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ABSTRACT

WORD SENSE DISAMBIGUATION USING WORDNET

The concept of sense ambiguity means that a word which has more than one

meaning is used in a context and it needs to be clarified that which sense is actually

referred. Word sense disambiguation (WSD) is the concept of identifying which sense

of a word is used in a sentence or context.

Sense disambiguation is a problem that can be overcomed easily by complex

structures of human brain. In computer sciences, however, it can be solved by using

appropriate algorithms according to the application of words. In computer sciences,

this problem is one of the most important and current issues in Natural Language

Processing (NLP).

Word sense disambiguation is a very important task in natural language pro-

cessing applications such as machine translation and information retrieval. In this

paper, different approaches to this problem are described and summarized, and an-

other method for Turkish using WordNet is proposed. In this method, Lesk algorithm

is used but it is extended in a way that it exploits the hierarchical structure of WordNet.
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ÖZET

TÜRKÇE WORDNET İLE KELİME ANLAMININ

BELİRLENMESİ

Anlam belirsizliği kavramı, doğal dillerde çokça görülen, bir kelimenin birden

fazla anlama sahip olması durumudur. Sözcük anlam belirsizliği giderme ise bu bir-

den fazla anlama sahip olan sözcüğün cümle içinde hangi anlama geldiğini belirleme

kavramıdır.

Anlam belirsizliği, insanlarda karmaşık düşünme yapıları sayesinde bağlamdan

yola çıkarak üstesinden kolayca gelinebilen bir sorunken bilgisayar bilimlerinde, ancak

sözcüğün uygulanma şekline göre uygun algoritmaların kullanılması ile çözümlenebilir.

Bilgisayar bilimlerinde ise bu sorun Doğal Dil İşleme (DDİ) alanlarında ele alınmakta

olan önemli ve güncel konular arasında yer almaktadır.

Kelime anlamı belirsizliği, makine çevirisi ve bilgi alma gibi doğal dil işleme

uygulamalarında çok önemli bir görevdir. Bu yazıda, bu soruna farklı yaklaşımlar

anlatılmıştır ve bu yaklaşımlar özetlenmiştir. Aynı zamanda Türkçe için Wordnet kul-

lanılarak anlam belirsizliğini gideren başka bir yöndem ileri sürülmüştür. Bu yöntemde

Lesk algoritması kullanılır, ancak WordNet’in hiyerarşik yapısını kullanacak şekilde

genişletilir.
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1. INTRODUCTION AND MOTIVATION

Word sense disambiguation refers to the process of determining the correct sense

(meaning) of a word in a given context. For example, one may want to know if the word

fare (mouse) in Turkish is meant to be an animal or a computer device in a sentence.

This is automatically done by human beings because natural languages are parts of

our lives and it is very natural to us to extract the meanings of the words in different

contexts. However, this is a very hard task for computers. First of all, for a computer,

words are just a sequence of characters and the characters are just a sequence of bits

which may vary according to the encoding scheme used. Therefore, there is a need for

clever algorithms to tell the computer to understand the meanings of the words. This

also requires sufficient data which is WordNet, an hierarchical lexical database, in our

case.

Our project topic is a crucial part of natural language processing, because knowing

the sense of a word in a given context is very helpful in lots of applications such as

machine translation and information retrieval. Without any sense disambiguation, it

is very difficult to translate a sentence which contains the word fare from Turkish to

any other language. Similarly, search engines have to account for the correct sense of

a word during the information retrieval, otherwise a person who looks for a mouse for

her computer may find herself looking at the pictures of animals.

The motivation behind such project is the importance of word sense disambigua-

tion and the lack of extensive works in this field in Turkish language. We believed that

we could combine well-known approaches to the problem together and put our ideas

on top of them to create an accurate system.
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2. STATE OF THE ART

While we were doing research, we have seen that there are a lot of papers regarding

word sense disambiguation task. In this chapter, we will summarize these approaches

briefly and we will demonstrate the papers that we have examined.

There are different approaches to the problem and various methods to use. These

are mainly knowledge-based, corpus-based and machine learning-based approaches.

Knowledge-based methods rely on some predefined knowledge databases such as Word-

Net. Corpus-based approaches use available texts as examples and they use these

examples in classification process. Machine learning methods are usually used with

corpus-based approaches and they aim to decide the correct sense of the word by mak-

ing use of supervised or unsupervised machine learning algorithms. Since we have used

WordNet, our work can be considered as knowledge-based. However, all the methods

described above can be combined and we can also make use of other methods in a

future work.

During the preparation process, we have read various articles in this field to have

a deeper understanding about the topic. Below, you can find the summaries:

2.1. Word Sense Disambiguation Using WordNet Relations

[4]It starts by defining Lesk Method which is based on counting the common

words in the synsets of the target word and the other words that are in the context,

both in bag of words representations. However, it turns out that applying only Lesk

Method for word sense disambiguation results in relatively low accuracy. That’s why

they exploit WordNet hierarchy to get a higher accuracy. For this purpose, they use

WordNet hyponym/hypernym relationships in a way that the number of common words

is also being calculated for “parent” synsets, not just for the synsets that are given by

the words in the given sentence, which they call “base synsets”. “Child” synsets are not

included because some experiments show that they do not contribute to the accuracy.
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They assign a weight for each synset which is basically inversely proportional to its

synset level. In other words, the words in a synset get a weight inversely proportional

to the synsets’ distance from base synset. For example, base synset gets a weight

of 1 and the parent synset gets a weight of 0.5 and so on. Furthermore, they also

include every word’s definition in the word bags, not just the word’s themselves to

improve the accuracy. Finally, they calculate a score for each sense of the target word

by calculating the common words between the bags described above and multiplying

them by the weights of words. The sense that has the highest score is selected as the

proposed sense for the target word.

2.2. Unsupervised Word Sense Disambiguation Using WordNet Relatives

[9]This work is based on utilizing WordNet relations as much as possible. The

key idea that they follow is as following: Given a context and a target word, first,

they find the relatives of the target word’s senses in the WordNet hierarchy. Since the

distant relatives are more irrelevant than the close ones, they consider each relative

separately instead of putting them into one bag. Then, for each relative, they calculate

the co-occurrence of that relative with the context words. For this purpose, they create

a co-occurrence matrix of all pairs of words in a large corpus. Finally, they conclude

that the word that has the highest co-occurrence can be substituted with the original

word and therefore, it is the proposed sense of the target word.

2.3. Determining Senses for Word Sense Disambiguation in Turkish

[7]In this work, they start by annotating the correct senses of the word “git”

manually in seven world classics. Then, they argue that using pseudowords may help

a lot during the disambiguation process. Their idea is to concatenate the words that

have no direct relationships between them such as “haber” and “ağaç” to form the

pseudoword “haberağaç” and then whenever there is a sentence that contains either

of these words, it will be considered as it contains the word “haberağaç”. In their

opinion, this approach helps to obtain a sense tagged corpus for later stages. However,

they don’t explain how it helps and what they do in the next stages. That’s why this
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article was actually not that helpful to improve our understanding in this area.

2.4. Word Sense Disambiguation for Turkish Lexical Sample

[8]This research focuses on four Turkish words in detail, instead of creating a

working system for all words. These four words are “bas”,”gül”, “kır” and “yüz” each

of which has lots of different senses in Turkish. Article starts by summarizing general

methods that is being used for word sense disambiguation and continues by describing

their work. Firstly, they collect sentences from seven books written by Tolstoy, Turgut

Özakman, Barbara Taylor and Marlo Morgan. Then, they collect the senses for the four

words given above from TDK and eliminate some senses by merging the ones that have

very similar meanings. From the seven books selected, they pick 100 sample sentences

for each sense of the word “bas” (300 in total since there are 3 senses at the end) and

apply the similar approach for the other three words. After getting all these sentences,

they label the senses of the words manually. Collecting the number of senses for the four

words selected is struggling in this work, because in different dictionaries, the number

of senses are different for these words. They deal with this problem by eliminating the

senses which are similar in meaning. Using a parser called Zemberek which is designed

for Turkish, they parse the sentences and decide the features that affect word sense

disambiguation. Although it says supervised machine learning algorithms and Naive

Bayes is used, there are no details about how they are implemented which is the most

important lacking of this paper.

2.5. A New Semantic Similarity Measure Evaluated in Word Sense

Disambiguation

[1]This research actually aims for finding a similarity measure between two words.

Since they test the similarity measure that they propose in a word sense disambiguation

task, the approach that they follow to measure similarity may help us in our project.

The article starts with some other similarity measures. It describes a very impor-

tant algorithm which is called Maximum Relatedness Disambiguation, or alternatively,

Adapted Lesk Algorithm. In this algorithm, a window of size n which contains the tar-
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get word in the middle is selected and all the senses of the target word are compared

with the words in the window. Depending on the similarity measure followed during

this process, scores for each sense are calculated and the sense that has the highest score

is proposed as the correct sense of the target word. Researchers use this algorithm to

evaluate their similarity measure. The idea behind their measure is the combination of

the length and specificity. By length, they mean the shortest path between the words

in the WordNet taxonomy, and by specificity, they mean how specific the given word

is. A word is specific if it is in the deeper nodes in WordNet and a word is abstract if

it is in the upper nodes of the hierarchy. Combining these ideas, they measure their

precision and recall and they get accurate values.

2.6. Automatic Sense Disambiguation Using Machine Readable

Dictionaries: How to Tell a Pine Cone from an Ice Cream Cone

[5]In 1986, Michael Lesk proposed the algorithm that would later be called the

Lesk algorithm in the article. The reason that led Lesk to find this approach is that

previous procedures use existing dictionaries and can only use immediate context to

process any text. Lesk algorithm is basically, retrieves from dictionary all sense def-

initions of the words to be disambiguated, determines the definition overlap for all

possible sense combinations, and chooses senses that lead to highest overlap. Although

this algorithm does not produce best results at the beginning, in the hybrid algorithms

where the lesk algorithm is used, much more successful results can be achieved.

2.7. An Adapted Lesk Algorithm for Word Sense Disambiguation Using

WordNet

[2]The paper written by Satanjeev Barenjee and Ted Pedersen presents that rather

than using standard dictionary for Lesk algorithm, a large lexical English database

WordNet can be selected. They adapted Lesk algorithm to the WordNet corpus. This

adapted Lesk algorithm takes a word as an input, and outputs the WordNet meanings

of the word’s occurrences in the text.
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First step of the method starts with taking window of contexts (2n+1) from left

and right of the word of interest. Afterwards, all possible senses of the tokens are taken

from WordNet corpus. With this data, all combination scores are evaluated. The final

output is the best score.

Since our goal is similar, this technique would be a guide to reach our goal.

2.8. A WordNet-based Algorithm for Word Sense Disambiguation

[6]This paper presents the WordNet-based algorithm to disambiguate word senses.

This algorithm aims at word sense disambiguation of noun objects in a text.

The approach targets 2 main parts. One of them is usage of the critical relation-

ships between words in WordNet. The other is ”word sense disambiguation heuristic

rules” stand on semantic relationships which is mentioned above.

2.9. Survey of Word Sense Disambiguation Approaches

[10] In this survey, Xiaohua Zhou and Hyoil Han summerizes view about word

sense disambiguation approaches. The paper gives a general view of a knowledge

about sources (corpuses etc.), techniques (approaches like unsupervised and supervised

approach and their types) used for word sense disambiguation. Also it mentions about

these approaches’ complexities, pros and cons, performance etc.

This paper was particularly useful in terms of providing an overview of word sense

disambiguation and its approaches.

2.10. Building a Wordnet for Turkish

[3] This article summarizes the development process of the Turkish WordNet.

History of the construction process of the Turkish WordNet is presented briefly. Appli-

cations based on the Turkish WordNet were mentioned and introduced. Also, semantic
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relations used in WordNet like synonyms, hyperonmys were introduced. The article

has a practical tips and links section that can be helpful.

This article was useful for better understanding and perceiving of Turkish Word-

Net.

As it can be seen in the article summaries above, it is easy to find papers related

to word sense disambiguation. They all describe different approaches which enlarges

the understanding of the reader. However, some of the articles do not contain sufficient

information about implementation details and they only give brief information about

the topic. Still, they are very informative in the sense that they provide a broad

perspective.

The most important shortcoming of the state-of-the-art is the lack of high quality

researches in Turkish. Most of the papers related to word sense disambiguation are

introducing the approaches for English and for other languages such as Korean.
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3. METHODS

One of the most popular algorithms in word sense disambiguation is Lesk algo-

rithm which was first introduced by Michael E. Lesk in 1986. The basic idea behind

Lesk algorithm is to calculate scores for each candidate sense by counting the common

words between the synsets of these candidate senses and the synsets of the words in

the given context, and to pick the sense that has the highest score as the proposed one.

Although this idea is not completely sufficient for word sense disambiguation, it pro-

vides a very good starting point because it is very simple, intuitive, easy to implement

and flexible.

Since we have a lexical database like WordNet, it is possible to extend Lesk

algorithm. For this purpose, we have exploited the hierarchical structure of WordNet

to modify Lesk algorithm in a way that the words in hypernyms are integrated into

the Lesk algorithm. In the upcoming sections, our methodology is described in detail

step by step. We have used Python to implement all the functionalities described in

this chapter.

3.1. Preprocessing

First step is to apply some preprocessing on the user input. The reason is, it

is very likely that there will be lots of punctuations, uppercase letters and stopwords

which do not contribute to the disambiguation process. Therefore, preprocessing is a

necessity and its steps are listed below:

• Tokenization

• Removal of 284 stopwords

• Case folding

• Removal of punctuations

• Lemmatization using Zemberek
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Zemberek is an open-source parser that was designed for Turkish. Since all the

words in WordNet are in their base form, the words in the input strings are converted

into their base forms using Zemberek to make them consistent with WordNet. It is

important to note that Zemberek is not perfect and it sometimes generates incorrect

results, but in general, it works good enough.

3.2. Extended Lesk Algorithm

After the preprocessing part, the algorithm that disambiguates the sense of the

word specified as the target word is applied on the strings generated by preprocessor.

In the algorithm, there are two important parameters which play an important role on

the accuracy values. These parameters are the window size and the number of levels.

Window size refers to the number of words contiguous to the target word that are going

to be considered in the disambiguation algorithm. For example, if the window size is 1,

it means that only the words which have distance of 1 to the target word in the given

sentence are involved. The other parameter, number of levels, refers to the number of

hypernym levels that are going to be taken into account. For instance, if the level is

set to 3, the algorithm goes up 3 levels in the hypernym hierarchy of WordNet and it

stops after the third iteration. We changed these parameters to get the best results

which will be discussed in the next chapter. With the ideas of window size and number

of levels, the algorithm proceeds as follows:

(i) The algorithm is based on a famous approach in NLP applications called bag

of words representation. In this representation, the order of the words does not

matter and a text is treated as a bag of words. It is a good fit for our project to

count the common words.

(ii) We start by defining N different bags where N is the number of senses of the

target word that we want to disambiguate. Into these bags, we put all the words

that are in the synset of the corresponding sense and the words in that synset’s

definition. This constitutes the 0th level of the algorithm because at this stage,

hypernyms are not considered yet.

(iii) Similarly, we define another bag for nearby words. However, instead of creating
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separate bags for each sense, we put all the senses together this time because

we do not need to know the exact sense that the word belongs to. The only

functionality of this bag is to make it possible to calculate scores for each sense

which are clearly split up in the first bag.

(iv) With two bags in our hands, the next step is to enlarge them by adding hyper-

nyms. The number of hypernyms to be taken into account is decided by the

parameter called level, as described above. Note that the effect of hypernyms

on the scoring scheme decreases as we climb up in the WordNet hierarchy and

it is inversely proportional to the level number. For instance, detected common

words in level 0 adds score of 1 to the related sense, but if that common words

are in, let’s say, level 1, the score is 0.5 since we climbed one more level in the

hierarchy. This makes sense because the concepts become more generic as the

level increases, and the commonality of generic terms should not be a strong sign

of similarity in that case. For example, the words bez and araba are both objects,

but this does not mean that they are closely related.

(v) Finally, according to the scoring scheme clarified above, scores for each sense are

calculated and the one that has the highest score is proposed as the correct sense

of the word in the given context. A very simplified version of the algorithm is

given on the next page as pseudo-code.

3.3. Data Collection and Labeling

To test the algorithm, we collected two different texts from the books of Ministry

of National Education (MEB). As our first dataset, we used a high school geography

book. From this book, we extracted a text containing 413 words and we defined 52

words as target words by looking at their availability in WordNet. Then, we labeled

correct senses of these target words one by one. Similarly, we also used the biology

book of MEB for high school students and extracted 1042 words with 22 target words

in it. The results of the evaluation is discussed in the next chapter.
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Algorithm 1 Simplified Disambiguation Algorithm

1: procedure Disambiguate

2: target← getTargetFromUser()

3: context← getContextFromUser()

4: tokens← preprocess(context)

5: senses← getSenses(target)

6: synsetWords← getSynsetWords(target)

7: definitionWords← getDefinitionWords(target)

8: initialize bagForEachSense

9: initialize bagForNearbyWords

10: for each sense in senses do

11: bagForEachSense[sense]← synsetWords + definitionWords

12: for each nearby word do

13: bagForNearbyWords← getSynsetWords(word) + getDefinitionWords(word)

14: while level < maxLevel do

15: for each sense of target word do

16: bagForEachSense[sense← getHypernymWords(sense)

17: for each sense of nearby words do

18: bagForNearbyWords← getHypernymWords(sense)

19: weight← 1/level

20: updateScores(bagForEachSense, bagForNearbyWords, weight)
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4. RESULTS

As an indicator of success, we have calculated accuracies on two different texts in

this project. As a first attempt, we used geography dataset as described in the previous

chapter. While we were labeling the correct senses on this dataset, we chose as many

words as we can. For example, even if some words’ senses are not clearly distinguished

and not well-defined in WordNet, we somehow included them by selecting one of the

senses which makes sense to us. However, it is important to emphasize that this is a

bit misleading and accuracies are less than expected in this case, because in reality,

there is no reason to reject other senses just because their definitions are not well-

defined in WordNet. But when the algorithm proposes one of them as a result, we

treat it as a wrong prediction which decreases accuracy misleadingly. Therefore, in our

second attempt in which we used biology dataset, we have chosen the target words in

a way that no such problem exists. For this purpose, we have selected a word as a

target word only if its senses are clearly distinguished in WordNet. We believe that

this dataset gives more realistic accuracy values than the first one which are compared

below. In both biology and geography datasets, we excluded the words that are either

not in WordNet or have only one sense during the accuracy calculation. According to

these specifications, the results are depicted with respect to the variable window size

in the figure below. Colors represent the different level selections for the parameter

that controls how many hyperyms are considered in the algorithm.

(a) (b)

Figure 4.1. Accuracies
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The first observation from the plots is that accuracy improves with the increasing

size of window up to a certain point, and then it stabilizes. For the biology dataset,

window size of 20 looks enough while geography dataset needs a window size of 60 to

be stabilized. Since we find the biology results more realistic for the reasons explained

above, we can say that keeping the window size between 20 and 30 is optimal for the

purposes of the sense disambiguation task.

Secondly, we observe that increasing the level does not contribute after the second

level. The main reason is that the concepts in the WordNet hierarchy get too generic

after some point as we climb up. Therefore, setting the number of levels to 2 and

looking only 2 levels up in hypernym hierarchy is the optimal solution.

Overall, the best performance that we get is acquired by setting the window size

to 20 and the number of levels to 2, and the accuracy in this case is 72.73%. In addition

to these, we have also considered adding hyponyms and meronyms besides hypernyms

into the bags of words, but they did not improve the performance and even made it

worse in some cases. That makes sense because if we consider hyponyms, for instance,

they are the words that are more specific than the original word, and counting the

words that are too specific misguides the algorithm.



14

5. CONCLUSION AND DISCUSSION

To conclude, although there were some difficulties regarding the weaknesses of

Turkish WordNet and Zemberek, we believe that we get pretty high accuracy values at

the end. The algorithm performs quite well in most of the examples and when it fails to

generate correct output, it is very likely that it is because there is not much information

about the related words in WordNet. For instance, some of the synsets have English

definitions instead of Turkish. Therefore, even if we include the definitions inside the

bag of words, some common words cannot be detected.

As an example, the word neyzen is defined as person who plays the musical instru-

ment ’ney’ which is in English, but the word müzik is defined as duygu ve düşünceleri

tek sesli veya çok sesli olarak anlatma sanatı which is in Turkish. As a result, even

if there are some commonalities between these two concepts, our algorithm may fail

to find related words such as müzik and musical and treat them as totally different

concepts. Since there is no consistency between Turkish and English definitions in

WordNet and they are used randomly, there is no way to avoid such problem. Al-

though the algorithm still works well, we argue that it would generate even more

accurate results with a more structured and systematic WordNet.
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6. FUTURE WORK

As future work, the first thing that needs to be considered is the integration of

another source of information to the project. WordNet is quite powerful because of its

ability to represent the relationships between the words, but lots of the synsets do not

have a definition and some of the senses of the words are not well-defined. Thus, an

external source such as Turkish Language Society (TDK) glossary can be very helpful

to increase the success of the algorithm.

In addition, since Turkish is an highly agglutinative language, suffixes can give

us some important hints during the disambiguation process. Therefore, it is also worth

considering to make use of suffixes to decide the correct sense of a word. However,

this needs an extensive search and thinking on Turkish grammar and it has to be

implemented carefully, otherwise it may spoil the flow of the original algorithm.

To conclude, both of the options mentioned above are remarkable and may in-

crease the performance of the algorithm significantly. We would be more than happy

if we have an opportunity to work on these suggestions one day.

[]
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