WideDTA:

deep drug-target binding affinity prediction Hakime Öztürk¹, Elif Ozkirimli² and Arzucan Özgür¹

Departments of { 1 Computer Engineering, 2 Chemical Engineering }, Boğaziçi University, İstanbul, Turkey { hakime.ozturk, elif.ozkirimli, arzucan.ozgur } @boun.edu.tr

EXPERIMENTS & RESULTS

4 CONCLUSION

We compared the performance of WideDTA with a state-of-art deep learning based approach, DeepDTA [5] and two traditional machine learning based models in drug-target that we refer to as KronRLS [6] and SimBoost [7].

SMILES sequences are represented in **DeepSMILES** [8] which yielded better performance in terms of evaluation metrics.

Davis dataset CI MSE				KIBA dataset	KIBA dataset		
				CI MSE			
0.871	0.872	0.878	0,886	0.836 0.863 0,87	5		

>We proposed a deep-learning based approach to predict drug-target binding affinity, WideDTA, that combines four different textual pieces of information related to proteins and ligands.

BOGA

1863

>The protein sequence, domains and motifs were all represented as a set of 3-residue words, whereas for ligands, 8-character chemical words and maximum common substructure (MCS) words were extracted from the complete SMILES strings.

 \succ DeepDTA is a character based approach, whereas WideDTA uses word representations. Our results suggest that the word based approach can be an alternative to the character based approach.

References

WideDTA model that combined all textual sources protein PS + PDM + LS + LMCS achieved better performance than other possible combinations.

[1] Sigrist, C. *et al.* (2009) Nucleic acids research [2] Wozniak, M. et al. (2018) Scientific reports [3] Davis, M. I. et al. (2011). Nature biotechnology. [4] Tang, J. et al. (2014). Journal of Chemical Information and Modeling [5] Öztürk, H. et al. (2018) Bioinformatics [6] Pahikkala, T. et al. (2014). Briefings in bioinformatics [7] He, T. et al. (2017). Journal of cheminformatics. [8] O'Boyle & Dalke (2018) ChemRxiv

Travel funding to ISMB/ECCB 2019 was generously provided by ISCB.

We gratefully acknowledge TUBITAK-BIDEB 2211.