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Abstract

A database which provides information
about bacteria and their habitats in a com-
prehensive and normalized way is crucial
for applied microbiology studies. Having
this information spread through textual re-
sources such as scientific articles and web
pages leads to a need for automatically
detecting bacteria and habitat entities in
text, semantically tagging them using on-
tologies, and finally extracting the events
among them. These are the challenges
set forth by the Bacteria Biotopes Task
of the BioNLP Shared Task 2016. This
paper describes a system for habitat and
bacteria entity normalization through the
OntoBiotope ontology and the NCBI tax-
onomy, respectively. The system, which
obtained promising results on the shared
task data set, utilizes basic information re-
trieval techniques.

1 Introduction

Retrieving useful information from text became
increasingly important as numerous data are col-
lected on the Internet (Singhal, 2001). It became
even more crucial to be able to reach the desired
information from among lots of articles and re-
sources when it comes to studies of science, espe-
cially biomedicine (Cohen and Hersh, 2005). The
problem tackled in this paper is the semantic cate-
gorization of bacteria and habitat entities extracted
from scientific paper abstracts. This problem has
been addressed as a sub-task of the BioNLP Bac-
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teria Biotope Shared Task 2016 (Deléger et al.,
2016).

The Bacteria Biotope Task of the BioNLP
Shared Task was previously conducted in
2011 (Bossy et al., 2011; Bossy et al., 2012) and
2013 (Bossy et al., 2013; Bossy et al., 2015). Both
machine learning based (Nguyen and Tsuruoka,
2011; Björne et al., 2012; Grouin, 2013; Claveau,
2013) and rule based approaches (Ratkovic et
al., 2012; Karadeniz and Ozgür, 2013; Bannour
et al., 2013) have been developed to identify
and normalize bacteria and habitat entities. The
normalization of habitat entities through the
OntoBiotope ontology has been first addressed in
the 2013 edition of the Entity Categorization sub-
task, where four teams participated (Bossy et al.,
2013; Bossy et al., 2015). The highest F1-score
(61%) and lowest Slot Error Rate (SER) (66%)
was achieved by the LIPN system (Bannour et al.,
2013), which used a combination of an ontology
projection method and a rule based machine
learning algorithm, namely WHISK (Soderland,
1999). The BOUN system (Karadeniz and Ozgür,
2013; Karadeniz and Özgür, 2015), which is based
on syntactic rules, and the LIMSI system (Grouin,
2013), which is based on Conditional Random
Fields (CRF), obtained similar SER scores (68%).
The IRISA system, which obtained a SER value of
93% (Claveau, 2013), used the k nearest neighbor
algorithm with the Okapi-BM25 (Robertson et al.,
1999) similarity measure.

In this paper we describe the system that we de-
veloped for our participation at the “Entity catego-
rization” sub-task of the Bacteria Biotope (BB3)
task of BioNLP Shared Task 2016. Motivated by
the promising results of rule-based entity catego-
rization approaches in the previous editions of the
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shared task, we designed a rule-based approach
that makes use of information retrieval and pattern
matching techniques for normalizing bacteria and
habitat entities through the provided ontologies.

2 System Description

2.1 Overview of the System

We developed an ontology based categorization
system for the Entity Categorization sub-task. The
system consists of two modules, one for the habi-
tat categorization task and the other for the bacte-
ria categorization task. The habitat categorization
module makes use of basic information retrieval
techniques including tf-idf scoring and cosine sim-
ilarity. The bacteria categorization module utilizes
string matching methods such as Levenshtein dis-
tance. These modules are described in detail in the
following sub-sections.

2.2 Categorization of Habitat Entities

The workflow of the habitat categorization mod-
ule is presented in Figure 1. Given a habitat entity
mention, the goal is to identify the corresponding
concepts in the OntoBiotope ontology. First, the
OntoBiotope ontology is expanded by using the
training and development data sets. Next, both ex-
act matching and partial matching approaches are
used to identify the ontology concepts relevant to
the habitat entity mention. Partial matching is for-
mulated as an information retrieval task, where tf-
idf scoring and cosine similarity are used to rank
the ontology concepts with respect to the given
habitat entity.

2.2.1 Ontology Expansion

The OntoBiotope ontology is an ontology of
biotopes organized as a hierarchical structure of
concepts. A sample concept in the ontology is
shown in Figure 2. An OntoBiotope concept con-
sists of an ID, name, as well as exact and re-
lated synonyms. The parent-child relations be-
tween concepts are represented with the is a field.

[Term]
id: OBT:000218
name: animal
synonym: “animal host” RELATED []
synonym: “animal-associated habitat” EXACT []
synonym: “animal species” RELATED []
is a: OBT:000036 ! eukaryote host

Figure 2: A sample OntoBiotope ontology concept

The documents in the training and develop-
ment data sets have habitat mentions labeled with
their corresponding OntoBiotope concepts. We
expanded the OntoBiotope ontology by including
these habitat mentions as related synonyms to the
associated concepts. Figure 3 shows the expanded
version of the “animal” concept in Figure 2, where
the concept has been expanded by adding the “an-
imals” and “animal models” as related synonyms.

[Term]
id: OBT:000218
name: animal
synonym:“animal host” RELATED []
synonym:“animal-associated habitat” EXACT []
synonym: “animal species” RELATED []
synonym: “animals” RELATED []
synonym: “animal models” RELATED []
is a: OBT:000036 ! eukaryote host

Figure 3: A sample expanded OntoBiotope ontol-
ogy concept

2.2.2 Normalization
A habitat entity mention is normalized by match-
ing it with one or more concepts in the Onto-
Biotope ontology. We used exact and partial
matching approaches for this task.

Given a habitat entity mention, first the system
searches for exact matches with the names or exact
synonyms of the ontology concepts. If an exact
match is found, the habitat entity is labeled with
the corresponding ontology concepts.

If an exact match is not found, partial match-
ing is performed using information retrieval tech-
niques. Each concept in the ontology is treated as a
document and an inverted index of concepts is cre-
ated. The unigrams and bigrams in the names, ex-
act synonyms, and related synonyms of concepts
are represented as tf-idf weighted terms in the in-
verted index. The habitat entity mention is treated
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Figure 1: Categorization of Habitat Entities

as a query. In order to capture more contextual
information, the query is expanded by including
the unigrams and bigrams of the document where
the habitat mention occurs. The cosine similar-
ities between the query and the concepts in the
inverted index are computed. The concepts are
ranked based on their cosine similarity scores to
the habitat query and the habitat mention is an-
notated with the concept that obtains the highest
cosine similarity score.

If the system does not find any relevant concepts
based on exact and partial matching, the habitat
mention is normalized with the root of the ontol-
ogy, i.e., with the concept OBT:000001 shown in
Figure 4.

[Term]
id: OBT:000001
name: experimental medium
is a: OBT:000000 ! bacteria habitat

Figure 4: Default normalization

2.3 Categorization of Bacteria Entities

The workflow of the bacteria categorization mod-
ule is presented in Figure 5. In this module, bac-
teria entity mentions are normalized with their
corresponding taxonomy IDs in the NCBI taxon-
omy. First, a preprocessing step is applied where
punctuation marks are removed and abbreviation
and acronyms are expanded. Next, a normal-
ization and matching step is applied where pre-
processed bacteria mentions are matched against
the NCBI taxonomy using exact and approximate
string matching methods.

2.3.1 Preprocessing
In order to increase the possibility of matching
bacteria mentions with their correct categories in
the NCBI taxonomy, a set of preprocessing tech-
niques described below are developed by examin-
ing the documents and the NCBI taxonomy.

2.3.1.1 Punctuation Mark Removal

Some punctuation marks provide no useful infor-
mation for our task and may hinder the perfor-
mance of the system for matching bacteria names
in the NCBI taxonomy. Therefore, we replaced
parenthesis, quotation marks, and multiple white
spaces with a single white space character. In ad-
dition, lower casing all characters is performed in
this step.

The preprocessing steps described below make
use of the context information, i.e., the document
where the bacteria entity occurs to transform the
bacteria entity mention to a more convenient for-
mat for matching with the NCBI taxonomy.

2.3.1.2 Abbreviation Expansion

One of the most common challenges for bacte-
ria categorization is that bacteria names frequently
occur in abbreviated forms. In general, the first
occurrence of a bacteria name in a document is
written as a full name (e.g., “Escherichia coli”)
and the successive mentions are written in abbre-
viated forms (e.g., “E. Coli”). A bacteria mention
in abbreviated form is compared with the previous
closest1 bacteria mentions in the document. If a
previously occurring bacteria mention starts with
the same capital letter as the abbreviated form and

1Distance between two bacteria mentions is computed
based on the positions of the mentions in the document.
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Figure 5: Categorization of Bacteria Entities

contains the remaining sub-string of the abbrevi-
ated form, the abbreviated form is converted to
the corresponding bacteria mention in full name
form before searching in the NCBI Taxonomy. For
example, “E. Coli” is expanded to “Escherichia
coli” if there is an occurrence of “Escherichia
coli” before the abbreviated form in the same doc-
ument. If there is not a match with previously oc-
curring bacteria mentions in the document, then a
search is performed starting from the abbreviated
form until the end of the document, to look for the
expanded version.

Another commonly occurring abbreviation pat-
tern in documents is that the first terms of two
bacteria mentions actually refer to the same word,
but one of them occurs as an abbreviation. For
example, in the “Chlamydia trachomatis and C.
psittaci” phrase, “C.” corresponds to “Chlamy-
dia”. The bacteria mentions occurring before and
after the abbreviated name in the document are ex-
amined. If there is not a bacteria mention in the
document matching the sub-string “psittaci”, then
bacteria mentions starting with the same letter are
considered as matches. Search is performed from
the abbreviated mention first to the beginning of

the document and next to the end of the document.
Preference is given to matches that are closer to the
abbreviated form in the document. In the provided
example, “C. psittaci” is expanded to “Chlamydia
psittaci” before searching the NCBI Taxonomy.

2.3.1.3 Single Word Abbreviation Expansion

Another common abbreviation pattern is when af-
ter the full name mention of a bacterium, it is re-
ferred to with the first word in its name (i.e., its
genus name) in the rest of the document. For ex-
ample, “Escherichia coli” is referred to as “Es-
cherichia”. To expand such abbreviations, the sin-
gle word bacteria mention is compared with the
preceding and following bacteria mentions in the
document. If the single word bacteria mention
is a sub-string of a multi-word bacteria mention,
the single word mention is expanded to that multi-
word mention. Preceding and closer matches are
given higher precedence.

2.3.1.4 Acronym Expansion

Although bacteria entities can be referred to
with acronyms like “MRSA” in documents, such
acronyms are not directly represented in the
NCBI taxonomy, but may appear within the
names of multiple bacteria categories with differ-
ent IDs such as “Staphylococcus aureus MRSA-
Lux-1” and “Staphylococcus aureus MRSA-Lux-
2”. Based on our observation in the training set,
in order to resolve ambiguity, we expanded such
acronyms consisting of less than five capital letters
to the closest bacteria mention in the same docu-
ment.

2.3.1.5 Handling Other Special Abbreviations

Several special abbreviations including “sp.”,
“spp.”, “strain”, “str.”, “aff.”, “cf.”, “subgen.”,
“gen.”, and “nov.” are used within species names
in biomedical documents. These special abbrevi-
ations should be ignored while matching species
names against the NCBI Taxonomy, since they are
not in general included in the “scientific name” or
the name tagged as “authority” in the NCBI Tax-
onomy. For instance, “Escherichia (sp.) coli” in
a biomedical document should match with “Es-
cherichia coli” in the NCBI Taxonomy. There-
fore, we removed such abbreviations from bacteria
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name mentions in text to improve matching perfor-
mance.

Another challenge in bacteria categorization is
that a bacteria species can have numerous sub-
types, each corresponding to a different category
in the taxonomy. This makes it hard to match
a bacteria mention in text with its correspond-
ing category in the taxonomy. Special rules are
designed by analyzing the provided training and
development data to enhance matching in such
cases. For example, the word “type” is removed
from a bacteria mention in text before match-
ing against the NCBI Taxonomy. This enables
matching “Escherichia coli type a” in text with
“Escherichia coli a” in the taxonomy. In cases
where sub-types are denoted with semi-colon, the
sub-string following the semi-colon in the bacte-
ria mention is removed before matching with the
terms in the taxonomy. This allows “Escherichia
Coli O8:K88” in text to match with the category
“Escherichia Coli O8” in the taxonomy. Other
transformations performed to enhance sub-type
matching are converting the “ssp” abbreviation to
“subsp.” and the “ara+” sub-string to “ara+ bio-
type” in the bacteria mentions in text. We did not
remove these sub-species denoting abbreviations,
since keeping them resulted in better performance.
We converted these abbreviations to their versions
occurring in the names tagged as “scientific name”
or “authority” in the taxonomy.

2.3.2 Normalization and Matching with
Taxonomy

After the preprocessing steps, a bacteria mention
in text is converted to a candidate phrase to be
matched against the categories in the NCBI Tax-
onomy. First, an exact match is performed and the
phrase is assigned to the matching category in the
taxonomy.

If there is no an exact match, then partial phrase
matching is performed. In a candidate phrase, it is
possible that an irrelevant word, for instance an ad-
jective, appears. That irrelevant word will cause an
unsuccessful search in the taxonomy. Therefore,
partial matching with the first two words, last two
words, and first and last words of the candidate
phrase are performed and the partially matching
category is assigned to the candidate phrase.

If exact and partial phrase matching do not
match with any categories in the taxonomy, then
partial string matching using Levenshtein edit dis-
tance is performed to detect the most similar cat-

egory to the candidate. We set the edit distance
threshold to 2. For taxonomy categories with edit
distance less than or equal to the threshold, “error
ratio” is computed as follows.

Error ratio =
edit distance

length of the candidate
(1)

The error ratio threshold is set to 0.2. So, the
candidate phrase is assigned to a taxonomy cate-
gory, if edit distance and error ratio are less than
or equal to 2 and 0.2, respectively. In this case, if
a candidate phrase is of length 4, and if a bacteria
name is found in the taxonomy with edit distance
1, this is not accepted as a successful match, since
error ratio is 0.25.

Finally, if an exactly or partially matching cate-
gory is not found, the context of the bacteria men-
tion in the document is used for category assign-
ment. In this case, the bacteria mention is mapped
to the same category of the closest bacteria men-
tion for which a category was assigned in the doc-
ument.

3 Evaluation and Results

Different evaluation metrics are used for habitat
and bacteria entities. Wang similarity (Wang et al.,
2007) with a weight of 0.65 is used for evaluation
of habitat entities by computing the similarity be-
tween the reference and the predicted normaliza-
tion. This metric determines a semantic similar-
ity score between two nodes of a directed acyclic
graph (DAG) whose nodes have is a relations with
their parents. This similarity metric takes into ac-
count the locations of the terms within the DAG,
their distances to the root and to common ances-
tors. Evaluation of bacteria entities is stricter. If
two terms (reference and predicted) are the same,
the similarity score is equal to 1, otherwise it is
0. Two systems, namely LIMSI and our system
BOUN participated in the BB3-CAT shared task.
The official evaluation results on the shared task
test data set are presented in Table 12 . Among the
two participating systems, our system ranked first
in the overall task of habitat and bacteria name cat-
egorization, as well as in the individual sub-tasks
of habitat name categorization and bacteria name
categorization.

2http://2016.bionlp-st.org/tasks/bb2/bb3-evaluation
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Precision BOUN LIMSI
Main Scoring 0.679 0.503
Habitats Only 0.620 0.438
Bacteria Only 0.801 0.637

Table 1: Official evaluation results

3.1 Results for Habitat Categorization

This sub-section provides the evaluation results of
the system at its major development phases over
the training and development data sets. Precision
and recall values calculated from true positives,
false positives, and false negatives are reported.
Habitats that are normalized correctly are consid-
ered to be true positive, the ones normalized with
wrong categories are considered to be false posi-
tives, and if there are no exact or partial matches
found for a habitat, it is considered to be a false
negative. BB3-CAT Precision corresponds to the
entity categorization precision computed using the
online evaluation tool provided at the BB3 shared
task3 . BB3-CAT precision is based on the Wang
similarity (Wang et al., 2007).

Development Training
True Positive 214 309
False Positive 186 349
False Negative 321 516
Precision 0.53 0.47
Recall 0.40 0.37
BB3-CAT Precision 0.58 0.55

Table 2: Results without bigram expansion or nor-
malization to OBT:000001

Table 2 presents the baseline results when only
unigrams are used for cosine similarity computa-
tion and no normalization to the root concept is
performed. Table 3 presents the results after in-
troducing the bigrams to the system and simulta-
neously increasing the term frequency weights of
the unigrams by a factor of two.

3http://bibliome.jouy.inra.fr/demo/BioNLP-ST-2016-
Evaluation/index.html

Development Training
True Positive 224 332
False Positive 176 326
False Negative 311 493
Precision 0.56 0.50
Recall 0.42 0.40
BB3-CAT Precision 0.61 0.59

Table 3: Results with bigram expansion

Although bigram expansion increases the
scores, there are still some habitats with no
matched categories. In case of computing Wang
scores, leaving a habitat without a category is a
drawback, since any normalization gains a better
score than no normalization. Our results in Table
4 show that normalizing unmatched habitats to the
concept OBT:000001 increases the Wang scores.

Development Training
True Positive 226 343
False Positive 228 404
False Negative 309 482
Precision 0.50 0.46
Recall 0.42 0.42
BB3-CAT Precision 0.63 0.62

Table 4: Results with bigram expansion and nor-
malization to OBT:000001

3.2 Results for Bacteria Categorization

Our baseline system that only performs punctua-
tion removal and exact matching between candi-
date name and a bacteria name in the taxonomy
obtained precision-F-measure values of 0.39-0.40
over the development set and 0.57-0.58 over the
training set. This benchmark was a plain starting
point for this study.

We improved the baseline system by applying
the preprocessing steps. The most common errors
seen in the results were the unmatched abbrevia-
tions. Then, we applied the abbreviation expan-
sion step described in Sub-section 2.3.1.2. and our
precision-F-measure values increased to 0.59-0.71
over the development set and to 0.74-0.83 over the
training set. Thus, this enhancement was the most
effective one overall.

After that, we applied the single word ab-
breviation expansion step described in Sub-
section 2.3.1.3. This improvement increased the
precision-F-measure values to 0.64-0.75 on the de-
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velopment set and to 0.78-0.86 on the training
set. Finally, we applied the acronym expansion
step and it raised the precision-F-measure values
to 0.67-0.77 on the development set and to 0.81-
0.87 on the training set. This final result is the
last benchmark that we got after preprocessing the
bacteria names. The results of the preprocessing
steps are presented in Table 5.

Development Training
Punctuation rem. P 0.39 0.57

R 0.41 0.59
F 0.40 0.58

Abbreviation exp. P 0.59 0.74
R 0.89 0.94
F 0.71 0.83

Single word exp. P 0.64 0.78
R 0.90 0.95
F 0.75 0.86

Acronym exp. P 0.67 0.81
R 0.90 0.93
F 0.77 0.87

Table 5: Results after preprocessing (P: Precision,
R: Recall, F: F-measure)

Table 6 summarizes the results of the normal-
ization and matching steps that are performed af-
ter the preprocessing steps. Matching with the
original bacteria mention first and matching with
the preprocessed version if there is no a match
with the original version resulted in 0.77 preci-
sion and 0.78 F-measure over the development
set and 0.87 precision and 0.88 F-measure over
the training set. In addition, both partial phrase
matching using two-word combinations and par-
tial string matching using Levenshtein distance re-
sulted in improved performance. Finally, assign-
ing unmatched bacteria mentions to the taxonomy
of the closest categorized bacteria mention in the
same document resulted in considerable improve-
ment in precision and F-measure.

4 Conclusion

This study introduced a system that is developed in
the scope of the Entity Categorization sub-task of
the BioNLP Bacteria Biotope Shared Task 2016.
The system consists of two modules both of which
target normalizing entities that have been detected
in scientific paper abstracts. While the habitat cat-
egorization module operates on habitat mentions
expressed in natural language and uses the On-
toBiotope ontology for normalization, the bacte-
ria categorization module deals with bacteria men-
tions expressed as more structured scientific ex-

Development Training
Exact matching P 0.77 0.87

R 0.79 0.89
F 0.78 0.88

Sub-phrases P 0.81 0.90
R 0.85 0.92
F 0.83 0.91

Edit distance P 0.83 0.91
R 0.89 0.95
F 0.86 0.93

Unmatched handling P 0.89 0.95
R 0.99 0.99
F 0.94 0.97

Table 6: Results after the matching and normaliza-
tion steps (P: Precision, R: Recall, F: F-measure)

pressions and uses the NCBI Taxonomy for nor-
malization.

Promising results are obtained by both mod-
ules, which utilize pattern matching and informa-
tion retrieval techniques. According to the official
evaluations, the habitat categorization module ob-
tained 0.620 precision and the bacteria categoriza-
tion module obtained 0.801 precision, which led to
achieving the highest overall precision of 0.679 in
the BB3-CAT sub-task. As future work, integrat-
ing WordNet based similarity measures to improve
ontology-based matching will be investigated.
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Louise Deléger, Robert Bossy, Estelle Chaix,
Mouhamadou Ba, Arnaud Ferré, Philippe Bessières,
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