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ABSTRACT

PARSER EVALUATION USING TEXTUAL

ENTAILMENTS

Syntactic parsing is a basic problem in natural language processing. It can be

defined as assigning a structure to a sentence. Two prevalent approaches to parsing

are phrase-structure parsing and dependency parsing. A related problem is parser

evaluation. This thesis proposes Parser Evaluation using Textual Entailments as a

dependency-based evaluation where a parse is represented as a list of simple sentences,

similar to the Recognizing Textual Entailments task. Each entailment focuses on one re-

lation. A priori training of annotators is not required. A program generates entailments

from a dependency parse. Phrase-structure parses are converted to dependency parses

to generate entailments. Additional entailments are generated for phrase-structure co-

ordinations. Experiments are carried out with a function-tagger. Parsers are evaluated

on the set of entailments generated from the Penn Treebank WSJ and Brown test

sections. A phrase-structure parser obtained the highest score.
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ÖZET

METİNSEL GEREKTİRİMLER İLE AYRIŞTIRICI

DEĞERLENDİRMESİ

Sözdizimsel ayrıştırma doğal dil işlemede temel bir problemdir. Cümleye bir

yapı atamak olarak tanımlanabilir. En yaygın iki ayrıştırma, öbek yapısı ayrıştırma

ve bağımsallık ayrıştırmasıdır. İlgili bir konu ayrıştırıcı değerlendirmesidir. Bu tez,

ayrıştırmanın Metinsel Gerektirimleri Tanıma görevinde olduğu gibi bir dizi basit cümle

ile ifade edildiği bağımsallık tabanlı bir değerlendirme olan Metinsel Gerektirimler ile

Ayrıştırıcı Değerlendirmesini önermektedir. Her gerektirim bir bağlantıya odaklan-

maktadır. Yorumcuların önceden eğitilmesine gerek yoktur. Bir program bağımsallık

ayrıştırmasından gerektirimleri üretmektedir. Öbek yapısı ayrıştırmaları gerektirim

üretmek için bağımsallık ayrıştırmasına çevrilmektedir. Öbek yapısı eşgüdümlerinden

ek gerektirimler üretilmektedir. Bir işlev etiketçi ile deneyler yapılmıştır. Ayrıştırıcılar

Penn Treebank WSJ ve Brown test kısımlarından üretilen gerektirim kümesi üzerinde

değerlendirilmiştir. Bir öbek yapısı ayrıştırıcı en yüksek puanı almıştır.
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1. INTRODUCTION

Parsing is a basic problem in natural language processing. Broadly it can be

defined as assigning a structure to a sentence [1]. Different formalisms have been

proposed to represent the sentence structure. However, the common goal is to provide

semantic analysis for downstream applications.

Recently, data-driven methods in syntactic parsing have gained prominence. In-

stead of manually specifying grammar rules, they rely on a treebank of syntactically

annotated sentences. The most widely used treebank is the Penn Treebank.

The Penn Treebank is annotated with part-of-speech (POS) tags and syntactic

bracketings [2]. A two-step approach is followed in both tagging processes. A program

assigns POS tags automatically. Annotators correct the assigned tags. An annotator

becomes fluent after a training period of one month and can annotate 3000 words per

hour. Similarly, a deterministic parser provides the initial parse. Annotators then

correct or combine the syntactic groups. It may take two months to become fluent

in this task. An annotator does syntactic annotation at a rate of approximately 500

words per hour.

Creating a treebank is a non-trivial task. Certain conventions should be set forth.

Any disagreements arising during the annotation process should be resolved. In the

end, the decisions underlying a treebank amount to a significant volume. For example,

bracketing manual for the Penn Treebank [3] has more than 300 pages. Creating this

manual has taken eight months of ten-hour a week effort [4].

Given the complexity of the linguistic representation, there are some problems

in the annotated data. Different annotations for two similar text segments that could

have been identically annotated cause inconsistencies. They may be caused by genuine

annotator errors or by permissible alternatives as listed in the manual [3]. Since incon-

sistencies are noisy data points, they are problematic for the training and evaluation
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of statistical parsers. In training, all data cannot be used effectively. Evaluation on

noisy data is not meaningful and may give incorrect assessments and rankings.

Dickinson and Meurers have developed a method to detect inconsistencies in

syntactic annotations [5]. They consider identical strings having different syntactic

category labels. Using a similar method, Yuret estimates that the Penn Treebank has

at least 15 per cent inconsistency [6].

Besides giving rise to annotation difficulties, the linguistic representation of the

Penn Treebank may not be the most appropriate for semantic understanding [1]. Per-

formance on recovering dependencies such as subjects, objects may be more relevant.

Dependency-based evaluation considers the precision and recall on grammatical rela-

tions. See Chapter 2 for a review of these methods.

Existing dependency-based evaluation schemes have some problems as well [7].

Notation is sometimes unclear and documentation inadequate. Conversion between

dependency formats may be problematic, harming the fairness of evaluation. There is

also some discussion on the choice of grammatical relations and their arguments.

This thesis proposes Parser Evaluation using Textual Entailments (PETE). PETE

is a dependency-based evaluation scheme where parser output is represented as a list of

simple sentences called textual entailments. Each entailment focuses on one relation.

The relation words are always included. Other words may be added to satisfy gram-

maticality. Dependency type is not explicitly specified. Coarse-grained dependency

type information is implicit in the entailment type and the ordering of words.

The proposed method has advantages in annotation and evaluation. Training of

annotators is not required. Many people can participate in the annotation via the Web.

Inter-annotator agreement is expected to be higher. Annotation is expected to take less

time, to be cheaper and more accurate. In this thesis only evaluation is investigated.

Test set of entailments are generated from the Penn Treebank. Phrase-structure and

dependency parsers are evaluated. Evaluation is relevant to semantic understanding
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since each entailment is centered on a semantically meaningful relation.

The thesis is organized as follows. Chapter 2 describes two direct influences to

this thesis, Recognizing Textual Entailments and dependency-based parser evaluation.

Chapter 3 describes statistical parsing, input formats, evaluation metrics and intro-

duces the parsers evaluated in this thesis. Chapter 4 explains how entailments are

generated. Chapter 5 gives evaluation results. Chapter 6 concludes the thesis with

remarks on future directions.
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2. BACKGROUND

PETE is a dependency-based parser evaluation. Instead of specifying a depen-

dency type, the relation words are represented in a simple sentence, similar to a hy-

pothesis sentence in Recognizing Textual Entailments. This chapter describes these

two direct influences to PETE.

2.1. Recognizing Textual Entailments

Recognizing Textual Entailments (RTE) is a series of challenges carried out in

2005 [8], 2006 [9] and 2007 [10]. The task is to recognize whether a hypothesis text

can be reasonably inferred from the source text. RTE proposes a generic framework

for researchers working in different areas such as machine translation (MT) evaluation,

question answering (QA) and information extraction (IE).

Source text usually contains multiple sentences, while the hypothesis text is a

single sentence. Yes and no answers are equally distributed. Considering the various

potential applications, data have been collected from different sources. For example, a

gold standard human translation is taken as the source text and an automatic transla-

tion is taken as the hypothesis text. There are approximately 1500 source–hypothesis

text pairs in development and test data. Some examples are given in Table 2.1.

The submitted systems use a range of resources and methods [10]. WordNet and

the Web are frequently used. Some systems implement logical inference. Some systems

carry out anaphora resolution and named entity recognition. Machine learning with

lexical and syntactic features have proven useful. The highest score obtained in the

third challenge is around 80 per cent.

A relevant observation is that syntax by itself has less than 50 per cent applicabil-

ity for RTE [11]. In this study human annotators assume that gold standard syntactic

parse and a general thesaurus are available and try to find out the upper bound using
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Table 2.1. Examples of text-hypothesis pairs from RTE-3 [10]

Task Text Hypothesis Entailment

IE At the same time the Italian digital

rights group, Electronic Frontiers Italy,

has asked the nation’s government to in-

vestigate Sony over its use of anti-piracy

software.

Italy’s govern-

ment investi-

gates Sony.

No

IR Between March and June, scientific ob-

servers say, up to 300,000 seals are killed.

In Canada, seal-hunting means jobs, but

opponents say it is vicious and endan-

gers the species, also threatened by global

warming.

Hunting endan-

gers seal species.

Yes

QA Aeschylus is often called the father of

Greek tragedy; he wrote the earliest com-

plete plays which survive from ancient

Greece. He is known to have written more

than 90 plays, though only seven survive.

The most famous of these are the trilogy

known as Orestia. Also wellknown are

The Persians and Prometheus Bound.

“The Persians”

was written by

Aeschylus.

Yes

SUM A Pentagon committee and the congres-

sionally chartered Iraq Study Group have

been preparing reports for Bush, and Iran

has asked the presidents of Iraq and Syria

to meet in Tehran.

Bush will meet

the presidents of

Iraq and Syria in

Tehran.

No
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these resources only. Using only syntax enables to answer 34 per cent of the questions.

The availability of a thesaurus raises this number to 48 per cent. By constrast, PETE

solely focuses on syntax.

2.2. Dependency-Based Parser Evaluation

This section reviews some of the previous work in parser evaluation, with an

emphasis on dependency-based methods.

A survey on parser evaluation is given by Carroll et al. [12]. They summarize the

state-of-the-art up to 1998. Evaluation methods can be classified as non-corpus and

corpus-based. Corpus-based methods are further divided based on whether the corpus

is annotated or unannotated. Coverage methods measure the percentage of sentences

in an unannotated corpus that receive at least one parse. A downside is that a parser

returning trivial parses for every sentence would still score high in this method. Average

Parse Base method calculates the geometric mean of the number of analyses divided

by the number of tokens in a sentence. It shows the amount of ambiguity in the parser

grammar, plotted against the sentence length. Its disadvantage is that a low coverage

parser would perform well in this measure if the parses are relatively unambiguous.

Entropy/Perplexity method applies a probabilistic language model on unannotated

corpus and finds out how much a parser captures regularities and decreases ambiguity.

Part-of-speech Assignment Accuracy has the advantage that there is already a large

amount of part-of-speech tagged corpus. However, many parsers take pre-tagged corpus

as input and applicability of this method is low.

They also propose grammatical relations (GR) for parser evaluation [12]. GRs are

arranged in a LFG-like notation. A question mark is placed for unspecified information.

All possible derivations out of a parse are computed. Evaluation is done by measuring

precision and recall on the set of manually annotated GRs. Basically, a grammatical

relation shows the syntantic dependency between a head and a dependent. GRs are

organized hierarchically. For evaluation SUSANNE corpus was converted into GR

scheme by first automatic processing and then manual inspection. On average there
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are around four GRs per sentence.

Lin [13] converts phrase structures into dependency representations. The pro-

posed evaluation is illustrated using MiniPar, which follows the Minimalist Program.

Dependency relations are asymmetric binary relations between a head and a modifier.

To represent the dependency tree, a tuple is written for each word. Precision and recall

metrics are calculated by comparing tuples in gold standard and response sentences.

Dependency labels are ignored.

Gaizauskas et al. [14] propose flatter annotation structures that would have rela-

tively more consensus across grammatical theories. A two-step approach is proposed.

First, problematic items are deleted. Second, transformational rules are used to con-

vert annotations into canonical forms. Relations that are common to different parsers

are considered. Due to omissions, sentence structures are flatter. Authors acknowledge

that divergences may still exist, therefore an additional post-processing step on the

parser output may be required. An advantage is that it is easier to develop a cor-

pus with flatter structures. Recall and conformance metrics are used for evaluation.

Within this framework the precision metric is unsuitable because the gold standard

annotation is minimal. The conformance metric is defined as the proportion of gold

standard constituents that are not crossed by any constituent in the response.

De Marneffe et al. [15] extract dependency relations from phrase structure parses.

Stanford dependency (SD) relations are similar to GRs [12]. Tree regular expressions

are used to produce typed dependencies. Dependencies are extracted and then depen-

dency types are determined. Semantic heads are retrieved instead of syntactic heads.

Furthermore, some words such as prepositions and conjunctions are collapsed. Ad-

ditional links may be inserted for better semantic interpretability. They perform a

small-scale evaluation between MiniPar, Link and Stanford parsers using 10 sentences

from the Brown corpus. However, such an evaluation is difficult because their depen-

dency representations are different.

Similarly, Miyao et al. [7] convert parser output to GR and SD representations.
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Conversion is done as a post processing step. Conversion from the Penn Treebank is

approximate and problematic. Heuristic approaches are used to overcome problems.

Although SD and GR look similar, conversion between them is not trivial either. 560

sentences, annotated in both GR and SD schemes, from the Penn Treebank test sec-

tion are used in the experiments. It is estimated that 20 per cent of conversions are

problematic.

Clark and Curran [16] evaluate a CCG parser using GRs. Each of 425 lexical cat-

egories is mapped to a GR. A post-processing step handles the remaining discrepancies.

Gold standard CCGBank data have been used for the development of transformation

rules. Evaluation is done on 560 test sentences from the CCGBank version of Penn

Treebank. The upper bound for a score that can be obtained in the evaluation is 84

per cent.

In order to get around conversion problems, Tam et al. [17] propose that linguis-

tic features be collected from the parser output and compared to the gold standard.

Annotators list the linguistic phenomena for the gold standard set. The most salient

phenomenon is taken. Additionally, annotators write the most likely error that parsers

would make for each sentence. A recognizer lists the linguistic phenomena in the parser

output. Points are given if the recognizer list contains the correct phenomenon or if it

does not contain the incorrect phenomenon. A small scale evaluation consisting of 10

sentences is carried out. Its disadvantage is that the linguistic phenomenon may not

be recognized even if the parser output is correct.

Rimell and Clark [18] analyze the decisions made by several GR-like evaluation

schemes. A decision involves constructions such as subject of verb, direct object of verb,

passive voice. Another decision is choosing words that enter a particular construction.

A related decision is choosing words to represent the construction. Usually a few words

that are deemed important represent a construction that may span more words. Lastly

a decision involves the choice of arguments. Empirical study is needed to show which

decisions are better in different situations.
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Miyao et al. [19] give a task-oriented parser evaluation. They compare recent

parsers from different frameworks in a practical application. In total eight depen-

dency, phrase-structure and deep parsers are evaluated. Another goal is to analyze

the domain-adaptibility of these data-driven parsers. The task-oriented method uses

parser outputs in a machine learning classifier to detect protein–protein interactions.

Parse tree indicates a interaction if there is a close syntactic relationship between lexi-

cal items. All parsers achieved higher scores than the baseline of bag-of-words. Parser

accuracies are similar. Accuracies increase after training with domain specific data.

Parsing times vary significantly. Dependency parsing is the fastest, phrase-structure

parsing is the slowest and deep parsing is in between. As for the efficacy of the rep-

resentation, CoNLL format seems to be better than the Penn Treebank format. An

ensemble of parsers results in higher accuracy values.
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3. STATISTICAL PARSING

This chapter describes input formats, evaluation metrics, and algorithms in phrase-

structure and dependency parsing. Parsers evaluated in this study are introduced.

3.1. Phrase-Structure Parsing

Phrase-structure grammars make use of the constituency concept. A constituent

is a group of words behaving as a single unit [1]. An example is the noun phrase “the

red apple”.

3.1.1. Input Format

Data are represented in the Penn Treebank via Lisp-style parentheses. Internal

node labes follow opening parentheses. Terminal nodes are enclosed within a pair of

parentheses. A node with a smaller indentation level is located higher in the parse tree.

(S

(NP-SBJ

(NP (RB Not) (PDT all) (DT those) )

(SBAR

(WHNP-3 (WP who) )

(S

(NP-SBJ (-NONE- *T*-3) )

(VP (VBD wrote) ))))

(VP (VBP oppose)

(NP (DT the) (NNS changes) ))))

Figure 3.1. Penn Treebank data
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Figure 3.2 shows the visual representation of the parse tree given in Figure 3.1.

This parse tree contains function tags such as NP-SBJ and empty nodes indicating a

wh-trace. These fields are removed in the training data. Parsers do not include them

in their output as well.

Figure 3.2. Penn Treebank parse tree

3.1.2. Evaluation Metrics

The standard evaluation method for the phrase-structure framework has been

the bracketing precision and recall [20]. A constituent assignment in the parser output

is deemed correct if the span of words and and the label are the same as in the gold

standard parse. The crossing brackets score counts the number of parentheses that are

only partially contained within a pair of parentheses in the gold standard parse.

Recall =
number of correct constituents in proposed parse

number of constituents in treebank parse
(3.1)

Precision =
number of correct constituents in proposed parse

number of constituents in proposed parse
(3.2)
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F-measure is the harmonic mean of recall and precision.

F-measure = 2 · Recall · Precision

Recall + Precision
(3.3)

Crossing brackets metric is defined similarly [21].

Crossing Brackets =number of constituents which violate constituent

boundaries with a constituent in the treebank parse
(3.4)

3.1.3. General Approach

A probabilistic context-free grammar (PCFG) has probabilities for the deriva-

tional rules, which are calculated by referring to the treebank. Given a sentence S and

a parse T , a generative model derives the probability P (T, S).

P (T, S) =
n∏

i=1

P (RHSi|LHSi) (3.5)

Parsing a sentence amounts to finding the most probable parse T given a sentence

S. To efficiently search through possible parses, dynamic programming is used. Most of

the state-of-the-art parsers use Cocke-Kasami-Younger (CKY) or other chart parsing

algorithms. Maximizing the conditional probability is equivalent to maximizing the

joint probability or the probability of the parse as shown in the following equation.

Basically parsers differ in how they formulate P (T ).
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Tbest = arg max
T

P (T |S)

= arg max
T

P (T, S)

P (S)

= arg max
T

P (T, S)

= arg max
T

P (T )

(3.6)

3.1.4. Charniak Parser

Charniak applies a maximum-entropy-inspired model to combine different con-

ditioning events successfully [22]. Right-hand side labels are expanded with a third-

order Markov grammar. The advantage of maximum-entropy models is that features

are easily changeable and they need not be independent. The model is not exactly a

maximum-entropy model since the partition function is not defined. Deleted interpo-

lation is used to smooth the probabilities. A bottom-up best-first probabilistic chart

parser finds the candidate parses. Guessing the pre-terminal before guessing the lexical

head brings two per cent improvement.

3.1.5. Collins Parser

Collins proposes three generative lexicalized models [21]. Model 1 is a basic gen-

erative model. Right-hand side labels are expanded by first generating the head and

then the left and right modifiers. Zeroth-order Markov assumption is made. Distance

function considers words between the head word and the edge of the constituent. Inde-

pendence assumption for complements often cause parse errors. Model 2 addresses this

problem by attaching a suffix to node labels of complements. Subcategorization frames

are included in the probability model. Model 3 additionally considers wh-movement to

prevent its negative effect on subcategorization probabilities. Several levels of back-off

are defined to smooth the probabilities. A CKY style chart parser searches for the

most probable parse.
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3.1.6. Stanford Parser

A distinction between lexicalized and unlexicalized grammars is made based on

whether non-terminals are annotated with head words. Unlike Charniak and Collins

parsers, Stanford parser is unlexicalized. While its accuracy is a little lower than the

lexicalized parsers, it has some advantages. It is easier to interpret and develop. The

grammar is more compact. Parsing time complexity is smaller. A generalized CKY

parser is used. Grammar is markovized with a vertical and horizontal order of two.

Non-terminals are annotated with external and internal features. Only function words

are included in probability calculations.

3.2. Dependency Parsing

Dependency grammars take a different approach. Intermediate level concepts

such as constituents are not used. Rather the focus is directly on relations between

words. The syntactic analysis of sentence is represented by a dependency tree, which

is a labeled directed acyclic graph [23]. Words are represented as nodes in the graph.

Each word is connected to a single head. An arc is non-projective if a word between

the dependent and the head is not dominated by the head.

Dependency formalism has gained importance in recent years [24]. Possible ap-

plications include relation extraction, paraphrase acquisition and machine translation.

3.2.1. Input Format

There are several alternatives to represent a dependency parse, such as an XML-

based representation. In this thesis, the CoNLL format [25] is used since it is widely

supported by existing software. Each word is described on a single line using 10 tab-

separated fields. One empty line delimits two consecutive sentences in the data file.

Data fields are given in Table 3.1. Empty fields are denoted by underscores. Typically

fields 6, 9, and 10 are not used. Id field starts at 1 for each sentence. Head field gives

the id value of the head. Space characters are not allowed within fields.
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Table 3.1. CoNLL data format

Field # Name Description

1 ID Token counter

2 FORM Word form

3 LEMMA Lemma of word form

4 CPOSTAG Coarse-grained part-of-speech tag

5 POSTAG Fine-grained part-of-speech tag

6 FEATS Syntactic or morphological features

7 HEAD Head of the token

8 DEPREL Dependency relation to head

9 PHEAD Projective head

10 PDEPREL Dependency relation to phead

Figure 3.3 gives the dependency parse data. Main verb of the sentence is con-

nected to the artificial root node which has the id value of 0. Figure 3.4 shows the

dependency tree representation. Unlike the phrase-structure representation of the same

sentence in Figure 3.2, there are no empty nodes. Subject function tags are used in

the dependency relations.

1 Not not RB RB 6 SBJ

2 all all PD PDT 1 NMOD

3 those that DT DT 1 NMOD

4 who who WP WP 5 SBJ

5 wrote write VB VBD 1 NMOD

6 oppose oppose VB VBP 0 ROOT

7 the the DT DT 8 NMOD

8 changes change NN NNS 6 OBJ

Figure 3.3. Dependency data
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Figure 3.4. Dependency parse tree

3.2.2. Evaluation Metrics

The standard evaluation metrics for dependency parsing are Unlabeled Attach-

ment Score (UAS) and Labeled Attachment Score (LAS). UAS gives the percentage of

words with the correct head. LAS gives the percentage of words with the correct head

and the dependency label.

3.2.3. MSTParser

McDonald et al. use online large-margin learning to train a dependency parser

[24]. It is based on a global approach since the accuracy of the overall tree is maximized.

The score of a dependency tree is the sum of the scores of all edges in the tree. When

parsing is cast as a multi-class classification, dependency trees correspond to classes

for a sentence. Since there are exponentially many dependency trees, only k-best trees

are considered. The disadvantage is that features are defined over single dependency

attachments. A lexicalized CKY chart parser is used.

3.2.4. MaltParser

MaltParser is a transition-based dependency parser. In contrast to MSTParser,

it carries out a local, greedy search. Partially processed tokens are stored in a stack
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and unseen words in a list. A deterministic parsing algorithm decides whether a link

should be created for the current word. Previous parser actions are considered in

the history-based feature model. Discriminative machine learning maps histories to

parser actions. MaltParser is desirable because it has linear parsing time complexity

in projective mode. A problem is error propagation where later parsing decisions are

adversely affected from early parsing errors.
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4. GENERATING ENTAILMENTS

In PETE, entailments are designed as minimal sentences, each focusing on one

relation. Entailments always include the head and the modifier, plus auxiliary words

as necessary for grammaticality. This chapter describes how entailments are generated

from dependency parses and phrase-structure parses.

4.1. Generating Entailments From Dependency Parses

Given a dependency parse, the program scans the sentence from left to right. For

each word, a decision is made as to whether an entailment should be generated. Words

such as determiners are skipped. Pseudocode of the entailment generation algorithm

is listed in 4.1.

Input: D a dependency parse tree

Output: E a list of entailments

for all word w in D do

if w is not a skip word then

h← head word of w

if h is a verb then

e← “subject(h) verb(h) object(h) adverb(h)”

else if w is appositive then

e← “h is w”

else

e← “there is w h”

end if

E ← E ∪ {e}

end if

end for

Figure 4.1. Pseudocode for generating entailments from dependency parses
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Generally function words are skipped. These include prepositions, the negation

adverb not, conjunctions, particles, modals, and determiners. Verbs other than the

last verb in a verb chain are skipped. Adjective modifiers of nouns are always included

in the entailments generated for their head words. Therefore they are skipped.

An entailment is generated with the current word as the target word. A template

is selected based on the target word or its head. If the head word is a verb, a simple

sentence is formed including the head and the target words. If the target word is an

appositive to the head word, a predicative sentence is formed. In the case where the

target word is a nominal modifier other than an appositive, an existential construct is

formed. Entailments are reorderings of the source sentence words. Few extra words,

such as copulae, are added.

Examples for each entailment type are listed below. The first group is for the

simple sentence type.

• But Mr. Lane said that while the SEC regulates who files, the law tells them

when to do so.

– X regulates who files.

• The SEC will probably vote on the proposal early next year, he said.

– X will vote early next year.

• The proposed changes also would allow executives to report exercises of options

later and less often.

– X would allow executives to report X.

The second group of examples is for predicative entailments. Appositive is a fairly

frequent construct in the Penn Treebank.

• Bell, based in Los Angeles, makes and distributes electronic, computer and build-

ing products.

– Bell was based.

• The proposed rules also would be tougher on the insiders still required to file
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reports, he said.

– The insiders are required to file X.

The last group of examples is for existential entailments. Target words are nom-

inal modifiers.

• The rules will eliminate filings policy-making divisions, such as sales, marketing,

finance and research and development, Mr. Lane said.

– There are divisions such as research.

• The luxury auto maker last year sold 1,214 cars in the U.S.

– There is the luxury auto maker.

• Bell Industries Inc. increased its quarterly to 10 cents from seven cents a share.

– There are seven cents a share.

• A SEC proposal to ease reporting requirements for some company executives

would undermine the usefulness of information on insider trades as a stock-picking

tool, individual investors and professional money managers contend.

– There is a proposal to ease X.

A point worth mentioning is relative clauses. Heuristic rules are used to replace

the relative pronoun with the head noun. While these methods work correctly most of

the time, there are some limitations [21].

4.2. Generating Entailments From Phrase-Structure Parses

There is not a separate program for generating entailments from phrase-structure

parses, nor there is any reason to do so. Having a program mimic another program’s

output is not a trivial task. That would cause unnecessary differences in the generated

entailments, and eventually lost points in the evaluation. Instead, phrase-structure

parses are converted to dependency parses using the standard conversion program [26]

and the dependency program of Section 4.1 is used to generate entailments.

Some information is lost in the conversion. Coordination ambiguity arises due to
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Melcuk style analysis of coordination [27] in dependency parses. Modification scope can

be determined in phrase-structure parses by looking at the attachment level. However,

in dependency parses a dependent is always linked to the first conjunct, irrespective of

whether it modifies only its immediate head or all conjuncts.

Figure 4.2. Coordination in dependency representation

Figure 4.2 illustrates the coordination ambiguity problem. According to this

dependency parse, cars are red. However, it is unclear whether apples are red. Although

there are alternative coordination styles that avoid coordination ambiguity, Melcuk

style is preferred because links to a conjunction word are harder to learn for data-

driven dependency parsers.

Figure 4.3. Coordination in phrase-structure representation

Figure 4.3 shows two simplified coordination examples in phrase structure rep-

resentation with different attachment levels. In the left parse tree, red modifies only

cars. On the right one, red modifies both cars and apples. After conversion, these two

parses map to a single dependency parse, effectively resulting in an ambiguity.
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Another point to consider for the conversion is the output format. The Penn

Treebank [3] uses function tags such as SBJ (subject) and TMP (temporal) to give

additional syntactic and semantic information. Empty nodes show non-local depen-

dencies. Most phrase-structure parsers output a skeletal syntactic structure without

function tags and empty nodes. Entailment generation program requires dependency

relations, which must be output by the conversion program. The conversion program

gets the dependency relations from the function tags of the parse input in turn. To

generate entailments correctly either phrase-structure parses should be augmented with

function tags or the dependency relations of the conversion output should be corrected.

Two heuristics are used to correct dependency relations. Subject heuristic tries

to assign SBJ tag to a nominal dependent of a verb. Predicate heuristic tries to assign

PRD tag to a nearest right dependent of a predicative verb. Both heuristics are a few

lines of code. They are always applied for a fair evaluation of phrase-structure parsers.

Blaheta’s function-tagger [28] is used. It is based on a relatively simple statistical

method and is the first one to recover function tags. It takes skeletal parser output as

input and appends function tags to some node labels. It is explicitly stated when the

function-tagger is used in the experiments.

Figure 4.4 gives the algorithm that generates the additional entailments lost due

to the coordination ambiguity after conversion. Subtrees of conjuncts are replaced to

generate a new entailment. If a modifier modifies both conjuncts, it is at a higher level

in the parse tree and it is not discarded with the first conjunct. Thus a new entailment

showing the modification of the second conjunct is generated.
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Input: D a dependency parse tree

P a phrase structure parse tree

ED a list of entailments generated from D

Output: E a list of entailments

for all word w in D do

if ∃ entailment e for w in ED then

W ← words in e

l← lowest common ancestor of W in P

Check for coordination recursively starting at l

if ∃ node n having coordination then

si ← subtree of the conjunct ci ∈ W

so ← subtree of the conjunct co /∈ W

W ′ ← remove si add so

e′ ← entailment with words W ′

EP ← EP ∪ {e′}

end if

end if

end for

E ← ED ∪ EP

Figure 4.4. Generating entailments from phrase-structure parse trees
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5. EVALUATION

State-of-the-art phrase-structure and dependency parsers are evaluated. Evalu-

tion metrics are defined in Chapter 3. Three phrase-structure parsers are Charniak

parser [22], Bikel’s implementation [29] of Collins parser [30], and Stanford parser [31].

Collins parser runs Collins Model 2. Stanford parser is unlexicalized, other two parsers

are lexicalized. Pre-trained models with basic configurations are used.

Dependency parsers evaluated in this study are MSTParser [24] and MaltParser

[23]. They were trained with the dependency data converted from Penn Treebank

training section using the LTH converter [26]. Both parsers run in projective mode.

5.1. Evaluation on the WSJ Corpus

Table 5.1 shows the bracketing scores on the WSJ section 23. There are 2399

sentences in the test set. Sentence lengths are not considered in the reported results.

Table 5.1. Bracketing scores of phrase-structure parsers on the WSJ test section

System Recall Precision F-measure

Charniak 89.57 89.91 89.74

Collins 88.13 88.26 88.19

Stanford 85.09 86.52 85.80

Table 5.2. LAS and UAS scores of dependency parsers on the WSJ test section

System UAS LAS

MST 92.0 88.7

Malt 89.8 86.8

Similarly, LAS and UAS scores are listed in Table 5.2.
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Dependency-based evaluation of all parsers is given in Table 5.3. Phrase-structure

parser outputs are converted to dependency representation using LTH converter. For

dependency parsers, scores are the same as in Table 5.2. Charniak parser is best at

getting the unlabeled dependency tree correct, as shown in the UAS column. The

large gap between UAS and LAS scores show that phrase-structure parsers need to

incorporate function tags in their outputs. The gap is 8.3 for Charniak parser and

3.3 for MSTParser. Blaheta’s function-tagger does a good job by reducing the gap

to less than 4.0. Table 5.3 is not a fair comparison since coordination information in

phrase-structure parses is not considered.

Table 5.3. LAS and UAS scores on the WSJ test section

System UAS LAS UAS−LAS

Charniak + F-Tags 93.2 89.6 3.6

Charniak 93.0 84.7 8.3

MST 92.0 88.7 3.3

Collins + F-Tags 91.6 87.7 3.9

Collins 91.4 83.1 8.3

Stanford + F-Tags 90.3 86.5 3.8

Stanford 90.2 82.1 8.1

Malt 89.8 86.8 3.0

PETE scores are given in Table 5.4. The gold standard set of entailments are

generated by applying the algorithm in Figure 4.1 to the gold standard dependency

parse and the algorithm in Figure 4.4 to the gold standard phrase-structure parse. The

first three lines indicate upper bounds. Recall upper bound for dependency parsers

is less than 100 per cent because they miss the additional coordination entailments

generated from the gold standard phrase-structure parse. On the other hand, phrase-

structure parsers lose points due to their impoverished output format. For second

and third rows, function tags and empty nodes are removed from the gold standard

phrase-structure parse. Inperfect conversion determines the upper bound in this case.

The function-tagger increases the score by four per cent. In PETE evaluation, a full
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phrase-structure parser [32], not included in this study, has 100 per cent upper bound.

Recall is more relevant than F-measure in this table. The decision of when

to return an answer is generally systematically determined. Dependency parsers do

not return an answer for the additional coordination entailments. Consequently their

precision scores are higher than their recall scores. F-measure is relevant for parsers

using the same framework.

Two phrase-structure parsers got the highest scores in PETE evaluation. The

function-tagger improves the results, although its effect is less pronounced than in

LAS scores. Charniak parser without the function-tagger performs better than the

best performing dependency parser.

Table 5.4. PETE scores on the WSJ test section

System Recall Precision F-measure

Gold Dep. 98.12 100.00 99.05

Gold Phrase + F-Tags 96.40 96.26 96.33

Gold Phrase 92.42 92.02 92.22

Charniak + F-Tags 83.34 83.35 83.34

Collins + F-Tags 81.60 82.16 81.88

Charniak 80.57 80.33 80.45

MST 79.24 81.17 80.19

Collins 78.99 79.35 79.17

Malt 77.66 80.82 79.21

Stanford + F-Tags 77.58 77.63 77.60

Stanford 75.10 75.02 75.06

5.2. Evaluation on the Brown Corpus

Whereas WSJ corpus of the Penn Treebank includes only financial texts, Brown

corpus includes various genres such as fiction and natural sciences. The rationale for
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evaluation on Brown corpus is to see how much parsers overfit to the WSJ data and

how well they perform in a new domain. There are 425 sentences in the test set, the

same sentences as in the CoNLL 2008 shared task data set [25].

Table 5.5 gives the bracketing scores. While the ranking is the same as in Table

5.1 the gap between Stanford parser and Collins parser has shrunk.

Table 5.5. Bracketing scores of phrase-structure parsers on the Brown test section

System Recall Precision F-measure

Charniak 85.74 85.90 85.82

Collins 83.57 83.91 83.74

Stanford 83.00 83.01 83.00

Attachment scores of dependency parsers are given in Table 5.6. While the scores

are lower than in Table 5.2, the ranking has not changed.

Table 5.6. LAS and UAS scores of dependency parsers on the Brown test section

System UAS LAS

MST 88.2 81.9

Malt 85.2 79.2

PETE scores are given in Table 5.7. Coordination ambiguity has a slightly larger

role in the Brown corpus since the upper bound of recall for dependency parsing is

96.75 per cent compared to 98.12 per cent. There are some notable differences in the

ranking. Charniak parser performs even better. Its score is still higher than other

parsers without using the function-tagger. Stanford parser has risen in the ranking;

probably its unlexicalized model helps avoid overfitting. Dependency parsers seem

to be worst affected by the overfitting problem since the decline in scores cannot be

explained by the decreased upper bound. Their rich feature models may make them

more susceptible to overfitting.
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Table 5.7. PETE scores on the Brown test section

System Recall Precision F-measure

Gold Dep. 96.75 100.00 98.35

Gold Phrase + F-Tags 94.79 94.89 94.84

Gold Phrase 89.82 89.26 89.54

Charniak + F-Tags 74.89 74.64 74.76

Charniak 72.24 71.60 71.92

Collins + F-Tags 71.38 72.68 72.02

Collins 68.76 69.68 69.22

Stanford + F-Tags 68.23 68.61 68.42

MST 67.66 70.98 69.28

Stanford 66.60 66.78 66.69

Malt 65.87 71.44 68.54
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6. CONCLUSION

PETE is proposed as a cross-framework parser evaluation scheme. State-of-the-

art phrase-structure and dependency parsers are evaluated using PETE. A program

generates entailments from dependency parses. Phrase-structure parses are converted

to dependency parses to generate entailments. A goal is to provide a fair comparison.

To this end, additional entailments are generated for unambiguous coordinations in

phrase-structure parses. The ranking shows that dependency trees converted from

lexicalized phrase-structure parser outputs are more accurate than native dependency

parser outputs, in agreement with previous results [24].

Unlike other dependency-based evaluations, PETE is designed with annotation in

mind. Traditionally, annotators go through a training period to acquire the intricacies

of an annotation scheme. Limited number of annotators are usually based in the same

institution. Consequently, annotation is time consuming and expensive. PETE offers a

new annotation model. A priori training is not required. Many people can participate

in the annotation process over the Web. In one recent work, a large number of non-

expert annotators evaluated machine translation quality via Amazon’s Mechanical Turk

[33]. Although PETE annotation should not take significantly more time than the

comprehension time of a simple sentence, trial annotations are required to compare

the speed of annotation.

Another possible application of PETE is to “textualize” parser outputs. Benefits

of visualization software are well known. In the parsing domain, one such software is

MaltEval [34], which was used during this thesis to a great extent. While the general

wisdom states that a picture is worth a thousand words, parse trees of sentences longer

than a few dozen words can be daunting. To check parsing errors around a target

word, one follows incoming and outcoming dependency links. This involves a scan for

each argument over the dependency tree, which is inefficient. To understand a word’s

function in a sentence, one has to collect at least the head and any required arguments.

PETE provides this information in the entailment generated for the target word. To
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detect parsing errors, one checks whether the entailment has a correct grammatical

structure and it makes sense according to the given sentence.

Evaluation methods are expected to provide a clear assessment of current tech-

nologies and directions for future research. The detrimental effect of impoverished out-

put format of phrase-structure parsers have been noted. However, the standard brack-

eting evaluation does not create incentives for a richer output. Therefore most state-of-

the-art phrase-structure parsers output only a skeletal parse tree. PETE clearly shows

that incorporating functions tags and empty nodes is beneficial.

The natural language processing field has seen great advances since 1990’s follow-

ing the success of statistical systems. However, it is not clear how well those gains will

translate to real world applications [35]. There is a visible shift toward semantically-

relevant evaluations in recent years. One approach is task-oriented evaluation [19].

PETE does not commit to a linguistic representation other than the surface form.

While the parser specifics are abstracted away, the actual parser decisions are more

traceable than in a task-oriented evaluation.
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APPENDIX A: SAMPLE ENTAILMENTS

• Ms. Haag plays Elianti.

– There is Ms. Haag.

– Ms. Haag plays X.

– X plays Elianti.

• Rolls-Royce Motor Cars Inc. said it expects its U.S. sales to remain steady at

about 1,200 cars in 1990.

– There are Rolls-Royce Motor Cars Inc.

– Rolls-Royce Motor Cars Inc. said X.

– It expects X.

– X said X expects X.

– There are its U.S. sales.

– X expects its sales to remain steady.

– X expects X to remain steady.

– X are to remain steady.

– X are to remain X at about 1,200 cars.

– X are to remain X in 1990.

• Companies would be compelled to publish in annual proxy statements the names

of insiders who fail to file reports on time.

– Companies would be compelled to publish X.

– There are annual proxy statements.

– X would be compelled to publish X in statements.

– X would be compelled to publish the names.

– There are the names of insiders.

– Insiders fail to file X.

– X fail to file reports.

– X fail to file X on time.
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