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3 EXPERIMENTS & RESULTS 4 CONCLUSION
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We compared the performance of WideDTA with a state-of-art deep
learning based approach, DeepDTA [5] and two traditional machine

learning based models in drug-target that we refer to as KronRLS [6] and »DeepDTA Is a character based approach,

SimBoost [7]. whereas WideDTA uses word representations.
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better performance in terms of evaluation metrics. based approach.
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WideDTA model that combined all textual sources protein PS + PDM + .
LS + LMCS achieved better performance than other possible 6CB
combinations.
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