex.path_id = ValueIndex.path_id
Return ValueIndex.value

Only one join operation is performed. The XML-based
product catalog file is not accessed at all. The result of the
query is returned directly from the path index and the value
index.
5.2.3. Evaluating queries of Type 3

Suppose we want to evaluate query Q7 (/catalog/cate-
gory[@name = �CDs�]), that lists all the products in the
CD�s category, of Type 3 (type of queries for retrieving
products of a certain given category). The following oper-
ations are performed:

� Retrieve CategoryIndex.category_start_offset and Cate-
goryIndex.category_end_offset of the category where
CategoryIndex.category_path = ‘‘/catalog/category-
[@name = �CDs�]’’

� Return the portionof theXML-based catalogfile between
CategoryIndex.category_start_offset and CategoryIn-
dex.category_end_offset obtained in the previous step.

Queries of this type are very common in product cata-
logs and they are processed very efficiently by our indexing
structure. Only the category index is used and no join oper-
ations are performed. Only the portion of the XML-based
product catalog between the obtained category_start_offset
and category_end_offset is scanned.

5.2.4. Evaluating queries of Type 4

Suppose we want to evaluate query Q8 (/catalog/
category[@name = �books�]/product[name = �The Brothers
Karamazov�]/price), that retrieves the price of the book with
name ‘‘The BrothersKaramazov’’, of Type 4 (type of queries
for retrieving certain properties of products with specific
given properties). The following operations are performed:

� join PathIndex with ValueIndex to obtain the prod-
uct_ids of the products with the specified properties
join condition:
PathIndex.path = ‘‘/catalog/category[@name =
�books�]/product/name’’ and
PathIndex.path_id = ValueIndex.path_id and
ValueIndex.value = ‘‘The Brothers Karamazov’’
Return ValueIndex.product_id

� join PathIndex with ValueIndex to obtain the value of
the asked property
join condition:
PathIndex.path = ‘‘/catalog/cate-
gory[@name = �books�]/product/price’’ and
PathIndex.path_id = ValueIndex.path_id and
ValueIndex.product_id = product_id obtained in the
previous step
ValueIndex.value = ‘‘The Brothers Karamazov’’
Return ValueIndex.Value (price of the book)

Only two join operations are performed. The XML-
based product catalog file is not accessed at all to obtain
the result. The result is obtained directly from the value

index and the path index.

6. Performance study

In electronic commerce applications, the traditional way
of executing queries over XML-based product catalogs is by
storing the document in its original format and using SAX
(Simple API for XML) or DOM (Document Object Model)
API to execute the queries. DOM reads an XML document
and returns a representation of this document as a tree of

Table 8
Query classification

Type 1
queries

Q1 /catalog/category[@name = �books�]/product[name =
�The Brothers Karamazov�]

Q2 /catalog//product[price[@currency = �$�] < 15]
Q3 /catalog/category[@name=�books�]/product[name=

�The Brothers Karamazov� and author=
�Fyodor Dostoyevsky�]

Type 2
queries

Q4 //category[@name = �books�]//author
Q5 /catalog/category[@name = �books�]/product/name

Type 3
queries

Q6 /catalog/category[@name = �books�]
Q7 /catalog/category[@name = �CDs�]

Type 4
queries

Q8 /catalog/category[@name = �books�]/product[name =
�The Brothers Karamazov�]/price

Q9 /catalog/category[@name=�widgets�]/product[name=
�umbrella�]/description

Table 9a
Summary of performance results (in ms) for datasets catalog1 and
catalog2

Datasets Catalog1 Catalog2

Query P I T P I T

Q1 361 1091 1873 381 2995 3705
Q2 1191 1282 2584 1953 2634 4276
Q3 401 1652 1853 611 3575 3735
Q4 421 941 1773 751 2454 3455
Q5 440 1031 1742 741 2654 3845
Q6 921 1933 2914 1281 3044 4566
Q7 591 1352 2223 742 3004 4036
Q8 100 1472 1622 110 3555 3745
Q9 90 1433 1643 101 3435 3876

Table 9b
Summary of performance results (in ms) for datasets catalog3 and
catalog4

Datasets Catalog3 Catalog4

A. Özgür, T.I_. Gündem / Electronic Commerce Research and Applications 5 (2006) 66–77 73
nodes. Queries are executed by traversing the tree. The tree
is memory resident during the query execution and con-
structed each time a query is executed. SAX, on the other
hand is an event-driven API which accesses the XML docu-
ment through a sequence of events. SAX reads the docu-
ment and reports parsing events (such as the start and end
of element tags). SAX reads the information much faster
than DOM, since it does not need to allocate the tree struc-
ture. In addition SAX requires less memory [19].

In the method we propose, the XML document is parsed
only once in order to create the indexes. The indexing engine
runs also when updates occur. However, updates are very
rare in product catalogs as discussed earlier and stated in
[20]. The queries are executed over the indexes. The proposed
system is compared to the traditional system as a baseline,
where queries are executed over the XML document using
the SAXAPI. SAX is chosen instead ofDOM for the perfor-
mance analysis and comparison because it is more efficient
and suitable than DOM for large product catalogs that do
not fit into main memory. As discussed earlier, the inverted
index technique [16] extended for XML documents and used
for XML-based product catalogs in [17] is also used for com-
parison. JBuilder 6.0 and JDK 1.4.0 are used for the imple-
mentation and test runs. SAX API of java.sun.com is used
as the parser and for the test runs of the traditional method.
All the experiments were performed on an Intel Pentium IV
1.5 GHz machine with 128 MB of memory and 40 GB of
local disk storage, running under Windows 2000 Profes-
sional. To store and access the index structures for the
extended inverted index and for the proposed indexing tech-
niqueMSAccess relational DBMS is used. In the remainder
of this section the product catalog documents in XML for-
mat and the queries used in our experiments are described.
Finally the experiment results are displayed and evaluated.

6.1. Document set

In the performance study four XML-based product cat-
alog documents are used. In Table 7, the important fea-
tures of the four documents are listed.

6.2. Queries used in the performance study

In the Section 3, we have classified the queries executed
over product catalogs into four groups. In the performance
study query execution times of each type of query are mea-
sured for the proposed indexing technique, extended
inverted indexing technique [16,17] and for the traditional
Table 7
The datasets used for the experiments

Catalog1 Catalog2 Catalog3 Catalog4

Size of the document (MB) 11 30.9 60.7 120
Number of product elements 15,000 42,000 82,500 163,500
Number of category elements 12 30 57 111
technique. In Table 8, the main query types executed over
product catalogs and the queries used for the experiments
are summarized.

6.3. Experimental results

Test runs have been done over the documents described
in Section 6.1 for the queries discussed in Section 6.2. The
query processing time is used as the performance metric.
Table 9 (where P stands for the Proposed Indexing Tech-
Query P I T P I T

Q1 1252 4887 6750 2273 9903 12,809
Q2 5750 5458 7360 7861 9352 13,719
Q3 861 6620 6789 1141 11,004 12,568
Q4 3525 4266 6339 6088 8141 14,381
Q5 3505 4647 6880 6019 8721 13,509
Q6 1322 5357 7231 1692 10,111 12,057
Q7 801 5147 6639 881 9758 11,927
Q8 301 6369 6430 401 11,547 12,338
Q9 290 7000 6920 380 11,797 12,849

74 A. Özgür, T.I_. Gündem / Electronic Commerce Research and Applications 5 (2006) 66–77
nique, I stands for the Extended Inverted Index Technique
and T stands for the Traditional Technique) summarizes
the results obtained from the experiments.
0

500

1000

1500

2000

2500

3000

3500

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Query

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Fig. 1. Experiment res

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Query

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Fig. 2. Experiment res

0

1000

2000

3000

4000

5000

6000

7000

8000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Query

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Fig. 3. Experiment res
We present the graphical summary of the performance
results for documents catalog1, catalog2, catalog3 and cat-
alog4 in Figs. 1–4, respectively.
Q8 Q9

Proposed Technique

Extended Inverted Index

Traditional Technique

ults over catalog1.

Q8 Q9

Proposed Technique

Extended Inverted Index

Traditional Technique

ults over catalog2.

Q8 Q9

Proposed Technique

Extended Inverted Index

Traditional Technique

ults over catalog3.

0

2000

4000

6000

8000

10000

12000

14000

16000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Query

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Proposed Technique

Extended Inverted Index

Traditional Technique

Fig. 4. Experiment results over catalog4.

A. Özgür, T.I_. Gündem / Electronic Commerce Research and Applications 5 (2006) 66–77 75
It is revealed that the proposed system is more efficient
than the traditional system and the extended inverted
indexing technique for all of the main types of queries exe-
cuted over product catalogs. Especially for the queries of
Type 3 and Type 4, the proposed technique outperforms
considerably the extended inverted indexing technique
and the traditional system. The reason is that there is a sep-
arate category index in the proposed system for Type 3
queries. For Type 4 queries in the proposed system access
to the original XML file is not needed, i.e., results are
obtained directly from the index structure. This is valid also
for the extended inverted index technique. However, in the
extended inverted index technique, the overall path struc-
ture is not stored. Therefore, the number of join operations
is proportional to the path length of the query evaluated. In
the proposed technique, the paths are stored directly as
XPath expressions and thus path matching is a simple
string matching operation. For instance for query Q1, six
join operations are performed with the extended inverted
indexing technique, while only two join operations are per-
formed with the proposed technique. With the proposed
indexing method to execute queries of Type 1 and Type
4, two join operations are performed; to execute queries
of Type 2, only one join operation is performed; and no
join operations are performed to execute queries of type
3. Thus the extended inverted index technique has consid-
erably worse performance for lengthy queries. Also,
extended inverted index technique does not consider the
specific properties and needs of product catalogs and con-
sequently indexes all the elements and attributes and their
values. This increases the index size considerably and also
degrades its performance. In the traditional system, parsing
the document and navigating thorough the whole docu-
ment each time a query is asked decreases the performance
drastically.

In this performance study, we assumed that product
catalogs are well-organized and have a hierarchical struc-
ture of categories and sub-categories. However, if the
users want to express their products without product cat-
egories or product category as an attribute of a product,
they can use the indexing scheme again, but without the
category index which speeds Type 3 queries. The indexing
scheme can be used again to speed Type 1, 2, and 4 que-
ries. We can conclude that our indexing scheme increases
especially the performance of the four types of queries,
but can be used for other types of queries and for cata-
logs where products are not organized into categories as
well.

7. Conclusion

Efficient processing of queries posed over product cata-
logs is important for customer satisfaction. Storing product
catalogs in XML provides some advantages such as inter-
operability and flexibility. Due to XML�s increasing popu-
larity, we expect that product catalogs will be commonly
stored in XML in the near future. One of the basic
approaches in storing XML documents is to keep XML
documents in their original form. Keeping XML docu-
ments in their original form eliminates the burden of trans-
forming XML into other formats and back again to XML
format for data exchange. Also processing of natively
stored XML documents is rapidly gaining momentum in
the literature and practice.

In this paper, we present a novel technique for indexing
product catalogs stored in native XML format. The tech-
nique we propose considers the peculiarities of product cat-
alogs in general and the commonly asked queries on
product catalogs. We compare the performance of our pro-
posed technique with the traditional SAX-based retrieval
as a baseline and the extended inverted indexing technique
proposed for product catalogs in [17]. As far as we know
the extended inverted indexing technique is the only one
proposed for product catalogs in the literature. Our tech-
nique outperformed the baseline method and the extended
inverted indexing technique for all categories of queries
posed over natively stored XML product catalogs of vari-
ous sizes.

76 A. Özgür, T.I_. Gündem / Electronic Commerce Research and Applications 5 (2006) 66–77
Appendix A

A sample portion of a product catalog in XML:
<catalog>
 <category name=”books”>

 <product id=”1”>
 <name>The Brothers Karamazov</name>
 <description>A World Classic</description>
 <author>Fyodor Dostoyevski</author>
 <publication>1</publicationõ>
 <publisher>

 <name>Penguin Classics</name>
 <date>

<year>1993</year>
<month>02</month>

 </date>
 <city>London</city>

 </publisher>
 <price currency=”$”>12</price>
 <quantity_in_stock>100</quantity_in_stock>
 <image format=”gif” width=”234” height=”400” src=”images/karamazov.gif”/>
 <on_sale_date>

 <year>1999</year>
 <month>03</month>
 <day>04</day>

 </on_sale_date>
 <shipping_info>cargo</shipping_info>

 </product>
 <product id=”2”>

.
 .
 .

 </product>
 <product id=”3”>

.
 .
 .

 </product>
 <product id=”4”>

.
 .
 .

 </product>
</category>
<category name=”CDs”>

 <product id=”5”>
.

 .
 .

 </product>
.

 .
 .

</category>
<category name=” widgets”>

.
 .
 .

</category>
</catalog>
References

[1] T. Bray, J. Paoli, C.M. Sperberg-McQueen, Extensible Markup
Language (XML) 1.0. Available from: <http://www.w3.org/TR/
REC-xml>.

[2] F. Tian, D. DeWitt, J. Chen, C. Zhang, The design and performance
evaluation of alternative XML storage strategies, ACM SIGMOD
Record 31 (1) (2002).

[3] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu, XML-
QL: a query language for XML, in: Proceedings of the International
WWW Conference, 1999.
[4] D. Chamberlin, D. Florescu, J. Robie, J. Sim�eon, M. Stefanescu,
XQuery: A Query Language for XML, W3C, 2000. Available from:
<http://www.w3.org/TR/xmlquery>.

[5] J. Robie, J. Lapp, D. Schach, XML query language (XQL), in:
Proceedings of the Query Languages Workshop, Cambridge, MA,
December 1998. Available from: <http://www.w3.org/TandS/QL/
QL98/pp/xql.html>.

[6] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J.L. Wiener, The
Lorel query language for semistructured data, Journal on Digital
Libraries, 1997. Available from: <ftp://db.stanford.edu/pub/papers/
lorel96.ps>.

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlquery
http://www.w3.org/TandS/QL/QL98/pp/xql.html
http://www.w3.org/TandS/QL/QL98/pp/xql.html

A. Özgür, T.I_. Gündem / Electronic Commerce Research and Applications 5 (2006) 66–77 77
[7] A. Deutsch, M.F. Fernandez, D. Suciu, Storing semi-structured data
with STORED, SIGMOD Conference (1999) 431–442.

[8] D. Florescu, D. Kossman, A performance evaluation of alternative
mapping schemes for storing XML data in relational database, Rapport
de Recherche No. 3680 INRIA, Rocquencourt, France, May 1999.

[9] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. DeWitt, J.F.
Naughton, Relational databases for querying XML documents:
limitations and opportunities, VLDB (1999) 214–302.

[10] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J. Widom, Lore: A
database management system for semi structured data, SIGMOD
Record 26 (3) (1997) 54–66.

[11] F. Bancihon, G. Barbedette, V. Benzaken, C. Delobel, S. Gamerman,
C. Lecluse, P. Pfeffer, P. Richard, F. Velez. The design and
implementation of O2, an object-oriented database system, in: K.
Dittrich (Ed.), Proceedings of the Second International Workshop on
Object-oriented Database, 1988.

[12] M. Carey, D. DeWitt, J. Naughton, M. Solomon, et al., Shoring up
persistent applications, in: Proceedings of the 1994 ACM SIGMOD
Conference.

[13] R. Goldman, J. Widom, DataGuides: enabling query formulation and
optimization in semistructured databases, in: Proceedings of the
International Conference onVery LargeDatabases, 1997, pp. 436–445.

[14] T. Milo, D. Suciu, Index structures for path expressions, in:
Proceedings of the International Conference on Database Theory,
1999, pp. 277–295.
[15] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval,
Addison-Wesley, Reading, MA, 1999.

[16] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohman. On
supporting containment queries in relational database management
systems, in: Proceedings of the ACM SIGMOD International
Conference on the Management of Data, 2001.

[17] Ee-Peng Lim, Wee-Keong Ng, An overview of the agent-based
electronic commerce system (ABECOS) project, Bulletin of The IEEE
Computer Society Technical Committee on Data Engineering 23 (1)
(2000) 49–54.

[18] A2i, Inc. Product catalogs-why a relational DBMS and SQL are not
enough, Technical White Paper, version 1.03, May 9, 2001. Available
from: <http://www.test.bitpipe.com/rlist/org/1029567262_495.html>.

[19] J. Ueyama and E.R.M. Madeira, Using XML for electronic catalogs,
in: Workshop on Information Integration on the Web 2001: 43–50.
Available from: <http://www.cos.ufrj.br/wiiw/papers/06-Jo_Ueyama
(31).pdf>.

[20] RosettaNet Consortium, Official site. http://www.rosettanet.org/.
[21] CommerceNet, The eCo framework standardization project. Available

from: <http://www.commerce.net/projects/currentprojects/eco/>.
[22] W.D. Smith, TPC-W: Benchmarking an E-Commerce Solution,

Revision 1.2, Intel Corporation. Available from: <http://www.tpc.
org/tpcw/TPC-W_Wh.pdf>.

[23] W3C Recommendation, XML Path Language (Xpath) 1.0, 1999.
Available from: <http://www.w3.org/TR/xpath>.

http://www.test.bitpipe.com/rlist/org/1029567262_495.html
http://www.cos.ufrj.br/wiiw/papers/06-Jo_Ueyama(31).pdf
http://www.cos.ufrj.br/wiiw/papers/06-Jo_Ueyama(31).pdf
http://www.rosettanet.org/
http://www.commerce.net/projects/currentprojects/eco/
http://www.tpc.org/tpcw/TPC-W_Wh.pdf
http://www.tpc.org/tpcw/TPC-W_Wh.pdf
http://www.w3.org/TR/xpath

	Efficient indexing technique for XML-based electronic product catalogs
	Introduction
	Product catalogs in e-commerce
	Common query types in product catalogs
	Extended inverted indexing technique
	The structure of the extended inverted indexing technique
	Query evaluation via the extended inverted indexing technique

	Indexing technique for XML-based product catalogs
	The structure of the proposed indexing technique
	Category index
	Path index
	Value index
	Product index

	Query evaluation via the proposed indexing technique
	Evaluating queries of Type 1
	Evaluating queries of Type 2
	Evaluating queries of Type 3
	Evaluating queries of Type 4

	Performance study
	Document set
	Queries used in the performance study
	Experimental results

	Conclusion
	Appendix A
	References

