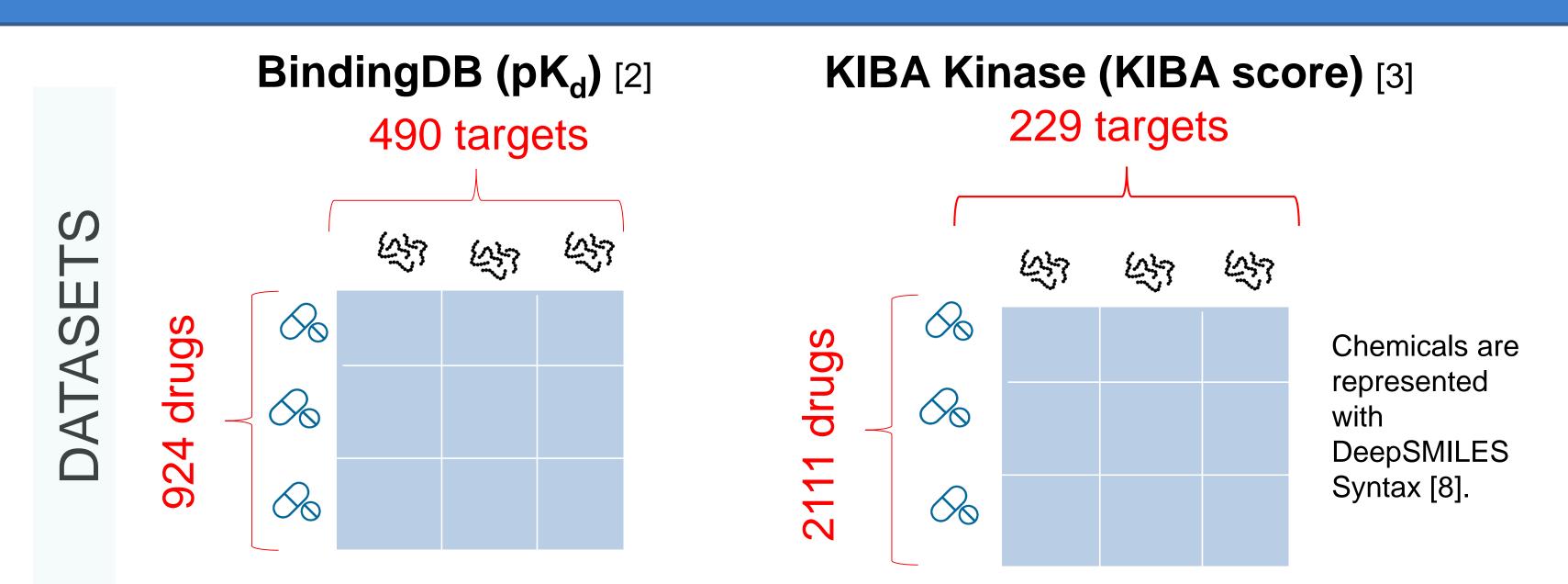
A chemical language based approach for the prediction protein-ligand binding affinity

Hakime Öztürk¹, Arzucan Özgür¹ and Elif Ozkirimli²


Departments of { 1 Computer Engineering, 2 Chemical Engineering } Boğaziçi University, İstanbul, Turkey

1. ABSTRACT

Identification of high affinity drug-target interactions (DTA) is a major research question in drug discovery. In this study, we propose a novel methodology to predict drug-target binding affinity using only ligand SMILES information.

We represent proteins using the word-embeddings of the SMILES representations of their strong binding ligands. Each SMILES is represented in the form of a set of chemical words and a protein is described by the set of chemical words. We then utilize the XGBoost algorithm to predict protein - drug binding affinities for two benchmark datasets.

3. RESULTS

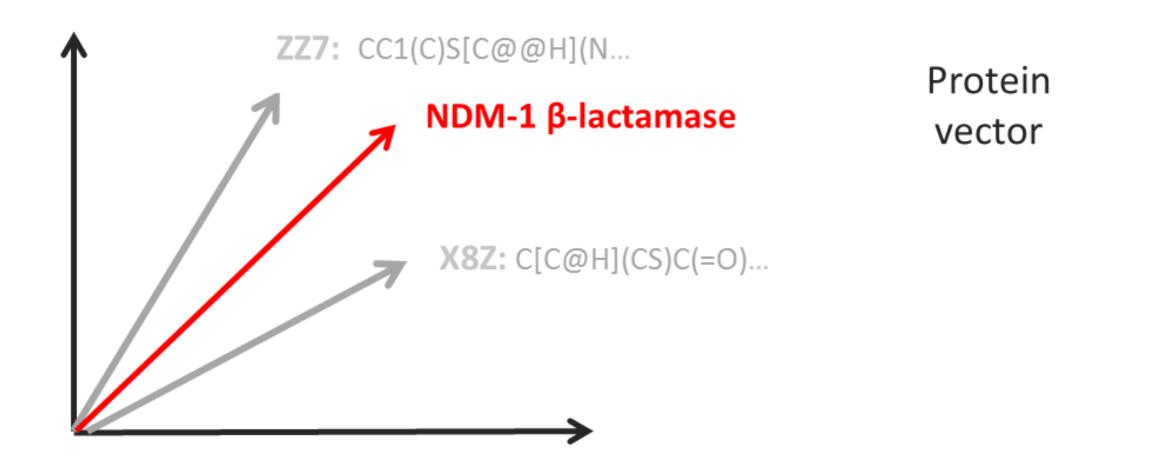
2. METHODS

SMILESVec: Distributed ligand representation [1]

Table 1. DTA performance comparison for BindingDB dataset (5 fold cv)

Method	Protein	Drug	CI	MSE
KronRLS [4]	S-W	Pubchem	0.814	0.939
SimBoost [5]	S-W	Pubchem	0.853	0.485
DeepDTA [6]	CNN	CNN	0.873	0.409
XGBoost [7]	DeepSMILESVec * TFIDF	DeepSMILESVec	0.857	0.482

Table 2. DTA performance comparison for KIBA dataset (5 fold cv)


Method	Protein	Drug	CI	MSE
KronRLS [4]	S-W	Pubchem	0.782	0.411

n, number of chemical words

SMILESVec-based protein representation

protein: NDM-1 β-lactamase

interacting ligands: ZZ7 (ampicillin), X8Z (L-captopril)

We suggested two important modification to SMILES-based protein representation to enhance drug-target binding affinity prediction performance:

1. Considering only strong-bindings ligands

2. Using Term Frequency – Inverse Document Frequency (TF-IDF) weighting

SimBoost [5] Pubchem 0.836 S-W 0.222 DeepDTA [6] CNN CNN 0.863 0.194 XGBoost [7] DeepSMILESVec * DeepSMILESVec 0.230 0.833 TFIDF

4. CONCLUSION

- With this study, we proposed a novel approach to predict drug-target binding affinity by
- representing proteins with the chemical words of their high affinity ligands.
- We were able to predict drug-target binding affinity using only SMILES strings without using any protein sequence or structure information.
- As expected, using only the high affinity ligands in the protein representation yielded a better performance than using all available or tested ligands.

5. References

C(=O)O)C

[1] Öztürk, H. *et al.* (2018a). *Bioinformatics*

[2] Liu, Tiqing, et al. (2006). *Nucleic acids research* [3] Tang, J. *et al.* (2014). *JCIM*

[4] Pahikkala, T. *et al.* (2014). *Briefings in bioinformatics*[5] [7] He, T. *et al.* (2017). *Journal of cheminformatics*.
[6] Öztürk, H. *et al.* (2018b). *Bioinformatics*

[7] Tianqi & Guestrin.(2016). ACM
[8] O'Boyle & Dalke (2018). ChemRxiv
[9] Mikolov, T. *et al.* (2013). *ANIPS*

