

DEVELOPMENT OF AN ADAPTIVE

CHESS PROGRAM

Final Report

by

Eda Okur

Selin Kavuzlu

Submitted to the Department of Computer Engineering

in partial fulfillment of the requirements

for the degree of

Bachelor of Science

in

Computer Engineering

Boğaziçi University

June 2011

ii

TABLE OF CONTENTS

 Page

 1. INTRODUCTION…………..1

 2. BACKGROUND………………...1

 3. ALGORITHMS ……………..4

3.1. INTRODUCTION ..4

3.2. EVALUATION FUNCTION ...4

3.3. MINIMAX SEARCH ...5

3.4. ALPHA-BETA PRUNING ALGORITHM...6

3.5. EVOLUTIONARY ALGORITHM ..8

 4. DEVELOPMENT ..9

4.1. INTRODUCTION ...9

4.2. DESIGN..9

4.3. CLASSES...10

 4.3.1. Board.Java ..10

 4.3.1. Move.Java ...10

 4.3.1. Main.Java ..11

5. OUTLINE OF THE WORK DONE…………….…..11

 6. MODEL ..12

4.1. INPUT ..13

4.2. OUTPUT...14

4.3. RESOURCES..17

4.4. SUCCESS CRITERIA..17

 7. IMPLEMENTATION DETAILS…………………..18

 7.1. INTRODUCTION ...18

 7.2. BOARD.JAVA ..20

 7.3. MOVE.JAVA ..24

 7.4. MAIN.JAVA ...25

iii

8. WHAT IS DONE.………..…………………………………...............................25

 8.1. INTRODUCTION ..25

 8.2. PHASES ..26

 8.2.1. LITERATURE SURVEY PHASE……………………………………26

 8.2.2. PROPOSAL PHASE………………………………….………………27

 8.2.2. IMPLEMENTATION PHASE………………………………….……27

 8.2.2. PRESENTATION PHASE………………………………….………..28

 9. CONCLUSION…….………………………………….....................................28

 10. FUTURE WORK…………………………………..29

APPENDIX A: SOURCE CODES……...30

APPENDIX B: PROJECT PROGRESS CHARTS……..61

REFERENCES NOT CITED ..63

1

1. Introduction

The current level of development in computer chess programming is fairly

complicated, yet interesting as well. In this project, we were supposed to develop a

chess-playing program. The program was supposed to play chess at a good level and

have an adaptive property. The description of the project included the analysis of the

evaluation of the pieces and board positions on the board. In addition, literature

survey on methods, techniques, and heuristics used in chess playing and chess

programming was supposed to be done in order to analyze how the pieces, board, and

positions on the board are evaluated.

Upon doing this literature survey, we proposed an algorithm for the computer

program that plays chess according to the results of our analysis; then developed and

implemented this program. We also tried to make a contribution with some new

approaches to chess-playing programming.

2. Background

For the completeness of this document, we will mention some details that we

have already mentioned in the midterm progress document, regarding the background

of the project. A general computer chess program involves somehow simplified

approach at its base. We will explain the methods and algorithms used for a chess

program by words at this section.

We start with a chessboard set up for the start of a game. Each player has 16

pieces. The white player starts the game all the time. At the beginning, white has 20

possible moves:

 The white player can move any pawn forward one or two positions.

 The white player can move either knight in two different ways.

The white player chooses one of these 20 moves and plays it. For the black

player, the options are the same as 20 possible moves. So black chooses a move

among those as well. Now white player can move again. This next move depends on

the first move that white chose to make, but there are about 20 or so moves white can

2

make given the current board position, and then black has 20 or so moves it can make,

and so on. Actually the number of the moves both players can make usually increases

as the game develops.

This is how a computer program looks at chess. It thinks about it in a world of

"all possible moves," and it makes a very large tree (our search tree) for all of those

moves. It can be visualized as follows:

 Figure 1. The Game Tree

In this tree, there are 20 possible moves for white. There are 20 * 20 = 400

possible moves for black, depending on what white does. Then there are 400 * 20 =

8,000 for white, and so on. If you were to fully develop the entire tree for all possible

chess moves, this would be a very big number. Therefore we can say that chess is a

pretty complicated game.

No computer is able to calculate the entire tree. What a chess computer tries to

do is generate the board-position tree for nearly 5 moves into the future. Assuming

that there are about 20 possible moves for any board position, a five-level tree

contains 3,200,000 board positions. The depth of the tree that a computer can

calculate is controlled by the speed of the computer playing the game.

Once it generates the search tree, then the computer needs to evaluate the

board positions. That is, the computer has to look at the pieces on the board and

decide whether that arrangement of pieces is "good" or "bad." The way it does this is

by using an evaluation function. The simplest possible function might just count the

number of pieces each side has. Obviously, for chess that is way too simple, because

some pieces are more valuable than others. So our formula should apply a weight to

each type of piece. It is possible to make the evaluation function more and more

3

complicated by adding things like board position, control of the center, vulnerability

of the king to check, vulnerability of the opponent's queen, and many other

parameters. No matter how complicated the function gets, however, it is condensed

down to a single number that represents the "goodness" of that board position. Our

proposed evaluation function will be explained in detail later.

After the evaluation function calculates a numeric value for each node of the

game tree, we need to apply a certain search strategy to construct an acceptable chess

program. At this search step, we are planning to apply minimax search algorithm to

choose the best possible next move and alpha-beta pruning technique to increase the

performance by decreasing the search space.

The basic idea underlying all two-agent search algorithms is Minimax method.

Minimax is a recursive algorithm used for choosing the next move in a game. A tree

of legal moves is built and played. Each move is evaluated using an evaluation

function. The computer makes the move that maximizes the minimum value of the

position resulting from the opponent's possible following moves. The details of our

Minimax algorithm will be explained later.

The basic idea behind the Alpha-Beta Pruning algorithm is that, once you

have a good move, you can quickly eliminate alternatives that lead to disaster. We

know that there are many of those quickly disposable moves in chess game. The

alpha-beta pruning function is actually an improvement of the Minimax search

method. It reduces the number of tree nodes to evaluate by eliminating a move when

at least one possibility was proved worse than a previously evaluated one. The details

of our alpha-beta pruning algorithm will be explained later.

We used the evolutionary algorithms to finely tune the evaluation function

parameter weights. This adds adaptive feature to our chess program. The evolution

technique is taken from Graham Kendall, Hallam Nasreddine and Hendra Suhanto

Poh’s paper “Using an Evolutionary Algorithm for the Tuning of a Chess Evaluation

Function Based on a Dynamic Boundary Strategy”, except that we planned to develop

a different evaluation function and we did. The details will be given in the algorithm

section.

With this background, we constructed our algorithms very carefully. We

proposed the ideas we gathered and the algorithms that we have designed in the

4

midterm progress report in quite detail, but you can see the revised version in the

“algorithm” section of this paper. We did the implementation using Java as the

language and NetBeans IDE as the platform. Along with the implementation, some

design decisions changed while some stayed the same. We will try to mention them,

while we are telling about the details of our final program in the next sections.

3. Algorithms

3.1. Introduction

Before giving the implementation details, we will give the algorithms we used

for the critical operations. These include the evaluation function, minimax search,

alpha beta pruning and evolutionary algorithm.

3.2. Evaluation Function

The evaluation function should return +∞ for white’s winning positions, -∞

for black’s winning positions and 0, if the game is a draw. The evaluation function

should take some basic factors like material, mobility, development and central

position into account.

The most important feature in chess is material. Material represents all of a

player's pieces and pawns on the board. The player with pieces and pawns of greater

value is said to have a "material advantage". Other things being equal, the player who

is ahead material will usually win the game. We know that the pieces have different

values which can be measured in multiples of a pawn. Standard values are as follows:

pawn = 1, knight = 3, bishop = 3, rook = 5, queen = 9, king = above all values (1000

for our project).

Mobility is the total number of moves that can be made by one’s pieces in a

given state. One possibility to combine material and mobility:

score = material + (0.1 * mobility)

Development measures how many pieces are moved away from their original

positions. If your pieces are all “developed” (off their original squares), then they will

5

be ready for the ensuing battle which comes in the middle game. If you are badly

behind in development, then you will be not ready for the struggle. We assume that

three extra development moves are worth of approximately one pawn.

Finally central position measures the pieces in the center of the board. So if a

player has more pieces in the center of the board then his/her opponent, he/she is

more advantageous. For our project we exclude the king from this evaluation, because

we do not want the king to be in the center of the board, since it should be secure.

 When it is decided which features are included in the evaluation function, it is

necessary to determine reasonable weightings for the features. Evaluation function

takes form “w1 * f1 + w2 * f2 + w3 * f3 + …” where f’s are various features and w’s

are the relative weights for these features. How to adjust weightings is a complicated

issue, so we used an evolutionary algorithm with mutation to decide on better

weightings.

 3.3. Minimax Search

 The basic idea underlying all two-agent search algorithms is Minimax search.

Minimax search method for chess can be defined as follows:

 Assume that there is a way to evaluate a board position so that we know

whether Player 1 (Max) is going to win, whether his opponent (Min) will, or

whether the position will lead to a draw. This evaluation takes the form of a

number: a positive number indicates that Max is leading, a negative number,

that Min is ahead, and a zero, that nobody has acquired an advantage.

 Max's job is to make moves, which will increase the board's evaluation.

 Min's job is to make moves, which decrease the board's evaluation.

 Assume that both players play in a way that they never make any mistakes and

always make the moves that improve their respective positions the most.

The trouble with Minimax is that there is an exponential number of possible

paths which must be examined. This means that effort grows dramatically with:

6

 The number of possible moves by each player, called the branching factor.

 The depth of the look-ahead, and usually described as "N-ply", where N is an

integer number and "ply" means one move by one player. The simplest

approach we would follow is searching to a depth of 2-ply, one move per

player.

Minimax Pseudocode:

function integer minimax(node, depth)

 if node is a terminal node or depth <= 0:

 return the heuristic value of node

 α = -∞

 for child in node: # evaluation is identical for both players

 α = max(α, -minimax(child, depth-1))

 return α

3.4. Alpha-Beta Pruning Algorithm

The Alpha-Beta Pruning algorithm is a significant enhancement to

the minimax search algorithm that eliminates the need to search large portions of

the game tree. If one already has found a quite good move and search for

alternatives, one refutation is enough to avoid it. No need to look for even stronger

refutations. The algorithm maintains two values, alpha and beta. They represent the

minimum score that the maximizing player is assured of and the maximum score that

the minimizing player is assured of respectively.

A general computer chess program consists of three main parts:

1) Move generator: Generates all possible moves in a given position

2) Search function: Looks at all possible moves and replies and try to find the best

continuation.

http://en.wikipedia.org/wiki/Heuristic
http://en.wikipedia.org/wiki/%CE%91
http://en.wikipedia.org/wiki/%E2%88%9E
http://chessprogramming.wikispaces.com/Minimax
http://chessprogramming.wikispaces.com/Search+Tree
http://chessprogramming.wikispaces.com/Refutation+Move
http://chessprogramming.wikispaces.com/Alpha
http://chessprogramming.wikispaces.com/Beta

7

3) Position evaluator. Gives a score to a position. It consists of a material, a mobility

and a development score.

 Here is the very general pseudocode-like order for a computer chess program:

1. Get the input as an opponent move from the user (P: player).

a. Check whether this move is legal, prompt input again if not.

2. Generate a current board configuration based on the opponent’s (P) last move.

3. Set this current state as a root node for search tree.

4. Generate all possible moves for C (C: computer) as a response to this input.

a. Calculate the scores of each node using evaluation function.

5. For each of these moves, generate all possible user (P) responses.

a. Calculate the scores of each node using evaluation function.

6. As we now have the search tree of depth 2, apply Minimax search algorithm

with Alpha-Beta Pruning to choose the best move for computer (C).

7. Output the computer’s move on the screen.

8. Check for situations like check, checkmate, draw etc. to end the game.

9. Repeat (1) to (8) until the game ends.

Alpha-Beta Pruning Pseudocode:

function alphabeta(node, depth, α, β, Player)

 if depth = 0 or node is a terminal node

 return the heuristic value of node

 if Player = MaxPlayer

 for each child of node

 α := max(α, alphabeta(child, depth-1, α, β, not(Player)))

 if β≤α

 break (* Beta cut-off *)

 return α

 else

 for each child of node

 β := min(β, alphabeta(child, depth-1, α, β, not(Player)))

 if β≤α

 break (* Alpha cut-off *)

8

 return β

(* Initial call *)

alphabeta(origin, depth, -infinity, +infinity, MaxPlayer)

3.5. Evolutionary Algorithm

The evolution algorithm with the mutation technique, works as follows: We

will have “individuals” with different evaluation functions (same factors with

different weights). There will be 5 individuals in a given population. They all compete

with each other for survival. Two individuals (two chess programs using two different

evaluation functions) play each other in a two round game where each one will take

turns in starting the game first. Both the winner and its mutated version are copied

into the next generation. This process continues until all individuals in the population

converge to the same solution. The method of this evolutionary algorithm will be as

shown below:

Member 1 vs. a random member (2 to 5) Member 2 vs. a random member (3 to 5)

 1 2 3 4 5 4 2 3 4 5

Member 4 won and replaced member 1 Member 3 won and replaced member 2

Member 3 vs. a random member (4 to 5) Member 4 vs. member 3

 4 3 3 4 5 4 3 3 4 3

Member 3 won and replaced member 5 Member 3 won and replaced member 4

The new population members

 4 3 3 3 3

9

4. Development

4.1. Introduction

In this part, a more detailed explanation of the design of our project will be

given. Before the implementation, with a goal of developing a complete functional

chess program, we developed a model. The game is between two players, where one

player is a computer (our program) playing against an opponent human player (the

user).

4.2. Design

A game of chess involves chess pieces, and a chessboard. The chessboard is

an 8 by 8 grid. The initial configuration of the pieces is as follows:

R N B Q K B N R

P P P P P P P P

P P P P P P P P

R N B Q K B N R

Where R=rook, N=knight, B=bishop, Q=queen, K=king, P=pawn

In our midterm progress report, we proposed a design in which each type of

chess pieces is represented by a separate class. We planned to implement 6 different

classes for that purpose as follows: pawn, rook, knight, bishop, queen and king.

During implementation, this design choice has changed. We implemented 3 generic

classes instead: Board, Move and Main. We will tell the details of these classes in the

next sub section.

10

4.3. Classes

Here, we will summarize the general details of the classes in our object-

oriented program.

 4.3.1. Board.java class:

Our whole algorithm runs on a search tree as we discussed in the

background section. The nodes of this tree are actually chessboards. So,

to be able to construct these nodes, we created a class named Board. An

object instance of this class is a board with different pieces, and with

different positions.

The evaluation function, the minimax and alpha-beta pruning

algorithms are all implemented in this class, because they concern board

objects. For the evaluation function, many factors are taken into account,

such as mobility, material, center, and development; these factors will be

explained in detail later in this document. The methods that calculate the

values for these factors are also all implemented in this class. The

method “Play” is the most important method here, which is called from

the main for the computer to make the move.

4.3.2. Move.java class:

Move is our smallest class. Every move is an object of this

class. The input that is taken from the user is turned into a move object

here. This move object then is given as a parameter to one of the

constructors of the board class, with another parameter, the current

board. This constructor creates the new board object. In other words,

the move object is used to create a new board from the current board.

There are also two constructors, and three other methods. One of them,

“printMove” prints the move that is done either by the computer or the

player.

11

4.3.3. Main.java class:

 This is our main class. So the whole game is simulated here.

The necessary inputs are taken from the user, the Boolean validity

methods for both the inputs and the moves are called. Then the board

constructor is called to create the new board after the user’s move. The

new board is printed in the format that is detailed in the “user interface”

section. Then “Play” method is called, so the computer “plays”. The

evaluation, minimax, alpha-beta and all the methods that make the

decision for the move are in the board class. This “Play” method

returns the new board and then it is printed by “printBoard” method of

the board class. Also if one of the players is in check, or it is a draw or

a checkmate, it outputs these messages.

5. Outline of the Work Done

We developed a complete algorithm before we start the implementation. Our

plan was to write methods for each piece, so the pieces can be moved according to the

rules of chess. However, we changed this design along with the implementation and

came up with 3 classes: “Board.java”, “Move.java”, “Main.java”. The details of these

classes will be explained in the implementation details section.

 Our next step was to construct an evaluation function. As we have proposed in

our midterm progress report, we constructed a new evaluation function. Obviously,

we used the papers that are included in our literature survey as a reference and used

the information there to construct a good function, but we did not use one that we

have read in the papers or seen anywhere, instead we created a new one that may be

similar to some of them. We had to write many methods before we could implement

this evaluation function. Again the details of this evaluation function will be given in

the implementation details section.

 The next step was to develop the minimax algorithm and implement it for the

program to play the game by using the evaluation function. This algorithm is known

in game theory and artificial intelligence areas. Even though minimax is a very

12

common algorithm used in the two-player games programming, it was hard to

understand it completely and apply it to our program. We developed a minimax

algorithm particularly for chess and particularly with our evaluation function. We

spent a lot of time here, because it was very challenging to implement the minimax

with the data structures we have used.

 Chess is a very complex game, and in many papers that we have read, it is

mentioned that without a pruning technique the search tree for this game will be huge,

so the program will either crash or run very slowly. That is because; the number of

possible moves at each position is quite high. Therefore, we developed and

implemented an algorithm that uses alpha-beta pruning technique for the search tree,

which the minimax algorithm runs on. The minimax with alpha beta pruning is a very

critical part of the project, because that is where the artificial intelligence lies beneath.

 These were the main algorithms that we have developed and implemented.

With these and all the other methods that we had to write for the implementation of

these, we could write the code for the computer to play the game. A graphical user

interface was not a requirement of our project, so we take the input from the

command line as we stated in our midterm progress report. To be able to test the

program, instead of just giving the computer’s move to the user, we print a board

composing of numbers each time a move is done, either by the computer or the user.

The input and the output format will be given in the user interface section.

6. Model

As we stated above, a graphical user interface was not one of the requirements

of our project. So we have a simple user interface where the player enters his/her

moves in the command line and see the board after his/her move. Then the computer

makes its own move and the board after its move is printed. Below the format for the

input and the output can be seen.

13

6.1. Input

First, the player chooses his/her side. The program asks the player to enter ‘w’

for white and ‘b’ for black. So the first input the user enters the program is ‘w’ or ‘b’.

If the user enters w, he/she goes first to make the first move.

Since the program is a simulation of a chess playing person, the input is the

opponent’s (the user in this case) move in written form. In other words, if I am

playing with this program, I write my move when it is my turn and the program will

continue playing accordingly. In order to test the program, we used an available chess

program to be able to visualize the moves and the positions. The input is in the form:

R e4-g4

which means the rook is going to be moved from the square e4 to the square g4. The

board can be seen below, to see the squares that are mentioned here:

For castling, the user enters “0-0” for castling on the king side, or “0-0-0” for

castling on the queenside. The program checks for validity of all the moves, including

castling. It checks the positions and if there is any piece in between. It also checks if

the pieces in castling (rook and the king for the king side, rook and the queen on the

queen side) have been moved before, since it would be an illegal move in that case.

Therefore, checking the validity of castling is a bit more complicated than checking

the validity of the other moves.

14

This input format made the testing process really hard and time consuming. To

make it a little easier, we used a commercial chess playing game Windows-Titans and

enter this commercial program’s moves in the written form to our program. This

made the process easier while also let us see how well our program performs, when

played against another chess-playing program.

6.2. Output:

 The output format we proposed in the midterm progress report was the same

with the input format:

 N c3-e4

However we changed it during the implementation. As we mentioned above,

we print the board with numbers now. It looks like this:

 a b c d e f g h

1: +R +N +B +Q +K +B +N +R

2: +P +P +P +P +P +P +P +P

3: * * * * * * * *

4: * * * * * * * *

5: * * * * * * * *

6: * * * * * * * *

7: -P -P -P -P -P -P -P -P

8: -R -N -B -Q -K -B -N -R

This is the notation for the initial board. So 1’s stand for pawns, 2’s stand for

rooks, 3’s stand for knights, 4’s stand for bishops, 5’s stand for queens and 6’s stand

for kings. The positive numbers are the pieces of the white player while the negative

numbers are the pieces of the black. The board is printed this way right after each

move.

If the user enters N b1-c3, for instance, then the program will output:

15

Current board after your move:

 a b c d e f g h

1: +R * +B +Q +K +B +N +R

2: +P +P +P +P +P +P +P +P

3: * * +N * * * * *

4: * * * * * * * *

5: * * * * * * * *

6: * * * * * * * *

7: -P -P -P -P -P -P -P -P

8: -R -N -B -Q -K -B -N -R

 Computer's last move is:

Pawn(-1) from: e7(6,4) to: e5(4,4)

Current board after computer's move:

 a b c d e f g h

1: +R * +B +Q +K +B +N +R

2: +P +P +P +P +P +P +P +P

3: * * +N * * * * *

4: * * * * * * * *

5: * * * * -P * * *

6: * * * * * * * *

7: -P -P -P -P * -P -P -P

8: -R -N -B -Q -K -B -N -R

Enter your next move:

 We can see that computer played its pawn at e7 to e5. This looks

complicated at first, but it made it so much easier for us to follow the game and test it.

16

Then if the user enters P e2-e4, the output is:

 Current board after your move:

 a b c d e f g h

1: +R * +B +Q +K +B +N +R

2: +P +P +P +P * +P +P +P

3: * * +N * * * * *

4: * * * * +P * * *

5: * * * * -P * * *

6: * * * * * * * *

7: -P -P -P -P * -P -P -P

8: -R -N -B -Q -K -B -N –R

 Current board after computer's move:

 a b c d e f g h

1: +R * +B +Q +K +B +N +R

2: +P +P +P +P * +P +P +P

3: * * +N * * * * *

4: * * * * +P * * *

5: * * * * -P * -Q *

6: * * * * * * * *

7: -P -P -P -P * -P -P -P

8: -R -N -B * -K -B -N -R

There are specific outputs for specific points in the game too of course. When

an invalid input or invalid move is entered, the program gives an error message

accordingly. When the computer or the player is in check, it says “Computer is in

CHECK!!!" or “Player is in CHECK!!!" When it is a checkmate, the program outputs:

"Computer is in CHECK MATE!!!"

"PLAYER WINS!!!\nGAME OVER!!!"

Finally if it is a draw it outputs:

"It is a DRAW!!!\nGAME OVER!!! "

It also prints the number of moves that have been played, which is very

important for testing purposes.

17

6.3. Resources:

 For the development of the algorithm of the implementation of the program,

no external resources was used. However, for the testing part (both to test if the

program works correctly and to test its success against other chess games) we used

the chess game “Chess Titans” included in some versions of Microsoft Windows

Vista/7. Since we did not develop a graphical user interface, it was very useful to

visualize the moves better in “Chess Titans”. Another resource was people when

testing. We let some friends of ours play with our program, both to test its

performance and to see outsiders’ opinions and reactions. They did not find the

interface very easy to use, but they got used to the notations after a while and played

easily.

6.4. Success Criteria:

The success of the program is compared with those of other chess playing

programs, by the description of the project. So the program was tested against “Chess

Titans” of Microsoft Windows Vista and also real people. At first, we set our first

success criteria as being able to play the game in a right manner and keep going at

least for a while. This changed throughout the project. We performed good enough

and we were able to implement the minimax algorithm with alpha-beta pruning and

the evolutionary algorithm correctly. So now the success criteria is our program’s

performance against the other chess playing programs when they play two round

games. In our progress report we wrote: “For now, we have to say, if our program can

actually play chess and do it in an adaptive manner, it will be deemed as successful. If

it wins any game towards a commercial chess program, and if it does it fast (that

means our pruning technique should be working very well) then it will be regarded as

over-successful.” The test results will be included in the conclusion section of this

document.

18

7. Implementation Details

7.1. Introduction

We will give the implementation details by simply explaining the methods in

this section, but before that we would like to explain the development phase of the

project. We will give answers to questions like where did we start from, in what order

did we complete the parts, what were the most critical parts and which parts did we

spend most of our time on.

As we have mentioned, the whole algorithm is based on a tree and the nodes

of this tree are actually “chessboards”. The root is the initial chessboard, before any

move is made. For every possible move of the white player (there are 20 possible

moves initially) different chessboards, which have pieces with different positions, a

child of the root node is created. In other words, every child of the root stands for a

possible chessboard that the white player can choose to go from the current

chessboard. Then for all the children of the root, this process is repeated with the

black player’s possible moves. This happens in a recursive way. We will explain this

process in more detail later in this document. For now, what we are trying to say is,

we needed to create a “Board class” first of all, since the whole algorithm runs on the

“boards.” So that was what we did, we created a “board class”. This is the biggest

class in our program.

For every board object we needed some factors for the evaluation function.

Since the program were going to play the game by evaluating the nodes (boards) in

the search tree, we should have constructed an evaluation function, and to be able to

do that, we needed some factors to be taken into account in this function. We take

four aspects of the board into consideration while evaluating the boards:

 Material (pieces with their values)

 Mobility (number of possible moves)

 Development (number of pieces that have moved from their original

positions)

19

 Center (number of pieces in the center of the board)

Actually, we have not read about or seen an evaluation function that includes

these four factors together. Material, mobility and development are very common

factors, while center is not used much. We tried to come up with a new and good

evaluation function, and by trial and error, we finalized with an evaluation function

that is based on these four vectors with different weights. It is calculated as shown

below:

Val=material_w*Main.Wmat/40+ mobility_w*Main.Wmob/50

+ dev_w*Main.Wdev/16 + center_w*Main.Wcen/20;

Here the material_w, mobility_w, dev_w and center_w are the weights for the

factors, which we determined in a mutational procedure. We scale the factors to [0,1]

range so the weights are properly used. This is calculated for each player, both the

white and the black, and then the final value we use is the difference of these values.

For instance the value of a board for the black player is calculated as:

Val_black – Val_white

 This strengthens the use of the function, because then the computer is trying to

go to the board that it is advantageous and its opponent is disadvantageous.

Of course every board object has different values of these for both the white

player and the black player, they are calculated for both, but in the game, only one

player’s values are used depending on whose turn it is. For instance, if it is the white

player’s turn, the evaluation is done for white’s material, mobility, development and

center values. Actually, it is more complex than this when it comes to the Minimax

algorithm, but the details will be given later on.

The calculation methods for these four factors are included in Board class. The

calculations for mobility are much more complicated than the others and it depends

heavily on the pieces. So we have implemented different mobility methods for each

piece (i.e. MobPawn, MobQueen etc.).

After implementing these methods, we implemented the evaluation function.

These four factors have different weights in the function, which we determined by

trial and error method. The board object has a field “value” that holds the numeric

20

value of the result of the evaluation function. These values are used in the Minimax

with alpha-beta pruning procedure later on.

After the implementation of the evaluation function, we created the class

“Move.java”. One of the constructors of this method takes the user input as a

parameter and creates a move. Then by one of the constructors of the board class, a

new board is created.

The next thing we did was the implementation of Minimax and alpha-beta

pruning, so the computer can give a response with a move.

The code in the main was written in parallel with all the work, so we went by

testing each part of the program. Now we will explain the implementation details by

the code, by taking the classes and methods one by one.

7.2. Board.java

7.2.1. Board()

This is the default constructor.

7.2.2. Board(Board par, Move move)

This constructor is used to create a new board from the old

board with the last move.

7.2.3. printBoardInfo()

Prints some valuable information about the board for our test

purposes.

7.2.4. centeral(int side)

This method is used to calculate the value for the center factor

of the evaluation function. The side here is the side of our

computer (whether it is black or white). All of the factors are

calculated with this parameter, because a value of the board for

the white player and the black player is very different

obviously.

7.2.5. material(int side)

This method is used to calculate the material value of a board

object. It sums up the values of the pieces a player has. Again

21

the side is taken as the parameter to calculate the value

accordingly.

7.2.6. dev(int side)

The “development” factor for the evaluation function is

calculated here. It checks for each piece if it is in its original

position or not for this calculation.

7.2.7. enPassant(int side)

This method implements the rule “En Passant”. The other rules

were implemented in the mobility methods for each piece.

However “En Passant” is a very particular situation with very

different conditions, so it is implemented separately.

7.2.8. mobPawn(int side)

This method calculates pawn mobility and generates pawn

moves by implementing the rules of pawn. Since pawn moves

change accordingly if it is a capture or not, this is a bit more

complicated than the other mobility methods.

7.2.9. mobKnight(int side)

This method calculates knight mobility and generates knight

moves. Since mobility is the number of moves that the player

can do at the current board, it takes side as a parameter and

adds the possible moves to the moves list while also returning

the number of moves the knights can do. In fact this is what is

done in all the mobility methods that will be told next.

7.2.10. mobBishop(int side)

This method calculates bishop mobility and generates bishop

moves.

7.2.11. mobRook(int side)

This method calculates rook mobility and generates rook

moves.

7.2.12. mobQueen(int side)

This method calculates queen mobility and generates queen

moves.

22

7.2.13. mobKing(int side)

This method calculates king mobility and generates king

moves. The castling rules are also implemented here and

added to the mobility value if the conditions for castling are

provided.

7.2.14. printMoves()

This method is used for testing purposes. It prints all the

possible moves with their values, so we could check if the

computer chooses the best move.

7.2.15. set_mobility()

This is the method that calculates the final value of mobility

by summing up all the values that are calculated in the

previous mobility methods. So basically, the value this

method returns is taken into account in the evaluation function.

7.2.16. isUnderAttack(int x, int y, int side)

This method checks if a square is under any threats. “x” and

“y” are the coordinates of that square.

7.2.17. isCastling(int side, int type)

This Boolean method checks if the board is okay for castling.

The “type” parameter determines if the castling we are

checking for validity is on the queenside or the kingside.

7.2.18. printBoard()

This method prints the board as explained in the output part.

7.2.19. generateChildren()

Generates all possible boards from the current board both for

the white player and the black player. All the possible moves

with the current board is given to the method Board (Board

par, Move move) to create the possible boards, which are the

children of the current board in our tree.

23

7.2.20. moveIsValid(Move m)

This method traverses the children of the current node to

check if the given move is one of them. Otherwise, the move

is not valid and an error message is given to the user.

7.2.21. eval(int side)

This method is where the evaluation method is implemented

with all the weights and the factors.

7.2.22. equals (Board b)

7.2.23. copy(Board b)

7.2.24. loadBoard()

After copying the new board as our current board, we need to

load all the new values too. This method loads the values to the

current board.

7.2.25. isInCheck(int side)

This is a Boolean method that checks if the player (white if side

is 1, black if side is 0) is in check.

7.2.26. isDraw()

Checks for the situations that the game would end as draw.

7.2.27. isCheckMate(int side)

Checks if the current board is a checkmate situation.

7.2.28. Max()

7.2.29. Min()

7.2.30. Play()

This is the method that calls Minimax_AB and and returns the

best move that is found by the minimax algorithm.

24

7.2.31. Minimax_AB (int side, int turn, Board current, double

alpha, double beta)

This is one of the most critical methods in our program. The

minimax algorithm is implemented in this method with the

alpha-beta pruning technique. The algorithm is already

explained in the algorithm part. It works recursively. Even

though the algorithm is common and easy to find, we wrote the

whole method from scratch. Our data structure is very different,

especially because it is separating the operations for the white

player and the black player each and every time. The algorithm

is dependent on the side of the player, the board we call this

method from and whose turn it is, so they are given as

parameters to the method. The “alpha” and “beta” values are

required for the alpha-beta pruning part. This is the method we

spent most of our time on.

7.3. Move.java

7.3.1. Move ()

Default constructor

7.3.2. Move (int x, int y, int x2, int y2, int p)

This constructor is used to create a move with the coordinates of

the squares that it goes from and it goes to. The parameter “p” is

for the piece that is involved in this move.

7.3.3. equals(Move m)

7.3.4. copy(Move m)

7.3.5. Move(String input)

Converts the user input into a move object with the squares and

the piece.

7.3.6. printMove()

This method is used for printing the last move, in order to make

it easier for the users to track it.

25

7.4. Main.java

7.4.1. main(String[] args)

Needless to say, this is the main method that the whole game

runs in.

7.4.2. inputValid(String input)

This method is a Boolean method that checks the validity of the

input. If the input is entered in an incorrect format, the program

does not check if the move is valid. This is important, because

the method that check the validity of the moves “moveIsValid”

traverses the search tree, which would lower the performance if

we call it when it is not required.

8. What Is Done?

8.1. Introduction:

As the instructor suggested, we have been following the procedure, which is

explained in the Project Progress Document for this project. All required phases of the

project are indicated in this document as follows:

 Literature Survey

 Proposal

 Implementation

 Presentation

Based on our plan, we have finished Literature Survey phase (4 weeks) and

Proposal phase (3 weeks) before Spring Break. After Spring Break, we completed the

implementation in 6 weeks and spent almost a week for the poster and the final report,

which are included in the presentation phase.

In addition to the documents prepared and submitted during the literature

survey and proposal phases, we also filled the Project Progress Chart showing

progress in the project. This chart keeps track of dates, hours worked, progress (this

week) and plan (next week); thus we were supposed to fill and revise this document

26

every week, and then send it to the instructor. You can see the latest version of our

chart in the Appendix section.

Let us explain all the work done in the first two phases in more detail:

8.2. Phases:

1.2.1. Literature Survey Phase:

This first phase was a study of the existing work in the literature in order to

familiarize with the topic. After this phase, we increased our awareness of what the

topic is, what is done, and how it is done.

– We have read 9 conference and journal papers related to our project topic,

which were assigned by our project advisor at the very beginning.

– Then we have also looked for additional papers, book chapters and other

explanatory sources on the web to become more familiarized with our topic.

– We kept a list of the papers we have read in a document PaperList. For each

paper, the following information were required: title, author(s),

conference/journal/book name, volume no, pages, year, and abstract. We

prepared this document and submitted to the project advisor.

– We have prepared an abstract of one page for each paper as soon as we read

that paper. This was not the same thing as the abstract that appears on the

paper. Instead, we needed to show how the work was done (i.e. the details of

the algorithms in a pseudocode-like notation), how it was evaluated (the

formulas and steps of the algorithm for evaluation), the format of the input and

output, the resources used, the assumptions and restrictions for the algorithms,

etc. All the abstracts were kept in a single document PaperSummary. We

prepared that document too and sent it to the instructor.

– At the end of the literature survey phase, we started to prepare a literature

survey report LiteratureSurvey. This report was different from the document

PaperSummary. It should have combined all the information gathered.

27

8.2.2. Proposal Phase:

The next phase was preparing a project proposal document, of about 10 pages

long, by combining the background information (literature survey) and the work that

will be done in the scope of the project. The proposal shows explicitly what will be

done and how it will be done. It will serve as a general plan until the end of the

project and we will continue the project in concordance with this plan.

Based on all these information, we have prepared a Project Proposal

Document and submitted it to the instructor. The contents of our proposal document

were as follows:

 Project overview: This section explained the project as a whole. It consists

of the following subsections:

o Description

o Input

o Output

o Resources

o Process

 Project methodology: This section explained all the details of what will be

done and how it will be done. It consists of the following subsections:

o High-level description

o Middle-level description

o Low-level description

 Success criteria: This section explained under what conditions the project

will be evaluated as successful. The success criteria should be determined

according to the work in the literature. In addition, under what conditions

the system will be regarded as over-successful should be mentioned.

8.2.3. Implementation Phase:

This phase includes the coding of the program along with testing. The

source codes are added to this document as an appendix and the test results

can be seen in the conclusion section.

28

 8.2.4. Presentation Phase:

 The preperation of the poster and the writing of this document are

components of this phase. Of course the poster presentation itself, which will

be done on June 10th, is also included in presentation phase.

9. Conclusion

9.1. Test Results

 As we have stated in some of the above sections, we used Windows-

Titans to test the program against. We tested it with against different levels of

Windows-Titans and by two round games. We will give the results according to

the average results:

 1
st
 level: The computer wins in 21 plys. WIN!

 2
nd

 level: The computer wins in 21 plys. WIN!

 3
rd

 level: The computer wins in 27 plys. WIN!

 4
th

 level: Draw because of 50-move limit DRAW or LOSS

Windows-Titans wins in 39 plys.

 5
th

 level: Windows-Titans wins in 20 plys. LOSS

A ply means two moves, each one done by opponents. So when the

white player plays once and the black player plays once, it is a ply.

For the testing part to be also useful, we wanted some help from our

friends to play and test the game. Their feedbacks were really important to

us, and we used those feedbacks to improve some points about the

program. Letting some people outside of the development team play the

game, let us see some details we could not see.

9.2. What did we get?

We put a lot of time and effort into this project and we learned so

much from it. We learned a lot about artificial intelligence, algorithm

performance and even chess. We also experienced intense pair

programming and testing processes.

29

10. Future Work

We have done research, constructed the algorithms, implemented the

project and done testing as we have stated as “future work” in our midterm

progress report. So now, we have a complete project. However, of course many

improvements can be done. Because we had a memory problem, we could only

increase the depth as much as 3. If the computer can see further, the level of the

game would go higher, but then the complexity would increase exponentially and

this would lower the performance. In other words there is a trade-off between the

performance of the program and the level of chess (how far the computer can see).

The optimization for this can be done as an improvement. Also, the evolutionary

part can be improved. Other techniques can be used for making it adaptive as

well. So the future work may include the testing of different techniques for the

adaptive property. This way the best evaluation function can be found for the best

chess-playing program.

30

APPENDIX A: SOURCE CODES

Board.java:

package my_chess_pkg;

import java.lang.Math;

import java.util.List;

import java.util.ArrayList;

/**

 *

 * @author eda & selin

 */

public class Board {

 int[][] B;

 double value; //score of a board by evaluation function

 double value_w;

 double value_b;

 int material_w; // white(+)

 int material_b; // black(-)

 int mobility_w;

 int mobility_b;

 int dev_w; // development

 int dev_b;

 int center_w;

 int center_b;

 int[][] devArr; // development array -> 0: not moved, 1: moved

 int side; // 1: white, -1: black

 public List<Move> moves_w; //all possible moves of white

 public List<Move> moves_b;

 public List<Board> children_w; //children boards of white

 public List<Board> children_b;

 Board parent;

 double alpha;

 double beta;

 public Board(){

 B= new int[][]

 {{2,3,4,5,6,4,3,2},

 {1,1,1,1,1,1,1,1},

 {0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0},

 {0,0,0,0,0,0,0,0},

 {-1,-1,-1,-1,-1,-1,-1,-1},

 {-2,-3,-4,-5,-6,-4,-3,-2}};

 devArr=new int[4][8];

 for(int i=0; i<4; i++){

 for(int j=0; j<8; j++){

 devArr[i][j]=0;

 }

 }

 dev_w=dev(1);

 dev_b=dev(-1);

 material_w=material(1);

 material_b=material(-1);

 center_w=centeral(1);

 center_b=centeral(-1);

 moves_w = new ArrayList<Move>();

 moves_b = new ArrayList<Move>();

 children_w = new ArrayList<Board>();

 children_b = new ArrayList<Board>();

31

 parent=null;

 this.set_mobility();

 this.generateChildren();

 value_w=eval(1);

 value_b=eval(-1);

 if(Main.sideC==1) value=value_w-value_b;

 else value=value_b-value_w;

 }

 public Board(Board par, Move move){ // create a new board = old board +

last move

 this.parent = par;

 B = new int[8][8];

 devArr=new int[4][8];

 if(move.piece!=0){ //not a castling move

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(i==move.to_x && j==move.to_y){

 B[i][j]=move.piece; // fill in new position

 //pawn promotion to queen

 if(move.piece==1 && i==7) B[i][j]=5;

 else if(move.piece==-1 && i==0) B[i][j]=-5;

 //en passant move

 if(move.piece=='p'){

 if(i==5) B[i][j]=1;

 if(i==2) B[i][j]=-1;

 }

 }

 else if(i==move.from_x && j==move.from_y){

 B[i][j]=0; // empty the old position

 }

 else{

 B[i][j]=par.B[i][j];

 }

 if(move.piece=='p'){

 B[move.from_x][move.to_y]=0;

 }

 }

 }

 //set development array

 for(int j=0; j<8; j++){

 for(int i=0; i<2; i++){ //white

 if(i==move.from_x && j==move.from_y) devArr[i][j]=1;

 else devArr[i][j]=par.devArr[i][j];

 }

 for(int i=2; i<4; i++){ //black

 if(i+4==move.from_x && j==move.from_y) devArr[i][j]=1;

 else devArr[i][j]=par.devArr[i][j];

 }

 }

 }

 else if(move.piece==0){ //castling move

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 B[i][j]=par.B[i][j];

 if(i<4) devArr[i][j]=par.devArr[i][j];

 }

 }//white castling on queenside

 if(move.from_x==0 && move.from_y==4 && move.to_x==0 &&

move.to_y==2){

 B[0][4]=0; B[0][2]=6; B[0][0]=0; B[0][3]=2; devArr[0][0]=1;

devArr[0][4]=1;

 }//white castling on kingside

32

 else if(move.from_x==0 && move.from_y==4 && move.to_x==0 &&

move.to_y==6){

 B[0][4]=0; B[0][6]=6; B[0][7]=0; B[0][5]=2; devArr[0][4]=1;

devArr[0][7]=1;

 }//black castling on queenside

 else if(move.from_x==7 && move.from_y==4 && move.to_x==7 &&

move.to_y==2){

 B[7][4]=0; B[7][2]=-6; B[7][0]=0; B[7][3]=-2;

devArr[3][0]=1; devArr[3][4]=1;

 }//black castling on kingside

 else if(move.from_x==7 && move.from_y==4 && move.to_x==7 &&

move.to_y==6){

 B[7][4]=0; B[7][6]=-6; B[7][7]=0; B[7][5]=-2;

devArr[3][4]=1; devArr[3][7]=1;

 }

 }

 dev_w=dev(1);

 dev_b=dev(-1);

 material_w=material(1);

 material_b=material(-1);

 center_w=centeral(1);

 center_b=centeral(-1);

 moves_w = new ArrayList<Move>();

 moves_b = new ArrayList<Move>();

 children_w = new ArrayList<Board>();

 children_b = new ArrayList<Board>();

 this.set_mobility();

 //this.generateChildren();

 value_w=eval(1);

 value_b=eval(-1);

 if(Main.sideC==1) value=value_w-value_b;

 else value=value_b-value_w;

 }

 void printBoardInfo(){

 System.out.println("Material of white: " + material_w);

 System.out.println("Material of black: " + material_b);

 System.out.println("Mobility of white: " + mobility_w);

 System.out.println("Mobility of black: " + mobility_b);

 System.out.println("Development of white: " + dev_w);

 System.out.println("Development of black: " + dev_b);

 System.out.println("Central value of white: " + center_w);

 System.out.println("Central value of black: " + center_b);

 System.out.println("Value of white: " + value_w);

 System.out.println("Value of black: " + value_b);

 System.out.println("VALUE: " + value);

 System.out.println("Number of white children: " +

children_w.size());

 System.out.println("Number of white moves: " + moves_w.size());

 System.out.println("Number of black children: " +

children_b.size());

 System.out.println("Number of black moves: " + moves_b.size());

 if(parent==null) System.out.println("Parent is NULL");

 }

 int material(int side){ //calculate material values of board

 int m=0;

 if(side==1){ //white

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(B[i][j]==1){m+=1;} //pawn

 else if(B[i][j]==2){m+=5;} //rook

 else if(B[i][j]==3 || B[i][j]==4){m+=3;} //knight or

bishop

33

 else if(B[i][j]==5){m+=9;} //queen

 else if(B[i][j]==6){m+=1000;} //king

 }

 }

 }

 else if (side==-1){ //black

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(B[i][j]==-1){m+=1;} //pawn

 else if(B[i][j]==-2){m+=5;} //rook

 else if(B[i][j]==-3 || B[i][j]==-4){m+=3;} //knight or

bishop

 else if(B[i][j]==-5){m+=9;} //queen

 else if(B[i][j]==-6){m+=1000;} //king

 }

 }

 }

 return m;

 }

 int dev(int side){ //calculate development values of board

 int d=0;

 if(side==1){ //white

 for(int i=0; i<2; i++){

 for(int j=0; j<8; j++){

 if(devArr[i][j]==1) d++;

 }

 }

 }

 else if(side==-1){ //black

 for(int i=2; i<4; i++){

 for(int j=0; j<8; j++){

 if(devArr[i][j]==1) d++;

 }

 }

 }

 return d;

 }

 int centeral(int side){ //calculate centeral values of board

 int c=0;

 if(side==1){ //white

 for(int i=2; i<6; i++){

 for(int j=2; j<6; j++){

 if(B[i][j]==1) c+=1;

 else if(B[i][j]==2) c+=3;

 else if(B[i][j]==3 || B[i][j]==4) c+=2;

 else if(B[i][j]==5) c+=4;

 }

 }

 for(int i=3; i<5; i++){

 for(int j=3; j<5; j++){

 if(B[i][j]==1) c+=1;

 else if(B[i][j]==2) c+=3;

 else if(B[i][j]==3 || B[i][j]==4) c+=2;

 else if(B[i][j]==5) c+=4;

 }

 }

 }

 else if (side==-1){ //black

 for(int i=2; i<6; i++){

 for(int j=2; j<6; j++){

 if(B[i][j]==-1) c+=1;

 else if(B[i][j]==-2) c+=3;

 else if(B[i][j]==-3 || B[i][j]==-4) c+=2;

 else if(B[i][j]==-5) c+=4;

 }

 }

34

 for(int i=3; i<5; i++){

 for(int j=3; j<5; j++){

 if(B[i][j]==-1) c+=1;

 else if(B[i][j]==-2) c+=3;

 else if(B[i][j]==-3 || B[i][j]==-4) c+=2;

 else if(B[i][j]==-5) c+=4;

 }

 }

 }

 return c;

 }

 //calculate number of possible en passant moves && generate these moves

 int enPassant(int side){

 if(parent==null) return 0;

 int mp=0;

 if(side==1){ //white

 for(int j=0; j<8; j++){

 if(B[4][j]==1){

 if(j!=0 && B[4][j-1]==-1){

 Move m = new Move(6,j-1,4,j-1,-1);

 for(int i=0; i<parent.moves_b.size(); i++){

 if(parent.moves_b.get(i).equals(m)){

 Board b = new Board

(parent,parent.moves_b.get(i));

 //for(int k=0; k<parent.children_b.size();

k++){

//if(parent.children_b.get(k).equals(this)){

 if(b.equals(this)){

 mp++;

 Move m2= new Move(4,j,5,j-1,'p');

 moves_w.add(m2);

 }

 //}

 }

 }

 }

 if(j!=7 && B[4][j+1]==-1){

 Move m= new Move(6,j+1,4,j+1,-1);

 for(int i=0; i<parent.moves_b.size(); i++){

 if(parent.moves_b.get(i).equals(m)){

 Board b = new Board

(parent,parent.moves_b.get(i));

 //for(int k=0; k<parent.children_b.size();

k++){

//if(parent.children_b.get(k).equals(this)){

 if(b.equals(this)){

 mp++;

 Move m2= new Move(4,j,5,j+1,'p');

 moves_w.add(m2);

 }

 //}

 }

 }

 }

 }

 }

 }

 else{ //black

 for(int j=0; j<8; j++){

 if(B[3][j]==-1){

 if(j!=0 && B[3][j-1]==1){

 Move m= new Move(1,j-1,3,j-1,1);

 for(int i=0; i<parent.moves_w.size(); i++){

 if(parent.moves_w.get(i).equals(m)){

35

 Board b = new Board

(parent,parent.moves_w.get(i));

 //for(int k=0; k<parent.children_w.size();

k++){

//if(parent.children_w.get(k).equals(this)){

 if(b.equals(this)){

 mp++;

 Move m2= new Move(3,j,2,j-1,'p');

 moves_b.add(m2);

 }

 //}

 }

 }

 }

 if(j!=7 && B[3][j+1]==1){

 Move m= new Move(1,j+1,3,j+1,1);

 for(int i=0; i<parent.moves_w.size(); i++){

 if(parent.moves_w.get(i).equals(m)){

 Board b = new Board

(parent,parent.moves_w.get(i));

 //for(int k=0; k<parent.children_w.size();

k++){

//if(parent.children_w.get(k).equals(this)){

 if(b.equals(this)){

 mp++;

 Move m2= new Move(3,j,2,j+1,'p');

 moves_b.add(m2);

 }

 //}

 }

 }

 }

 }

 }

 }

 return mp;

 }

 int mobPawn(int side){ //calculate pawn mobility & generate pawn moves

 int mp=0;

 //mp += enPassant(side); //find en passant moves if possible

 if(side==1){ //white

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(B[i][j]==1){

 if(i!=7 && B[i+1][j]==0) {

 mp++;

 Move m = new Move(i,j,i+1,j,1);

 moves_w.add(m);

 }

 if(i==1 && B[i+1][j]==0 && B[i+2][j]==0) {

 mp++;

 Move m = new Move(i,j,i+2,j,1);

 moves_w.add(m);

 }

 if(i!=7 && j!=7 && B[i+1][j+1]<0) {

 mp++;

 Move m = new Move(i,j,i+1,j+1,1);

 moves_w.add(m);

 }

 if(i!=7 && j!=0 && B[i+1][j-1]<0) {

 mp++;

 Move m = new Move(i,j,i+1,j-1,1);

 moves_w.add(m);

 }

 }

36

 }

 }

 }

 else if(side==-1){ //black

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(B[i][j]==-1){

 if(i!=0 && B[i-1][j]==0) {

 mp++;

 Move m = new Move(i,j,i-1,j,-1);

 moves_b.add(m);

 }

 if(i==6 && B[i-1][j]==0 && B[i-2][j]==0) {

 mp++;

 Move m = new Move(i,j,i-2,j,-1);

 moves_b.add(m);

 }

 if(i!=0 && j!=7 && B[i-1][j+1]>0) {

 mp++;

 Move m = new Move(i,j,i-1,j+1,-1);

 moves_b.add(m);

 }

 if(i!=0 && j!=0 && B[i-1][j-1]>0) {

 mp++;

 Move m = new Move(i,j,i-1,j-1,-1);

 moves_b.add(m);

 }

 }

 }

 }

 }

 return mp;

 }

 int mobKnight(int side){ //calculate knight mobility & generate knight

moves

 int mn=0;

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(side==1 && B[i][j]==3){ //white

 if(i<7 && j<6 && B[i+1][j+2]<=0) {mn++;Move m=new

Move(i,j,i+1,j+2,3);moves_w.add(m);}

 if(i<7 && j>1 && B[i+1][j-2]<=0) {mn++;Move m=new

Move(i,j,i+1,j-2,3);moves_w.add(m);}

 if(i>0 && j<6 && B[i-1][j+2]<=0) {mn++;Move m=new

Move(i,j,i-1,j+2,3);moves_w.add(m);}

 if(i>0 && j>1 && B[i-1][j-2]<=0) {mn++;Move m=new

Move(i,j,i-1,j-2,3);moves_w.add(m);}

 if(i<6 && j<7 && B[i+2][j+1]<=0) {mn++;Move m=new

Move(i,j,i+2,j+1,3);moves_w.add(m);}

 if(i<6 && j>0 && B[i+2][j-1]<=0) {mn++;Move m=new

Move(i,j,i+2,j-1,3);moves_w.add(m);}

 if(i>1 && j<7 && B[i-2][j+1]<=0) {mn++;Move m=new

Move(i,j,i-2,j+1,3);moves_w.add(m);}

 if(i>1 && j>0 && B[i-2][j-1]<=0) {mn++;Move m=new

Move(i,j,i-2,j-1,3);moves_w.add(m);}

 }

 else if(side==-1 && B[i][j]==-3){ //black

 if(i<7 && j<6 && B[i+1][j+2]>=0) {mn++;Move m=new

Move(i,j,i+1,j+2,-3);moves_b.add(m);}

 if(i<7 && j>1 && B[i+1][j-2]>=0) {mn++;Move m=new

Move(i,j,i+1,j-2,-3);moves_b.add(m);}

 if(i>0 && j<6 && B[i-1][j+2]>=0) {mn++;Move m=new

Move(i,j,i-1,j+2,-3);moves_b.add(m);}

 if(i>0 && j>1 && B[i-1][j-2]>=0) {mn++;Move m=new

Move(i,j,i-1,j-2,-3);moves_b.add(m);}

37

 if(i<6 && j<7 && B[i+2][j+1]>=0) {mn++;Move m=new

Move(i,j,i+2,j+1,-3);moves_b.add(m);}

 if(i<6 && j>0 && B[i+2][j-1]>=0) {mn++;Move m=new

Move(i,j,i+2,j-1,-3);moves_b.add(m);}

 if(i>1 && j<7 && B[i-2][j+1]>=0) {mn++;Move m=new

Move(i,j,i-2,j+1,-3);moves_b.add(m);}

 if(i>1 && j>0 && B[i-2][j-1]>=0) {mn++;Move m=new

Move(i,j,i-2,j-1,-3);moves_b.add(m);}

 }

 }

 }

 return mn;

 }

 int mobBishop(int side){ //calculate bishop mobility & generate bishop

moves

 int mb=0;

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(side==1 && B[i][j]==4){ //white

 int k=Math.min(7-i,7-j);

 for(int l=1; l<=k; l++){

 if(B[i+l][j+l]==0) {mb++;Move m=new

Move(i,j,i+l,j+l,4);moves_w.add(m);}

 else if(B[i+l][j+l]<0) {mb++;Move m=new

Move(i,j,i+l,j+l,4);moves_w.add(m); l=k;}

 else l=k;

 }

 k=Math.min(i,j);

 for(int l=1; l<=k; l++){

 if(B[i-l][j-l]==0) {mb++;Move m=new Move(i,j,i-l,j-

l,4);moves_w.add(m);}

 else if(B[i-l][j-l]<0) {mb++;Move m=new Move(i,j,i-

l,j-l,4);moves_w.add(m); l=k;}

 else l=k;

 }

 k=Math.min(7-i,j);

 for(int l=1; l<=k; l++){

 if(B[i+l][j-l]==0) {mb++;Move m=new Move(i,j,i+l,j-

l,4);moves_w.add(m);}

 else if(B[i+l][j-l]<0) {mb++;Move m=new

Move(i,j,i+l,j-l,4);moves_w.add(m); l=k;}

 else l=k;

 }

 k=Math.min(i,7-j);

 for(int l=1; l<=k; l++){

 if(B[i-l][j+l]==0) {mb++;Move m=new Move(i,j,i-

l,j+l,4);moves_w.add(m);}

 else if(B[i-l][j+l]<0) {mb++;Move m=new Move(i,j,i-

l,j+l,4);moves_w.add(m); l=k;}

 else l=k;

 }

 }

 else if(side==-1 && B[i][j]==-4){ //black

 int k=Math.min(7-i,7-j);

 for(int l=1; l<=k; l++){

 if(B[i+l][j+l]==0) {mb++;Move m=new

Move(i,j,i+l,j+l,-4);moves_b.add(m);}

 else if(B[i+l][j+l]>0) {mb++;Move m=new

Move(i,j,i+l,j+l,-4);moves_b.add(m); l=k;}

 else l=k;

 }

 k=Math.min(i,j);

 for(int l=1; l<=k; l++){

 if(B[i-l][j-l]==0) {mb++;Move m=new Move(i,j,i-l,j-

l,-4);moves_b.add(m);}

 else if(B[i-l][j-l]>0) {mb++;Move m=new Move(i,j,i-

l,j-l,-4);moves_b.add(m); l=k;}

38

 else l=k;

 }

 k=Math.min(7-i,j);

 for(int l=1; l<=k; l++){

 if(B[i+l][j-l]==0) {mb++;Move m=new Move(i,j,i+l,j-

l,-4);moves_b.add(m);}

 else if(B[i+l][j-l]>0) {mb++;Move m=new

Move(i,j,i+l,j-l,-4);moves_b.add(m); l=k;}

 else l=k;

 }

 k=Math.min(i,7-j);

 for(int l=1; l<=k; l++){

 if(B[i-l][j+l]==0) {mb++;Move m=new Move(i,j,i-

l,j+l,-4);moves_b.add(m);}

 else if(B[i-l][j+l]>0) {mb++;Move m=new Move(i,j,i-

l,j+l,-4);moves_b.add(m); l=k;}

 else l=k;

 }

 }

 }

 }

 return mb;

 }

 int mobRook(int side){ //calculate rook mobility & generate rook moves

 int mr=0;

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(side==1 && B[i][j]==2){ //white

 int k=7-i;

 for(int l=1; l<=k; l++){

 if(B[i+l][j]==0) {mr++;Move m=new

Move(i,j,i+l,j,2);moves_w.add(m);}

 else if(B[i+l][j]<0) {mr++;Move m=new

Move(i,j,i+l,j,2);moves_w.add(m); l=k;}

 else l=k;

 }

 k=i;

 for(int l=1; l<=k; l++){

 if(B[i-l][j]==0) {mr++;Move m=new Move(i,j,i-

l,j,2);moves_w.add(m);}

 else if(B[i-l][j]<0) {mr++;Move m=new Move(i,j,i-

l,j,2);moves_w.add(m); l=k;}

 else l=k;

 }

 k=7-j;

 for(int l=1; l<=k; l++){

 if(B[i][j+l]==0) {mr++;Move m=new

Move(i,j,i,j+l,2);moves_w.add(m);}

 else if(B[i][j+l]<0) {mr++;Move m=new

Move(i,j,i,j+l,2);moves_w.add(m); l=k;}

 else l=k;

 }

 k=j;

 for(int l=1; l<=k; l++){

 if(B[i][j-l]==0) {mr++;Move m=new Move(i,j,i,j-

l,2);moves_w.add(m);}

 else if(B[i][j-l]<0) {mr++;Move m=new Move(i,j,i,j-

l,2);moves_w.add(m); l=k;}

 else l=k;

 }

 }

 else if(side==-1 && B[i][j]==-2){ //black

 int k=7-i;

 for(int l=1; l<=k; l++){

 if(B[i+l][j]==0) {mr++;Move m=new Move(i,j,i+l,j,-

2);moves_b.add(m);}

39

 else if(B[i+l][j]>0) {mr++;Move m=new

Move(i,j,i+l,j,-2);moves_b.add(m); l=k;}

 else l=k;

 }

 k=i;

 for(int l=1; l<=k; l++){

 if(B[i-l][j]==0) {mr++;Move m=new Move(i,j,i-l,j,-

2);moves_b.add(m);}

 else if(B[i-l][j]>0) {mr++;Move m=new Move(i,j,i-

l,j,-2);moves_b.add(m); l=k;}

 else l=k;

 }

 k=7-j;

 for(int l=1; l<=k; l++){

 if(B[i][j+l]==0) {mr++;Move m=new Move(i,j,i,j+l,-

2);moves_b.add(m);}

 else if(B[i][j+l]>0) {mr++;Move m=new

Move(i,j,i,j+l,-2);moves_b.add(m); l=k;}

 else l=k;

 }

 k=j;

 for(int l=1; l<=k; l++){

 if(B[i][j-l]==0) {mr++;Move m=new Move(i,j,i,j-l,-

2);moves_b.add(m);}

 else if(B[i][j-l]>0) {mr++;Move m=new Move(i,j,i,j-

l,-2);moves_b.add(m); l=k;}

 else l=k;

 }

 }

 }

 }

 return mr;

 }

 int mobQueen(int side){ //calculate queen mobility & generate queen

moves

 int mq=0;

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(side==1 && B[i][j]==5){ //white

 //rook moves

 int k=7-i;

 for(int l=1; l<=k; l++){

 if(B[i+l][j]==0) {mq++;Move m=new

Move(i,j,i+l,j,5);moves_w.add(m);}

 else if(B[i+l][j]<0) {mq++;Move m=new

Move(i,j,i+l,j,5);moves_w.add(m); l=k;}

 else l=k;

 }

 k=i;

 for(int l=1; l<=k; l++){

 if(B[i-l][j]==0) {mq++;Move m=new Move(i,j,i-

l,j,5);moves_w.add(m);}

 else if(B[i-l][j]<0) {mq++;Move m=new Move(i,j,i-

l,j,5);moves_w.add(m); l=k;}

 else l=k;

 }

 k=7-j;

 for(int l=1; l<=k; l++){

 if(B[i][j+l]==0) {mq++;Move m=new

Move(i,j,i,j+l,5);moves_w.add(m);}

 else if(B[i][j+l]<0) {mq++;Move m=new

Move(i,j,i,j+l,5);moves_w.add(m); l=k;}

 else l=k;

 }

 k=j;

 for(int l=1; l<=k; l++){

40

 if(B[i][j-l]==0) {mq++;Move m=new Move(i,j,i,j-

l,5);moves_w.add(m);}

 else if(B[i][j-l]<0) {mq++;Move m=new Move(i,j,i,j-

l,5);moves_w.add(m); l=k;}

 else l=k;

 }

 //bishop moves

 k=Math.min(7-i,7-j);

 for(int l=1; l<=k; l++){

 if(B[i+l][j+l]==0) {mq++;Move m=new

Move(i,j,i+l,j+l,5);moves_w.add(m);}

 else if(B[i+l][j+l]<0) {mq++;Move m=new

Move(i,j,i+l,j+l,5);moves_w.add(m); l=k;}

 else l=k;

 }

 k=Math.min(i,j);

 for(int l=1; l<=k; l++){

 if(B[i-l][j-l]==0) {mq++;Move m=new Move(i,j,i-l,j-

l,5);moves_w.add(m);}

 else if(B[i-l][j-l]<0) {mq++;Move m=new Move(i,j,i-

l,j-l,5);moves_w.add(m); l=k;}

 else l=k;

 }

 k=Math.min(7-i,j);

 for(int l=1; l<=k; l++){

 if(B[i+l][j-l]==0) {mq++;Move m=new Move(i,j,i+l,j-

l,5);moves_w.add(m);}

 else if(B[i+l][j-l]<0) {mq++;Move m=new

Move(i,j,i+l,j-l,5);moves_w.add(m); l=k;}

 else l=k;

 }

 k=Math.min(i,7-j);

 for(int l=1; l<=k; l++){

 if(B[i-l][j+l]==0) {mq++;Move m=new Move(i,j,i-

l,j+l,5);moves_w.add(m);}

 else if(B[i-l][j+l]<0) {mq++;Move m=new Move(i,j,i-

l,j+l,5);moves_w.add(m); l=k;}

 else l=k;

 }

 }

 else if(side==-1 && B[i][j]==-5){ //black

 //rook moves

 int k=7-i;

 for(int l=1; l<=k; l++){

 if(B[i+l][j]==0) {mq++;Move m=new Move(i,j,i+l,j,-

5);moves_b.add(m);}

 else if(B[i+l][j]>0) {mq++;Move m=new

Move(i,j,i+l,j,-5);moves_b.add(m); l=k;}

 else l=k;

 }

 k=i;

 for(int l=1; l<=k; l++){

 if(B[i-l][j]==0) {mq++;Move m=new Move(i,j,i-l,j,-

5);moves_b.add(m);}

 else if(B[i-l][j]>0) {mq++;Move m=new Move(i,j,i-

l,j,-5);moves_b.add(m); l=k;}

 else l=k;

 }

 k=7-j;

 for(int l=1; l<=k; l++){

 if(B[i][j+l]==0) {mq++;Move m=new Move(i,j,i,j+l,-

5);moves_b.add(m);}

 else if(B[i][j+l]>0) {mq++;Move m=new

Move(i,j,i,j+l,-5);moves_b.add(m); l=k;}

 else l=k;

 }

 k=j;

 for(int l=1; l<=k; l++){

41

 if(B[i][j-l]==0) {mq++;Move m=new Move(i,j,i,j-l,-

5);moves_b.add(m);}

 else if(B[i][j-l]>0) {mq++;Move m=new Move(i,j,i,j-

l,-5);moves_b.add(m); l=k;}

 else l=k;

 }

 //bishop moves

 k=Math.min(7-i,7-j);

 for(int l=1; l<=k; l++){

 if(B[i+l][j+l]==0) {mq++;Move m=new

Move(i,j,i+l,j+l,-5);moves_b.add(m);}

 else if(B[i+l][j+l]>0) {mq++;Move m=new

Move(i,j,i+l,j+l,-5);moves_b.add(m); l=k;}

 else l=k;

 }

 k=Math.min(i,j);

 for(int l=1; l<=k; l++){

 if(B[i-l][j-l]==0) {mq++;Move m=new Move(i,j,i-l,j-

l,-5);moves_b.add(m);}

 else if(B[i-l][j-l]>0) {mq++;Move m=new Move(i,j,i-

l,j-l,-5);moves_b.add(m); l=k;}

 else l=k;

 }

 k=Math.min(7-i,j);

 for(int l=1; l<=k; l++){

 if(B[i+l][j-l]==0) {mq++;Move m=new Move(i,j,i+l,j-

l,-5);moves_b.add(m);}

 else if(B[i+l][j-l]>0) {mq++;Move m=new

Move(i,j,i+l,j-l,-5);moves_b.add(m); l=k;}

 else l=k;

 }

 k=Math.min(i,7-j);

 for(int l=1; l<=k; l++){

 if(B[i-l][j+l]==0) {mq++;Move m=new Move(i,j,i-

l,j+l,-5);moves_b.add(m);}

 else if(B[i-l][j+l]>0) {mq++;Move m=new Move(i,j,i-

l,j+l,-5);moves_b.add(m); l=k;}

 else l=k;

 }

 }

 }

 }

 return mq;

 }

 int mobKing(int side){ //calculate king mobility & generate king moves

 int mk=0;

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(side==1 && B[i][j]==6){ //white

 if(i<7 && B[i+1][j]<=0 && !isUnderAttack(i+1,j,side))

{mk++;Move m=new Move(i,j,i+1,j,6);moves_w.add(m);}

 if(i>0 && B[i-1][j]<=0 && !isUnderAttack(i-1,j,side))

{mk++;Move m=new Move(i,j,i-1,j,6);moves_w.add(m);}

 if(j<7 && B[i][j+1]<=0 && !isUnderAttack(i,j+1,side))

{mk++;Move m=new Move(i,j,i,j+1,6);moves_w.add(m);}

 if(j>0 && B[i][j-1]<=0 && !isUnderAttack(i,j-1,side))

{mk++;Move m=new Move(i,j,i,j-1,6);moves_w.add(m);}

 if(i<7 && j<7 && B[i+1][j+1]<=0

&& !isUnderAttack(i+1,j+1,side)) {mk++;Move m=new

Move(i,j,i+1,j+1,6);moves_w.add(m);}

 if(i<7 && j>0 && B[i+1][j-1]<=0 && !isUnderAttack(i+1,j-

1,side)) {mk++;Move m=new Move(i,j,i+1,j-1,6);moves_w.add(m);}

 if(i>0 && j<7 && B[i-1][j+1]<=0 && !isUnderAttack(i-

1,j+1,side)) {mk++;Move m=new Move(i,j,i-1,j+1,6);moves_w.add(m);}

 if(i>0 && j>0 && B[i-1][j-1]<=0 && !isUnderAttack(i-1,j-

1,side)) {mk++;Move m=new Move(i,j,i-1,j-1,6);moves_w.add(m);}

 }

42

 else if(side==-1 && B[i][j]==-6){ //black

 if(i<7 && B[i+1][j]>=0 && !isUnderAttack(i+1,j,side))

{mk++;Move m=new Move(i,j,i+1,j,-6);moves_b.add(m);}

 if(i>0 && B[i-1][j]>=0 && !isUnderAttack(i-1,j,side))

{mk++;Move m=new Move(i,j,i-1,j,-6);moves_b.add(m);}

 if(j<7 && B[i][j+1]>=0 && !isUnderAttack(i,j+1,side))

{mk++;Move m=new Move(i,j,i,j+1,-6);moves_b.add(m);}

 if(j>0 && B[i][j-1]>=0 && !isUnderAttack(i,j-1,side))

{mk++;Move m=new Move(i,j,i,j-1,-6);moves_b.add(m);}

 if(i<7 && j<7 && B[i+1][j+1]>=0

&& !isUnderAttack(i+1,j+1,side)) {mk++;Move m=new Move(i,j,i+1,j+1,-

6);moves_b.add(m);}

 if(i<7 && j>0 && B[i+1][j-1]>=0 && !isUnderAttack(i+1,j-

1,side)) {mk++;Move m=new Move(i,j,i+1,j-1,-6);moves_b.add(m);}

 if(i>0 && j<7 && B[i-1][j+1]>=0 && !isUnderAttack(i-

1,j+1,side)) {mk++;Move m=new Move(i,j,i-1,j+1,-6);moves_b.add(m);}

 if(i>0 && j>0 && B[i-1][j-1]>=0 && !isUnderAttack(i-1,j-

1,side)) {mk++;Move m=new Move(i,j,i-1,j-1,-6);moves_b.add(m);}

 }

 }

 }

 //castling moves

 if(side==1){ //white

 if(isCastling(1,0)){ //queenside

 mk++;Move m=new Move(0,4,0,2,0);moves_w.add(m);

 }

 if(isCastling(1,1)){ //kingside

 mk++;Move m=new Move(0,4,0,6,0);moves_w.add(m);

 }

 }

 else if(side==-1){ //black

 if(isCastling(-1,0)){ //queenside

 mk++;Move m=new Move(7,4,7,2,0);moves_b.add(m);

 }

 if(isCastling(-1,1)){ //kingside

 mk++;Move m=new Move(7,4,7,6,0);moves_b.add(m);

 }

 }

 return mk;

 }

 int mobility(int side){ //calculate total mobilities & generate all

possible moves of board

 int m=0;

 if(side==1){ //white

 moves_w.clear();

 m = mobPawn(1) + mobKnight(1) + mobBishop(1) + mobRook(1) +

mobQueen(1) + mobKing(1);

 mobility_w=m;

 }

 else if(side==-1){ //black

 moves_b.clear();

 m = mobPawn(-1) + mobKnight(-1) + mobBishop(-1) + mobRook(-1) +

mobQueen(-1) + mobKing(-1);

 mobility_b=m;

 }

 return m;

 }

 public void printMoves(){ //list all possible moves of board

 //this.generateChildren();

 System.out.println("Moves for white(+):");

 for(int i=0; i<this.moves_w.size(); i++){

 System.out.print("Move "+(i+1)+": ");

 Board b = new Board(this,moves_w.get(i));

 System.out.print(" with value :"+b.value+" ");

43

 moves_w.get(i).printMove();

 }

 System.out.println("Moves for black(-):");

 for(int i=0; i<this.moves_b.size(); i++){

 System.out.print("Move "+(i+1)+": ");

 Board b = new Board(this,moves_b.get(i));

 System.out.print(" with value :"+b.value+" ");

 moves_b.get(i).printMove();

 }

 }

 public void set_mobility(){ //re-calculate mobilities

 moves_w.clear();

 moves_b.clear();

 mobility_w=mobPawn(1) + mobKnight(1) + mobBishop(1) + mobRook(1) +

mobQueen(1) + mobKing(1);

 mobility_b=mobPawn(-1) + mobKnight(-1) + mobBishop(-1) + mobRook(-1)

+ mobQueen(-1) + mobKing(-1);

 }

 public boolean isUnderAttack(int x, int y, int side){ //cell(x,y) is in

danger by opponent side pieces

 if(side==1){ //white

 for(int i=0; i<this.moves_b.size(); i++){ // all threats other

than pawn

 if(x==moves_b.get(i).to_x && y==moves_b.get(i).to_y &&

moves_b.get(i).piece!=-1) return true;

 }

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(B[i][j]==-1){ //pawn threat check

 if(i!=0 && j!=0 && x==i-1 && y==j-1) return true;

 if(i!=0 && j!=7 && x==i-1 && y==j+1) return true;

 }

 else if(B[i][j]==-6){ //king threat check

 if(i!=0 && j!=0 && x==i-1 && y==j-1) return true;

 if(i!=0 && x==i-1 && y==j) return true;

 if(i!=0 && j!=7 && x==i-1 && y==j+1) return true;

 if(j!=0 && x==i && y==j-1) return true;

 if(j!=7 && x==i && y==j+1) return true;

 if(i!=7 && j!=0 && x==i+1 && y==j-1) return true;

 if(i!=7 && x==i+1 && y==j) return true;

 if(i!=7 && j!=7 && x==i+1 && y==j+1) return true;

 }

 }

 }

 }

 else if (side==-1){ //black

 for(int i=0; i<moves_w.size(); i++){ //all threats

 if(x==moves_w.get(i).to_x && y==moves_w.get(i).to_y &&

moves_w.get(i).piece!=1) return true;

 }

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(B[i][j]==1){ //pawn threats

 if(i!=7 && j!=0 && x==i+1 && y==j-1) return true;

 if(i!=7 && j!=7 && x==i+1 && y==j+1) return true;

 }

 else if(B[i][j]==6){ // king threats

 if(i!=0 && j!=0 && x==i-1 && y==j-1) return true;

 if(i!=0 && x==i-1 && y==j) return true;

 if(i!=0 && j!=7 && x==i-1 && y==j+1) return true;

 if(j!=0 && x==i && y==j-1) return true;

 if(j!=7 && x==i && y==j+1) return true;

 if(i!=7 && j!=0 && x==i+1 && y==j-1) return true;

 if(i!=7 && x==i+1 && y==j) return true;

 if(i!=7 && j!=7 && x==i+1 && y==j+1) return true;

 }

44

 }

 }

 }

 return false;

 }

 public boolean isCastling(int side, int type){ //given board is ok for

castling

 //type=0: castling on queenside

 //type=1: castling on kingside

 if(side==1){ //white

 if(type==0 && B[0][0]==2 && B[0][4]==6 && B[0][1]==0 &&

B[0][2]==0 && B[0][3]==0 //no pieces between

 && devArr[0][0]==0 && devArr[0][4]==0){ //not moved

before

 for(int i=2; i<=4; i++){

 if(isUnderAttack(0,i,1)) return false; //king safety

 }

 return true;

 }

 else if(type==1 && B[0][7]==2 && B[0][4]==6 && B[0][5]==0 &&

B[0][6]==0

 && devArr[0][7]==0 && devArr[0][4]==0){

 for(int i=4; i<=6; i++){

 if(isUnderAttack(0,i,1)) return false;

 }

 return true;

 }

 }

 else if (side==-1){ //black

 if(type==0 && B[7][0]==-2 && B[7][4]==-6 && B[7][1]==0 &&

B[7][2]==0 && B[7][3]==0

 && devArr[3][0]==0 && devArr[3][4]==0){

 for(int i=2; i<=4; i++){

 if(isUnderAttack(7,i,-1)) return false;

 }

 return true;

 }

 else if(type==1 && B[7][7]==-2 && B[7][4]==-6 && B[7][5]==0 &&

B[7][6]==0

 && devArr[3][7]==0 && devArr[3][4]==0){

 for(int i=4; i<=6; i++){

 if(isUnderAttack(7,i,-1)) return false;

 }

 return true;

 }

 }

 return false;

 }

 public void printBoard(){ //print board with piece representer letters

 char[] A = new char[7];

 A[0]='*';

 A[1]='P';

 A[2]='R';

 A[3]='N';

 A[4]='B';

 A[5]='Q';

 A[6]='K';

 System.out.println(" a b c d e f g h");

 for(int i=0; i<8; i++){

 System.out.print((i+1)+": ");

 for(int j=0; j<8; j++){

 if(B[i][j]>0) System.out.print("+"+A[B[i][j]]+" ");

 if(B[i][j]<0) System.out.print("-"+A[Math.abs(B[i][j])]+"

");

45

 if(B[i][j]==0) System.out.print(" "+A[B[i][j]]+" ");

 }

 System.out.println();

 }

 }

 public void generateChildren(){ //generate all possible child

nodes(boards)

 children_w.clear();

 children_b.clear();

 for(int i=0; i<moves_w.size(); i++){

 Board b = new Board(this,moves_w.get(i));

 if(b.isInCheck(1))

 {moves_w.remove(i); i--;}

 else

 children_w.add(b);

 }

 for(int i=0; i<moves_b.size(); i++){

 Board b = new Board(this,moves_b.get(i));

 if(b.isInCheck(-1))

 {moves_b.remove(i); i--;}

 else

 children_b.add(b);

 }

 mobility_w=children_w.size();

 mobility_b=children_b.size();

 value_w=eval(1);

 value_b=eval(-1);

 if(Main.sideC==1) value=value_w-value_b;

 else value=value_b-value_w;

 }

 public boolean moveIsValid(Move m){ //given move is possible on this

board

 if(m.piece<=0){ // black's move

 for(int i=0; i<moves_b.size(); i++){

 if(moves_b.get(i).equals(m)) return true;

 }

 }

 if(m.piece>=0){ // white's move

 for(int i=0; i<moves_w.size(); i++){

 if(moves_w.get(i).equals(m)) return true;

 }

 }

 return false;

 }

 double eval(int side){ //evaluation function

 double val=0;

 if(side==1){ //white

 val = material_w*Main.Wmat/40 + mobility_w*Main.Wmob/50 +

dev_w*Main.Wdev/16 + center_w*Main.Wcen/20;

 }

 else{ //black

 val = material_b*Main.Wmat/40 + mobility_b*Main.Wmob/50 +

dev_b*Main.Wdev/16 + center_b*Main.Wcen/20;

 }

 return val;

 }

 boolean equals(Board b){ //check if two board configurations are the

same

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(this.B[i][j]!=b.B[i][j]) return false;

 }

 }

 return true;

46

 }

 void copy(Board b){ //copy board matrix and development values

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 this.B[i][j]=b.B[i][j];

 if(i<4) this.devArr[i][j]=b.devArr[i][j];

 }

 }

 this.parent=b.parent;

 }

 void loadBoard(){ //load board values after copy

 dev_w=dev(1);

 dev_b=dev(-1);

 material_w=material(1);

 material_b=material(-1);

 center_w=centeral(1);

 center_b=centeral(-1);

 this.set_mobility();

 this.generateChildren();

 }

 public boolean isInCheck(int side){ //control if the board is in check

for one side

 if(side==1){ //white

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(B[i][j]==6){

 if(isUnderAttack(i,j,side)) return true;

 }

 }

 }

 }

 else if(side==-1){ //black

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 if(B[i][j]==-6){

 if(isUnderAttack(i,j,side)) return true;

 }

 }

 }

 }

 return false;

 }

 public boolean isDraw(){ //check if the current board is a draw

condition

 int b;

 int nw=0, nb=0;

 int bw=0, bb=0;

 int x1=0,x2=0,y1=0,y2=0;

 for(int i=0; i<8; i++){

 for(int j=0; j<8; j++){

 b=B[i][j];

 if(b==1 || b==-1 || b==2 || b==-2 || b==5 || b==-5) return

false;

 else if(b==3) nw++;

 else if(b==4) {bw++; x1=i; y1=j;}

 else if(b==-3) nb++;

 else if(b==-4) {bb++; x2=i; y2=j;}

 }

 }

 if(nw==0 && nb==0 && bw==0 && bb==0) return true; // king vs king

47

 else if(nw==0 && nb==0 && bw==1 && bb==0) return true; // king vs

king&bishop

 else if(nw==0 && nb==0 && bw==0 && bb==1) return true;

 else if(nw==1 && nb==0 && bw==0 && bb==0) return true; // king vs

king&knight

 else if(nw==0 && nb==1 && bw==0 && bb==0) return true;

 else if(nw==0 && nb==0 && bw==1 && bb==1){ // king&bishop vs

king&bishop

 int[][] A= new int[][]

 {{0,1,0,1,0,1,0,1},

 {1,0,1,0,1,0,1,0},

 {0,1,0,1,0,1,0,1},

 {1,0,1,0,1,0,1,0},

 {0,1,0,1,0,1,0,1},

 {1,0,1,0,1,0,1,0},

 {0,1,0,1,0,1,0,1},

 {1,0,1,0,1,0,1,0}};

 if(A[x1][y1]==A[x2][y2]) return true; //both bishops on

diagonals of the same colour

 }

 return false;

 }

 public boolean isCheckMate2(int side){

 if(side==1 && children_w.size()==0) return true;

 else if(side==-1 && children_b.size()==0) return true;

 return false;

 }

 public boolean isCheckMate(int side){ //control if the game ends

 if(isInCheck(side) && side==1){ //white is in check

 for(int i=0; i<children_w.size(); i++){

 if(!children_w.get(i).isInCheck(side)) return false;

 }

 return true;

 }

 else if(isInCheck(side) && side==-1){ //black is in check

 for(int i=0; i<children_b.size(); i++){

 if(!children_b.get(i).isInCheck(side)) return false;

 }

 return true;

 }

 return false;

 }

 double Max(){

 double m=Main.NEG;

 if(Main.sideC==1){ //computer white

 for(int i=0; i<children_w.size(); i++){

 if(children_w.get(i).value>m) m=children_w.get(i).value;

 }

 }

 else{ //computer black

 for(int i=0; i<children_b.size(); i++){

 if(children_b.get(i).value>m) m=children_b.get(i).value;

 }

 }

 return m;

 }

 double Min(){

 double m=Main.POS;

 if(Main.sideC==1){ //computer white

 for(int i=0; i<children_b.size(); i++){

 if(children_b.get(i).value<m) m=children_b.get(i).value;

 }

 }

48

 else{ //computer black

 for(int i=0; i<children_w.size(); i++){

 if(children_w.get(i).value<m) m=children_w.get(i).value;

 }

 }

 return m;

 }

 Board Play(){

 Board best_move= new Board();

 double[] max=new double[2];

 int index=0;

 max=Minimax_AB(Main.sideC,Main.sideC,this,Main.NEG,Main.POS);

 index=(int)max[1];

 System.out.println("BEST MOVE IS FOUND AT CHILD NO: "+(index+1));

 if(Main.sideC==1){

 best_move.copy(children_w.get(index));

 best_move.loadBoard();

 }

 else{

 best_move.copy(children_b.get(index));

 best_move.loadBoard();

 }

 return best_move;

 }

 double[] Minimax_AB(int side, int turn, Board current,double alpha, double

beta){

 double val=0;

 double score=0;

 double index=0;

 int maxDepth;

 double[] arr=new double[2];

 maxDepth=Main.maxDepth/2;

 if(Main.depth==maxDepth)

 {

 val= current.value;

 arr[0]=val;

 arr[1]=index;

 return arr;

 }

 else{

 current.generateChildren();

 Main.depth++;

 if(side==1){//computer white and we will maximize children_w

 if(turn==side){ //max node

 for(int i=0; i<current.children_w.size();i++){

 arr=Minimax_AB(side,(turn*(-

1)),current.children_w.get(i),alpha,beta); //call for every child, computer

white,white's turn

 score=arr[0];

 if(score>alpha){

 alpha=score;

 index=i;

 }

 if(alpha>=beta){

 val=alpha;

 Main.depth--;

 arr[0]=val;

 arr[1]=index;

49

 return arr;

 }

 }

 val=alpha;

 Main.depth--;

 arr[0]=val;

 arr[1]=index;

 return arr;

 }

 else{// for every child that is black's turn (min node)

 for(int i=0; i<current.children_b.size();i++){

 arr=Minimax_AB(side,(turn*(-

1)),current.children_b.get(i),alpha,beta);

 score=arr[0];

 if(score<beta){

 beta=score;

 index=i;

 }

 if(alpha>=beta){

 val=beta;

 Main.depth--;

 arr[0]=val;

 arr[1]=index;

 return arr;

 }

 }

 val=beta;

 Main.depth--;

 arr[0]=val;

 arr[1]=index;

 return arr;

 }

 }

 else{//computer black and we will maximize children_b

 if(turn==side){ //max node

 for(int i=0; i<current.children_b.size();i++){

 arr=Minimax_AB(side,(turn*(-

1)),current.children_b.get(i),alpha,beta); //call for every child, computer

black,black's turn

 score=arr[0];

 if(score>alpha){

 alpha=score;

 index=i;

 }

 if(alpha>=beta){

 val=alpha;

 Main.depth--;

 arr[0]=val;

 arr[1]=index;

 return arr;

 }

 }

 val=alpha;

 Main.depth--;

 arr[0]=val;

 arr[1]=index;

 return arr;

 }

 else{// for every child that is black's turn (min node)

 for(int i=0; i<current.children_w.size();i++){

 arr=Minimax_AB(side,(turn*(-

1)),current.children_w.get(i),alpha,beta);

 score=arr[0];

 if(score<beta){

50

 beta=score;

 index=i;

 }

 if(alpha>=beta){

 val=beta;

 Main.depth--;

 arr[0]=val;

 arr[1]=index;

 return arr;

 }

 }

 val=beta;

 Main.depth--;

 arr[0]=val;

 arr[1]=index;

 return arr;

 }

 }

 }

 }

}

Move.java:

package my_chess_pkg;

/**

 * @author eda & selin

 */

public class Move {

 int from_x; //source

 int from_y;

 int to_x; //destination

 int to_y;

 int piece; //type of moved piece

 /*

 + for white

 - for black

 1: pawn

 2: rook

 3: kngiht

 4: bishop

 5: queen

51

 6: king

 0: castling move

 'p': en passant move

 */

 public Move(){

 from_x=0;

 from_y=0;

 to_x=0;

 to_y=0;

 piece=0;

 }

 public Move(int x, int y, int x2, int y2, int p){

 from_x=x;

 from_y=y;

 to_x=x2;

 to_y=y2;

 piece=p;

 }

 public boolean equals(Move m){

 if(from_x==m.from_x && from_y==m.from_y && to_x==m.to_x &&

to_y==m.to_y && piece==m.piece)

 return true;

 return false;

 }

 public void copy(Move m){

 from_x=m.from_x;

 from_y=m.from_y;

 to_x=m.to_x;

 to_y=m.to_y;

 piece=m.piece;

 }

52

 public Move(String input){ //create a move from user input

 if((input.length()>3 && input.charAt(3)=='0' &&

input.charAt(5)=='0')

 || (input.charAt(0)=='0' &&

input.charAt(2)=='0')){ //castling

 piece=0;

 if((input.length()>7 && input.charAt(7)=='0')

 || (input.length()>4 &&

input.charAt(4)=='0')){ //queenside

 if(Main.sideC==1) {from_x=7; from_y=4; to_x=7; to_y=2;}

//black

 else {from_x=0; from_y=4; to_x=0; to_y=2;} //white

 }

 else{ //kingside

 if(Main.sideC==1) {from_x=7; from_y=4; to_x=7; to_y=6;}

//black

 else {from_x=0; from_y=4; to_x=0; to_y=6;} //white

 }

 }

 else{ //not castling

 if(input.length()>9){ //P: X ni-mj

 if(input.charAt(3)=='P' || input.charAt(3)=='p') piece=1;

 else if(input.charAt(3)=='R' || input.charAt(3)=='r') piece=2;

 else if(input.charAt(3)=='N' || input.charAt(3)=='n') piece=3;

 else if(input.charAt(3)=='B' || input.charAt(3)=='b') piece=4;

 else if(input.charAt(3)=='Q' || input.charAt(3)=='q') piece=5;

 else if(input.charAt(3)=='K' || input.charAt(3)=='k') piece=6;

 from_x=Character.digit(input.charAt(6),10)-1;

 if(input.charAt(5)=='A' || input.charAt(5)=='a') from_y=0;

 else if(input.charAt(5)=='B' || input.charAt(5)=='b') from_y=1;

 else if(input.charAt(5)=='C' || input.charAt(5)=='c') from_y=2;

 else if(input.charAt(5)=='D' || input.charAt(5)=='d') from_y=3;

 else if(input.charAt(5)=='E' || input.charAt(5)=='e') from_y=4;

 else if(input.charAt(5)=='F' || input.charAt(5)=='f') from_y=5;

 else if(input.charAt(5)=='G' || input.charAt(5)=='g') from_y=6;

 else if(input.charAt(5)=='H' || input.charAt(5)=='h') from_y=7;

53

 to_x=Character.digit(input.charAt(9),10)-1;

 if(input.charAt(8)=='A' || input.charAt(8)=='a') to_y=0;

 else if(input.charAt(8)=='B' || input.charAt(8)=='b') to_y=1;

 else if(input.charAt(8)=='C' || input.charAt(8)=='c') to_y=2;

 else if(input.charAt(8)=='D' || input.charAt(8)=='d') to_y=3;

 else if(input.charAt(8)=='E' || input.charAt(8)=='e') to_y=4;

 else if(input.charAt(8)=='F' || input.charAt(8)=='f') to_y=5;

 else if(input.charAt(8)=='G' || input.charAt(8)=='g') to_y=6;

 else if(input.charAt(8)=='H' || input.charAt(8)=='h') to_y=7;

 }

 else if(input.length()>6){ //x ni-mj

 if(input.charAt(0)=='P' || input.charAt(0)=='p') piece=1;

 else if(input.charAt(0)=='R' || input.charAt(0)=='r') piece=2;

 else if(input.charAt(0)=='N' || input.charAt(0)=='n') piece=3;

 else if(input.charAt(0)=='B' || input.charAt(0)=='b') piece=4;

 else if(input.charAt(0)=='Q' || input.charAt(0)=='q') piece=5;

 else if(input.charAt(0)=='K' || input.charAt(0)=='k') piece=6;

 from_x=Character.digit(input.charAt(3),10)-1;

 if(input.charAt(2)=='A' || input.charAt(2)=='a') from_y=0;

 else if(input.charAt(2)=='B' || input.charAt(2)=='b') from_y=1;

 else if(input.charAt(2)=='C' || input.charAt(2)=='c') from_y=2;

 else if(input.charAt(2)=='D' || input.charAt(2)=='d') from_y=3;

 else if(input.charAt(2)=='E' || input.charAt(2)=='e') from_y=4;

 else if(input.charAt(2)=='F' || input.charAt(2)=='f') from_y=5;

 else if(input.charAt(2)=='G' || input.charAt(2)=='g') from_y=6;

 else if(input.charAt(2)=='H' || input.charAt(2)=='h') from_y=7;

 to_x=Character.digit(input.charAt(6),10)-1;

 if(input.charAt(5)=='A' || input.charAt(5)=='a') to_y=0;

 else if(input.charAt(5)=='B' || input.charAt(5)=='b') to_y=1;

 else if(input.charAt(5)=='C' || input.charAt(5)=='c') to_y=2;

 else if(input.charAt(5)=='D' || input.charAt(5)=='d') to_y=3;

 else if(input.charAt(5)=='E' || input.charAt(5)=='e') to_y=4;

 else if(input.charAt(5)=='F' || input.charAt(5)=='f') to_y=5;

 else if(input.charAt(5)=='G' || input.charAt(5)=='g') to_y=6;

 else if(input.charAt(5)=='H' || input.charAt(5)=='h') to_y=7;

54

 }

 if(Main.sideC==1) piece*=-1; //user is black(-)

 }

 }

 public void printMove(){ //print move as "<piece> from: <source> to:

<destination>"

 char[] con = new char[8];

 con[0]='a';

 con[1]='b';

 con[2]='c';

 con[3]='d';

 con[4]='e';

 con[5]='f';

 con[6]='g';

 con[7]='h';

 if(piece!=0){ //not castling

 if(piece==1 || piece==-1)

 System.out.print("Pawn("+piece+")");

 else if(piece==2 || piece==-2)

 System.out.print("Rook("+piece+")");

 else if(piece==3 || piece==-3)

 System.out.print("Knight("+piece+")");

 else if(piece==4 || piece==-4)

 System.out.print("Bishop("+piece+")");

 else if(piece==5 || piece==-5)

 System.out.print("Queen("+piece+")");

 else if(piece==6 || piece==-6)

 System.out.print("King("+piece+")");

 else if(piece=='p')

 System.out.print("En Passant move ");

 System.out.println(" from:

"+con[from_y]+(from_x+1)+"("+from_x+","+from_y+") to:

"+con[to_y]+(to_x+1)+"("+to_x+","+to_y+")");

 }

 else{ //castling

55

 if(from_x==0){ //white

 System.out.print("King(6) from:

"+con[from_y]+(from_x+1)+"("+from_x+","+from_y+") to:

"+con[to_y]+(to_x+1)+"("+to_x+","+to_y+") and Rook(2)");

 if(to_y==2) System.out.println(" from: a1(0,0) to:

d1(0,3)");

 if(to_y==6) System.out.println(" from: h1(0,7) to:

f1(0,5)");

 }

 else if(from_x==7){ //black

 System.out.print("King(-6) from:

"+con[from_y]+(from_x+1)+"("+from_x+","+from_y+") to:

"+con[to_y]+(to_x+1)+"("+to_x+","+to_y+") and Rook(-2)");

 if(to_y==2) System.out.println(" from: a8(7,0) to:

d8(7,3)");

 if(to_y==6) System.out.println(" from: h8(7,7) to:

f8(7,5)");

 }

 }

 }

}

Main.java:

package my_chess_pkg;

import java.io.*;

/**

 *

 * @author eda & selin

 */

public class Main {

 public static int sideC=-1; //side of computer: 1=white, -

1=black

 //evaluation function weights

 public static final double Wmat=100; //weight of material

 public static final double Wmob=10; //weight of mobility

 public static final double Wdev=5; //weight of development

 public static final double Wcen=1; //weight of centerality

 public static int count=0; //for draw

 public static int depth=0;

 public static final int maxDepth=4;

 public static final double NEG=-1000000000;

 public static final double POS=1000000000;

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) throws IOException{

 // TODO code application logic here

56

 int[][] B= new int[][]

 /* a b c d e f g h */

 /*1*/{{2,3,4,5,6,4,3,2}, //white

 /*2*/ {1,1,1,1,1,1,1,1},

 /*3*/ {0,0,0,0,0,0,0,0},

 /*4*/ {0,0,0,0,0,0,0,0},

 /*5*/ {0,0,0,0,0,0,0,0},

 /*6*/ {0,0,0,0,0,0,0,0},

 /*7*/ {-1,-1,-1,-1,-1,-1,-1,-1},

 /*8*/ {-2,-3,-4,-5,-6,-4,-3,-2}}; //black

 Board b = new Board();

 b.B=B;

 b.loadBoard();

 //b.side=1;

 System.out.println("Material of White:

"+b.material(1));

 System.out.println("Material of Black: "+b.material(-

1));

 //b.set_mobility();

 System.out.println("Mobility of White: "+b.mobility_w);

 System.out.println("Mobility of Black: "+b.mobility_b);

 b.printMoves();

 //b.printBoard();

 String input = ""; // Line read from standard in

 InputStreamReader converter = new

InputStreamReader(System.in);

 BufferedReader in = new BufferedReader(converter);

 Board prev = new Board();

 prev.B=B;

 //prev.B=B_test;

 //prev.B=B_draw;

 //prev.B=B_max2;

 prev.loadBoard();

 Board next = new Board();

 int index=0;

 Move bestmove = new Move();

 int Nply=0;

 while(true){

 System.out.println("Please choose your side: \nEnter

'w' for white,'b' for black: ");

 input = in.readLine();

 if(input.equalsIgnoreCase("w")) {sideC=-1; break;}

 else if(input.equalsIgnoreCase("b")) {sideC=1; break;}

 }

 System.out.println("Initial board: ");

 prev.printBoardInfo();

 prev.printBoard();

 if(sideC==1){

 prev.copy(prev.Play());

 prev.loadBoard();

 depth=0; //set depth to zero for the next play tree

 System.out.println("Current board after computer's

move: ");

 prev.printBoardInfo();

 prev.printBoard();

 }

 while(true){

 System.out.println("Enter your next move: ");

57

 input = in.readLine();

 if(input.equalsIgnoreCase("resign")){

 System.out.println("Player is Resigned: \nCOMPUTER

WINS!!! GAME OVER!!!");

 System.out.println("Number of plys: "+Nply);

 break;

 }

 if(input.equalsIgnoreCase("draw")){

 System.out.println("Player Proposed a DRAW!");

 if(prev.value<0){

 System.out.println("Computer accepted this

proposal: \nIt is a DRAW!!! GAME OVER!!!");

 System.out.println("Number of plys: "+Nply);

 break;

 }

 else{

 System.out.println("Computer rejected this

proposal: \nPlease continue the game:");

 input = in.readLine();

 if(input.equalsIgnoreCase("resign")){

 System.out.println("Player is Resigned:

\nCOMPUTER WINS!!! GAME OVER!!!");

 System.out.println("Number of plys:

"+Nply);

 break;

 }

 }

 }

 if(inputValid(input)){

 System.out.println("Valid Input =)");

 Move plmove = new Move(input); //player's move

 plmove.printMove();

 if(!prev.moveIsValid(plmove))

 System.out.println("Invalid Move!");

 else{ //move is valid

 System.out.println("Valid Move =)");

 Board current = new Board(prev,plmove);

 //current.printBoardInfo();

 current.generateChildren();

 System.out.println("Current board info after

your move: ");

 current.printBoardInfo();

 System.out.println("Current board after your

move: ");

 current.printBoard();

 if(current.isInCheck(sideC))

 System.out.println("Computer is in

CHECK!!!"); // C is in check by P

 //current.printBoardInfo();

 if(current.isCheckMate(sideC)

 || (sideC==1 &&

current.children_w.size()==0 && current.isInCheck(sideC))

 || (sideC==-1 &&

current.children_b.size()==0 && current.isInCheck(sideC))) {

 System.out.println("Computer is in CHECK

MATE!!!");

 System.out.println("PLAYER WINS!!!\nGAME

OVER!!!");

 System.out.println("Number of plys:

"+Nply);

 break;

 } // C loses

 else if(current.isDraw() || (sideC==1 &&

current.children_w.size()==0 && !current.isInCheck(sideC))

58

 || (sideC==-1 &&

current.children_b.size()==0 && !current.isInCheck(sideC))){

 System.out.println("It is a DRAW!!!\nGAME

OVER!!! ");

 System.out.println("Number of plys:

"+Nply);

 break;

 }

 count++;

 if(count==50){

 System.out.println("50 move limit is

reached. The game is over. It is a draw.");

 System.out.println("Number of plys:

"+Nply);

 }

 // current.printBoardInfo();

 current.printMoves();

 next.copy(current.Play());

 next.loadBoard();

 depth=0; //set depth to zero for the next play

tree

 if(sideC==1){ //computer is white

 for(int i=0; i<current.children_w.size();

i++){

if(current.children_w.get(i).equals(next)){

 index=i; break;

 }

 } //find index of best child

 System.out.println("BEST MOVE IS FOUND AT

CHILD NO: "+(index+1));

 bestmove.copy(current.moves_w.get(index));

 System.out.println("Computer's move is: ");

 bestmove.printMove();

 if(next.isInCheck(-1))

 System.out.println("Player is in

CHECK!!!"); // P is in check by C

 if(next.isCheckMate(-1) ||

(current.children_b.size()==0 && current.isInCheck(-1))) {

 System.out.println("Player is in CHECK

MATE!!!");

 System.out.println("COMPUTER

WINS!!!\nGAME OVER!!!");

 System.out.println("Number of plys:

"+Nply);

 break;

 } // P loses

 else if(current.isDraw() ||

current.children_b.size()==0 && !current.isInCheck(-1)){

 System.out.println("It is a

DRAW!!!\nGAME OVER!!! ");

 System.out.println("Number of plys:

"+Nply);

 break;

 }

 count++;

 if(count==50){

 System.out.println("50 move limit is

reached. The game is over. It is a draw.");

 System.out.println("Number of plys:

"+Nply);

 }

 }

 else if(sideC==-1){ //computer is black

59

 for(int i=0; i<current.children_b.size();

i++){

if(current.children_b.get(i).equals(next)){

 index=i; break;

 }

 } //find index of best child

 System.out.println("BEST MOVE IS FOUND AT

CHILD NO: "+(index+1));

 bestmove.copy(current.moves_b.get(index));

 System.out.println("Computer's move is: ");

 bestmove.printMove();

 if(next.isInCheck(1))

 System.out.println("Player is in

CHECK!!!"); // P is in check by C

 if(next.isCheckMate(1) ||

(current.children_w.size()==0 && current.isInCheck(1))) {

 System.out.println("Player is in CHECK

MATE!!!");

 System.out.println("COMPUTER

WINS!!!\nGAME OVER!!!");

 System.out.println("Number of plys:

"+Nply);

 break;

 } // P loses

 else if(current.isDraw() ||

current.children_w.size()==0 && !current.isInCheck(1)){

 System.out.println("It is a DRAW!!!\n

GAME OVER!!! ");

 System.out.println("Number of plys:

"+Nply);

 break;

 }

 count++;

 if(count==50)

 System.out.println("50 move limit is

reached. The game is over. It is a draw.");

 }

 System.out.println("Current board info after

computer's move: ");

 next.printBoardInfo();

 System.out.println("Computer's last move is:

");

 bestmove.printMove();

 System.out.println("Current board after

computer's move: ");

 next.printBoard();

 prev.copy(next);

 prev.loadBoard();

 Nply++;

 System.out.println("Number of plys: "+Nply);

 }

 }

 else System.out.println("Invalid Input!");

 }

 }

 static public boolean inputValid(String input){ //check the

validity of user input

 if(input.length()>=6 && input.charAt(0)=='P'){

 if(input.charAt(3)=='0' && input.charAt(5)=='0')

return true; //castling

 else if(input.length()>=10){

 char p=input.charAt(3);

 int fy=input.charAt(5);

 int fx=input.charAt(6);

60

 int ty=input.charAt(8);

 int tx=input.charAt(9);

 if(p=='P' || p=='R' || p=='N' || p=='B' || p=='Q'

|| p=='K' || p=='p' || p=='r' || p=='n' || p=='b' || p=='q' ||

p=='k'){

 if(fy>='a' && fy<='h' && ty>='a' && ty<='h' &&

fx>='1' && fx<='8' && tx>='1' && tx<='8')

 return true;

 }

 }

 }

 else if(input.length()>=3){

 if(input.charAt(0)=='0' && input.charAt(2)=='0')

return true; //castling

 if(input.length()>=6 && input.charAt(3)=='0' &&

input.charAt(5)=='0') return true; //castling

 else if(input.length()>=7){

 char p=input.charAt(0);

 int fy=input.charAt(2);

 int fx=input.charAt(3);

 int ty=input.charAt(5);

 int tx=input.charAt(6);

 if(p=='P' || p=='R' || p=='N' || p=='B' || p=='Q'

|| p=='K' || p=='p' || p=='r' || p=='n' || p=='b' || p=='q' ||

p=='k'){

 if(fy>='a' && fy<='h' && ty>='a' && ty<='h' &&

fx>='1' && fx<='8' && tx>='1' && tx<='8')

 return true;

 }

 }

 }

 return false;

 }

}

61

APPENDIX B: PROJECT PROGRESS CHART (Before Implementation)

Project Progress Chart

Literature Survey

Date
Student

Name

Hours

worked
Progress (this week) Plan (next week)

09.03.2011

Eda

8

Study of the existing work in the

literature in order to familiarize with

the topic is started.

8 conference/journal papers and lecture

materials assigned by the instructor are

read.

Prepare the first document

PaperList which keeps a list of

the papers we have read.

Start preparing an

abstract/summary for each paper

to be put in the document

PaperSummary.

Selin

8

Study of the existing work in the

literature in order to familiarize with

the topic is started.

8 conference/journal papers and lecture

materials assigned by the instructor are

read.

Prepare the first document

PaperList which keeps a list of

the papers we have read.

Start preparing an

abstract/summary for each paper

to be put in the document

PaperSummary.

17.03.2011

Eda

7

The first document PaperList which

keeps a list of the papers we have read,

along with their basic information, is

prepared.

Preparing an abstract of 1-2 page for

each paper is started. 3/8 papers

summaries are finished and corrected.

Finish preparing an

abstract/summary for all 8 papers,

and prepare PaperSummary

document.

Selin

7

The first document PaperList which

keeps a list of the papers we have read,

along with their basic information, is

prepared.

Preparing an abstract of 1-2 page for

each paper is started. 3/8 papers

summaries are finished and corrected.

Finish preparing an

abstract/summary for all 8 papers,

and prepare PaperSummary

document.

24.03.2011

Eda

6

Preparing an abstract of 1-2 page for

the rest 5/8 papers is finished. All

summaries are corrected and put in the

document “PaperSummary”.

Start preparing a literature survey

report “LiteratureSurvey”, about

10 pages long, to combine all the

information gathered.

Selin

6

Preparing an abstract of 1-2 page for

the rest 5/8 papers is finished. All

summaries are corrected and put in the

document “PaperSummary”.

Start preparing a literature survey

report “LiteratureSurvey”, about

10 pages long, to combine all the

information gathered.

31.03.2011

Eda

6

Preparation of a literature survey report

is started, to combine all the

information we gathered so far.

As a final work of the literature

survey phase, finish preparing the

literature survey report

LiteratureSurvey.

Selin

6

Preparation of a literature survey report

is started, to combine all the

information we gathered so far.

As a final work of the literature

survey phase, finish preparing the

literature survey report

LiteratureSurvey.

...

...

Proposal

Date
Student

Name

Hours

worked
Progress (this week) Plan (next week)

62

07.04.2011

Eda

5

In the light of all the papers we read,

the preparation of the Project Proposal

Document is started.

Extract all information from the

literature survey phase and decide

which ones to include in the

Proposal Document.

Selin

5

In the light of all the papers we read,

the preparation of the Project Proposal

Document is started.

Extract all information from the

literature survey phase and decide

which ones to include in the

Proposal Document.

14.04.2011

Eda

5

Project Overview section, which

explains the project as a whole, of the

Project Proposal Document is

discussed and finished.

Revise Project Overview if

necessary. Start preparing Project

Methodology section of Project

Proposal.

Selin

5

Project Overview section, which

explains the project as a whole, of the

Project Proposal Document is

discussed and finished.

Revise Project Overview if

necessary. Start preparing Project

Methodology section of Project

Proposal.

21.04.2011

Eda

6

Project Methodology, which explains

all the details of what will be done and

how it will be done, and Success

Criteria sections are discussed and

prepared. Complete version of Project

Proposal Document is finished.

Discussing on the Project

Proposal Document with the

instructor and revising it

accordingly.

Selin

6

Project Methodology, which explains

all the details of what will be done and

how it will be done, and Success

Criteria sections are discussed and

prepared. Complete version of Project

Proposal Document is finished.

Discussing on the Project

Proposal Document with the

instructor and revising it

accordingly.

...

...

63

REFERENCES NOT CITED

 Campbell, M. , Hoane, A.J. & Hsu,F. Deep Blue, August 1, 2011

 Campbell, M. Communications of The ACM: Knowledge Discovery in Deep

Blue, November 1999/ Vol.42, No.11

 M. Chaves, Escuela de Fsica, Universidad de Costa Rica, Chess Pure

Strategies are Probably Chaotic August 21, 1998

 Boškovi´c, B., Greiner, S., Brest, J. & Žumer, V. 2006 IEEE Congress on

Evolutionary Computation: A Differential Evolution for the Tuning of a Chess

Evaluation Function, Sheraton Vancouver Wall Centre Hotel, Vancouver, BC,

Canada, July 16-21, 2006

 Poranen, T. ,Department of Computer Sciences, University of Tampere, Chess

Algorithms

 Arbiser, A. Dept. of Computer Science, FCEyN, University of Buenos

Aires, Towards the Unification of Intuitive and Formal Game

Concepts with Applications to Computer Chess Proceedings of

DIGRA 2005 Conference: Changing Views- Worlds in Play.

 Hallam, N., Poh, H. S. & Kendall, G. Using an Evolutionary Algorithm for the

Tuning of a Chess Evaluation Function Based on a Dynamic Boundary

Strategy, 1-4244-0023-6/06 - 2006 IEEE

 Fogel, D. B., Fellow, IEEE, Hays ,T. J. ,Hahn, S. L. & Quon, J. A Self-

Learning Evolutionary Chess Program, PROCEEDINGS OF THE IEEE, VOL.

92, NO. 12, DECEMBER 2004

 Schaeffer,J. The Games Computers (and People) Play May 10,2000

