A novel methodology on distributed representations of proteins using their interacting ligands

Hakime Öztürk¹, Elif Ozkirimli² and Arzucan Özgür¹

Departments of { 1 Computer Engineering, 2 Chemical Engineering }, Boğaziçi University, İstanbul, Turkey

1. ABSTRACT

The effective representation of proteins is a crucial task. Related proteins usually bind to similar ligands. Chemical characteristics of ligands are known to capture the functional and mechanistic properties of proteins suggesting that a ligand based approach can be utilized in protein representation.

3. RESULTS

Table 1. Distribution of families and super-families in A-50 dataset before and afterligand-interaction based filtering

Dataset	Num. Seq.	Super- families	Families
Refore	10816	1080	2100

- Total 10816 proteins, only (1639) 15% of them interacts at least a ligand.
- 64% of all interacting proteins have ligands fewer than 200 and 0.6% of all proteins are with single ligands.

We propose a novel method to compute similarity of proteins by describing them based on their ligands' SMILES.

2. METHODS

COLLECTING INTERACTING LIGANDS OF PROTEINS

After	1639	425	652

The mean number of the interacting ligands is 1791.

n words

For each chemical word that is extracted from ligand SMILES, a real-valued vector (embedding) is learned from a large training set [2]

SMILESVec (word) SMILESVec (char)

SMILESVec (word) SMILESVec (char)

The clustering is completed with TransClust [3] algorithm following similar pipeline to [4].

4. CONCLUSION

Using SMILESVec, we were able to define proteins based on their interacting ligands even in the absence of sequence or structure information.

✤ We showed that ligand-based protein representation, which uses only SMILES strings of the ligands that proteins bind to, performs as well as protein-sequence based representation methods in protein clustering.

Ligand-based protein description can be applied to different bioinformatics problems such as prediction of new protein-ligand interactions and protein function annotation.

5. References

TUBITAK-BIDEB 2211-E and Bogaziçi University BAP are gratefully acknowledged.

