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ABSTRACT

Named Entity Recognition in Turkish Using Deep Learning

Methods and Joint Learning

Named Entity Recognition (NER) is the task of detecting and categorizing the

entities in a given text. It is an important task in Natural Language Processing (NLP)

and forms the basis of many NLP systems. Previous work on NER that make use

of statistical models can be categorized into two main categories: feature-based and

embedding-based. Earlier work on NER made frequent use of manually crafted fea-

tures. In order to use manually crafted features we either automatically annotate the

dataset for the given features using third party software or manually annotate the

dataset, and both require additional work. Recent work make use of BiLSTM based

neural networks and represent words with embeddings. This relieve systems from re-

lying on manually created feature sets. In this work, we started with analyzing the

performance of the feature based systems. In this phase, we reimplemented a previous

work and improved the performance by making use of dependency parsing features

additionaly. Following these results we implemented a novel method that make use of

both dependency parsing features and embeddings. We propose a novel BiLSTM CRF

based neural model that make use of the dependency parsing feature to improve the

named entity recognition performance in a unique way. Our model jointly learns both

dependency parsing and named entity recognition using separate datasets for each task.

The model does not require the named entity recognition dataset to be annotated for

the dependency parsing task. Our results show that performance increases when we

use a joint learning model instead of annotating the named entity recognition dataset

automatically. We also show that the dependency parser, which we have implemented

to improve the named entity recognition, have comparable results with the previous

work.
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ÖZET

Türkçe Varlık İsimlerinin Tanınması İçin Derin Öğrenme ve

Birlikte Öğrenme

Varlık İsimlerinin Tanınması, verilen bir döküman içindeki özel isimlerin ayrıştırılıp,

doğru kategorilere ayrılmasını amaçlayan bir Doğal Dil İşleme görevidir. Bu alandaki

erken çalışmaların büyük bölümü el ile seçilmiş özelliklerin, istatistik bazlı sistemler

tarafından analizine dayanmaktadır. Yakın zamandaki bu alandaki en başarılı sonuçlar

ise kelimelerin vektörel olarak temsil edilmesinden faydalanan yapay sinir ağı bazlı sis-

temler tarafından elde edilmiştir. Birden fazla görevi birlikte öğrenen, birlikte öğrenme

sistemleri genelde verisetlerinin iki görev için de etiketlenmiş olmasını gerektirir. Bu

çalısmada, öncelikle Türkçe için yapılmış daha önceki özellik bazlı çalısmaları detaylı

bir şekilde inceleyip, farkli özellikler kullanarak sonuçları iyileştiriyoruz. Bu aşamada

bağlılık ayrıştırma ile ilgili özelliklerin varlık isimlerinin tanınmasında performansı iyile-

stirdiğini gösteriyoruz. Sonraki bölümde daha önce denenmemiş bir model kullanarak

bağlılık ayrıştırma ve varlık isimlerinin tanınması görevlerinin beraber öğrenilmesini

gösteriyoruz. Modelimiz benzer birlikte öğrenme sistemlerinden farklı olarak iki görev

için de ayrı verisetlerinden faydalanıyor. Elde ettiğimiz sonuçlar birlikte öğrenmenin

ayrı verisetleri kullanarak yapılmasının, aynı verisetinin otomatik olarak etiketlenme-

sine kıyasla daha iyi performans verdiğini gösteriyor.
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1. INTRODUCTION

Named Entity Recognition (NER) is a sub-task of Natural Language Processing.

Natural Language Processing (NLP) refers to the research area in Computer Engineer-

ing that aims to solve problems related to natural languages and Artificial Intelligence

(AI). It is a general name and contains many sub-fields such as Machine Translation,

Language Generation and Text Summarization.

One of the major motivations of NLP research is to create computer programs

that can understand, generate and represent a natural language text without losing any

information. As the task is so big and complex, researchers pick and tackle sub-tasks

or simplified versions of the tasks e.g. restricted domain translation. NLP research

has seen tremendous improvements especially in the last decades. Yet researchers still

have to settle for simpler representations that extract important information rather

than representing the whole meaning and content in a designated data structure [1].

These simpler representations are often categorized into syntactic and semantic levels.

Syntactic representation of a given text gives us important structural information which

is useful for understanding meaning and content.

Syntactic level information is also important as it is often used as supplementary

material for creating higher level semantic representations. Using low level information

as additional input to systems tackling high-level tasks is a frequently used method

in NLP research. POS tagging is used [2–6] for different high level syntactic tasks.

Chunking is used [7] to help improve dependency parser accuracy. Syntactic parsers are

used to leverage performance of natural language inference [3] and machine translation

systems [8] which are both semantic level tasks.

Semantic level information often contains higher level information about the

meaning and the discourse of the text. As representing a given text semantically

is a highly demanding task researchers settle for simpler semantic representations and

gradually increase the complexity of the programs. These semantic level tasks aim to
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describe a limited part of the whole meaning and content of a given text.

Named Entity Recognition is one of these semantic level tasks which focuses on

detecting and properly categorizing the named entities. Named entities refer to words

or words phrases that consistently designates a specific referent. Named entities are

closely related to the ‘rigid designators’ described in [9]. Named Entity Recognition

is important because named entities often contain valuable information about a given

text. Properly recognizing the named entities in a given document is an important

step towards understanding and processing texts especially in the domain of formal

documents such as News reports. Named Entity Recognition form the basis of many

Information Retrieval systems, and many IR systems include components that detect

and categorize named entities.

Named Entity Recognition is first defined as a formal task in the sixth Message

Understanding Conference (MUC) in 1995. Chincor et al. [10] give the definition of

the named entity recognition task. The Named Entity task, defined by MUC, consists

of three sub-tasks for extracting the following items:

• entity names: ENAMEX

• temporal expression: TIMEX

• number expression: NUMEX

These three sub-tasks are selected because these are considered to be the most

critical expressions for information retrieval. According to their definition, the annota-

tion should be done on the unique identifiers of named entities, times and quantities.

Each of these sub-tasks are further divided into sub-categories. Named entities consist

of organization, location and person types. Time expressions consist of dates and times.

Finally quantity expressions consist of monetary values and percentages. Even though

these definitions were subject to change over the last decades by other researchers,

these categories and entity sub-tasks still remain to be the most frequently used ones.

Recent studies also focus on fine-grained NER or further categorization of the above

mentioned categories. ‘Location’ type is often divided into several categories such as
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country and city names. The primary aim of this approach is to increase the level

of detail of the information extracted from a given text. Yet these categorizations

often further complicate the NER task which has its own challenges even with the

first definition given in 1995. Also, these categorization attempts have never reached

to a consensus among researchers world-wide so there are many varying annotated

datasets with different subcategories. On the other hand, the annotation guideline

defined by MUC has reached to an almost universal standard among researchers, and

many datasets are available for many languages which are annotated in almost the

same way or in a very similar way defined by MUC. The datasets used in our work are

annotated only for the entity names. The annotated entity types are exactly the same

with the MUC definition: Person, Location and Organization.

The task is defined in two steps: Identifying all the instances of the three types

of expressions and properly categorizing them into the subcategories. In the first step

the aim is to identify each type of expression regardless of the subcategory informa-

tion. Identification is an important step which enables information extraction over

large texts. The second step can be considered as a more refined task where the aim

is to use any kind of contextual or word-level, sub-word level information to distin-

guish between subcategories of entities. Various studies [11–13] show that this step

is a major challenge especially for the ‘entity names’ sub-task. Entity names contain

many ambiguities, and therefore are difficult to distinguish both from common nouns

and from other entity names. For example, many languages have city names as per-

son names which could cause NER systems to fail to detect the proper category of

named entities. The other sub-tasks are often more straightforward as both temporal

expressions and number expressions often follow a rather strict guideline and therefore

are easier to categorize. The results attained [14] also support this observation as for

many languages the performances of the entity recognition systems on these sub-tasks

reached to the human level. Therefore many recent studies focus more on the detection

and proper categorization of the entity names, as in the case for the work done in this

study.

Another important initiative was done for the NER task in 2003 with the CoNLL-
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2003 Shared Task [15]. The task focuses on creating language-independent named

entity recognition systems. The task only focuses on the ENAMEX type and divide

the entity names into four categories. Three of the categories are same with the MUC

entity categories. In addition to them a fourth entity type called Miscellaneous as

‘MISC’ is introduced. This entity type contains very diverse type of named entities.

Any word or word sequence that does not belong to the traditional MUC definitions

of the subcategories which refer to unique entities are annotated as MISC. Examples

of this category include adjectives, like Japanese, and event names. Apart from this

difference, the entity definitions and the category types determined by MUC-6 are

preserved. The Shared Task is organized for two languages: German and English. The

datasets are annotated in the IOB scheme which prevents entity boundary ambiguities

which arise when the different entities of the same category follow one another.

In the IOB tagging scheme, all tokens of an entity is tagged with ‘I’ prefix unless

the first word is not an immediate predecessor of another entity token of the same

type. In that case the first token is annotated with the ‘B’ prefix which denotes

that a new entity sequence has started. The following entity tokens, if any, are also

tagged with the ‘I’ prefix as usual. The ‘O’ character in the IOB scheme is used to

for tagging the non-entity tokens. This shared task received a great deal of attention

from researchers of the NLP community and many systems are created for tackling

this task. It became a convention to report the performance of a NER system on

the English dataset of the CoNLL-2003 Shared Task. As annotating datasets requires

extensive work and consistency is difficult to attain researchers tend to use the same

datasets once the datasets reach a certain popularity and confirmed to be valid and

consistent by researchers.

The detection of entity names has its own unique ambiguities and challenges.

Even in its simplest version, the NER task only for the three entity name categories

includes many ambiguities. These ambiguities challenge both the annotators of the

datasets and the researchers who create systems to detect these entities. Thus form-

ing detailed annotation guidelines is another important task which sets the basis for

creating high quality datasets.
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Named Entity Recognition as mentioned above is a research area with various

applications. For this reason, many researchers worked on creating systems with high

performances. Various shared tasks [10, 15] and available datasets especially for the

frequently used languages such as English helped researchers to test and compare their

systems in a consistent and fast way. Thus the results of these systems are impressive

especially for the frequently used datasets and languages. Even before the emergence

of the deep learning based systems in the field, the results of the systems using various

machine learning methods were impressive [16]. Systems that make use of deep learning

methods together with recent hardware technologies have even more impressive results

on the well-known and well-structured formal datasets.

Generalization of these systems became important especially with the rise in the

value of NER in informal texts such as text from social media [17–22]. Even though the

generalization of coarse-grained NER systems is an important issue and the impressive

results are shown to drop significantly when the same systems are tested on novel

and different datasets [23, 24], many researchers tend to focus on different and more

challenging tasks related to named entity recognition as well. One of the trending

topics about NER is ‘fine-grained NER’ where each entity type is further divided into

various categories and detecting them is a more challenging task [25] both because of

the definition of the task itself and the lack of available datasets specific for fine-grained

NER. Lack of available datasets forces researchers to use methods that automatically

annotate datasets [26] which limit the performance of systems making use of such

datasets. Some of the earlier works focus on the sub-categories of a single entity

type [27], whereas recent studies mainly focus on the sub-categories of several entity

types at once [28,29].

Another important research area is the joint learning of different NLP tasks in-

cluding the NER task. Joint learning or multi-task learning is a type of learning

approach where a single system is used for tackling multiple tasks. Caruna et al. [30]

attempt to learn multiple hard tasks at once rather than learning each of them sep-

arately. The main idea is that the information obtained during the training for each

task is a useful inductive bias for the other tasks. In the recent joint learning systems,
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the prediction or output produced for one task is generally fed to the system and used

as an additional information to make a prediction for the other task. Such systems

have the advantage of not relying on to a separate tool to obtain the information for

the other task. Another advantage of joint learning based systems is that both parts of

the system are trained simultaneously so that the loss obtained for one task is used for

training the parts of the system related to the other task. Hence joint learning usually

performs better when used for related or similar tasks. However, previous work on

joint learning of different tasks requires datasets to be annotated for both tasks [31].

To overcome this joint annotation problem, Collobert et al. [32] implemented a neural

network based system for various NLP tasks by annotating a dataset using third-party

tools. The dataset is annotated using the Stanford Named Entity Recognizer [33] tool

for the NER labels. However, automatically annotating a dataset is prone to errors

and may cause the errors made during annotation to propagate to the training phase.

The availability of datasets annotated for both tasks is a major problem even for

frequently used languages such as English. For less frequently used languages, the joint

labeling problem is even more evident and limits the research in this area. Turkish is

one of those languages where NLP related research is limited due to the availability of

annotated large high-quality datasets even for single tasks. Thus joint labeling problem

puts a limit to the research in this area for the Turkish language and many other less

frequently used languages.

1.1. Motivation and Objectives

Through the observations mentioned in the previous section our main motivation

in this Thesis is to create a NER system for Turkish language that also attempts joint

learning of another NLP task. In order to find a suitable task for the joint learning along

with NER, we start by analyzing the performance of available sequence labeling tools

on Turkish language and make improvements over the previous work by exploiting new

features and feature combinations. During this phase, we focus on re-implementing a

previous work on Turkish and then improving the performance by using dependency

parsing information together with new feature combinations.
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Dependency parsing is an important research topic in NLP. It is demonstrated to

be highly useful for various NLP tasks. Dependency parsing is shown to be useful for

relation extraction [34,35], semantic parsing [36,37], machine translation [38], question

answering [39, 40] and named entity recognition [41, 42]. Our main motivation is to

combine these early findings and our results from the previous phase with the recent

related work on joint learning to create a named entity recognition system which makes

use of and jointly trains a dependency parser. We propose a novel system for the joint

learning of dependency parsing and named entity recognition that has not been imple-

mented before for the Turkish language. We focus on obtaining relative performance

improvements over the version of the named entity recognizer which does not make use

of a dependency parser output. Through this method we also propose a novel way to

solve the joint labeling problem mentioned in the previous section. Our final method

works on different datasets for different tasks and does not require the dataset to be

jointly annotated for both tasks. Our results show that the system trained using sep-

arate datasets outperforms the version of the model trained using a jointly annotated

dataset using a third party software for the NER task.

1.2. Contributions of this Thesis

In this section we explain the main contributions of this Thesis. Since a Master’s

Thesis is a document containing all the research done in a two-year span it may be

difficult to track down the main contributions of a Master’s Thesis. For this reason, we

list the main contributions of this Thesis below. Our main contributions are related

with the final proposed joint learning model for dependency parsing and named entity

recognition. The main contributions are as follows:

• The joint model proposed in this Thesis is the first model that jointly learns

dependency parsing and named entity recognition for Turkish. We also have not

seen a similar joint learning scheme applied for these two tasks for other languages

as well.

• We have used different datasets for each task. Related works on joint learning,
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make use of a single dataset annotated for both tasks [1]. Yet only for frequently

used languages and frequently tackled tasks such datasets are available. Our

model attempts to solve this joint annotation problem by using different datasets

for each task. Our main hypothesis is that learnt features about a language for a

task can be useful for a different task even when the datasets differ.

These contributions are explained in detail in the subsequent sections.
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2. BACKGROUND THEORY

2.1. Early work

Bikel et al. [43] published the paper in 1997 which describes the system called

‘Nymble’. This is one of the earliest papers that uses statistical tools and supervised

learning in NER. They use very standard set of features for each word. By using

an if else structure they check for the existence of a feature in a given word such as

‘isCapitalized’ which checks whether a given token is capitalized or not. Each word

has a single feature which can be considered as its category. This feature together with

the word itself is used to find transition probabilities of a Hidden Markov Model. Since

the data is sparse and their corpus is limited, they used a back-off scheme whenever

the transition probability is 0 because there is no previous data to handle the unknown

words. HMM has 8 nodes representing 8 NE types and they calculate the transition

probabilities between these nodes.

McCallum et al. [44] make use of a CRF based model with induced features.

CRF’s are an extension to the HMM model and use transition probabilities with fea-

tures and the words for sequential labeling. In CRF models, the task is to learn the

weights of the feature functions. Feature functions are often created automatically

using the combinations of the given features or just make use of atomic feature func-

tions. Giving too many features with a large window size causes generating too many

feature functions which slows down the learning process and may result in over-fitting.

To overcome this issue they start with 0 features and add the most useful feature at

each step and repeat this process until the net gain is insignificant. When the net

gain is insignificant over a development set, this signals a point at which increasing the

number of features will likely result in over-fitting the training dataset.

They also suggest finding patterns in the HTML format using web documents

to detect NE’s. Their assumption is that HTML format around an NE type will be

similar in most cases because HTML is structured and follows a specific format.
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Chieu et al. [45] use Maximum Entropy Models with global features for NER task.

The use of global features such as previous occurrence in the document is shown to

improve the performance of the system. Many features are used in this system and all of

them are explained in detail which makes this paper a valuable contribution for feature

related research on NER. Maximum entropy estimates probabilities by using features.

The number of features are unlimited and any feature function can be selected freely.

Compared to CRF’s ME does not depend on the sequential nature of the input. But

they also take into account the transition probabilities between classes which prevent

inadmissible transitions such as going from personbegin followed by locationunique since

it is not a possible transition. Yet, these transition probabilities are 1 if the transition

is admissible and 0 otherwise, so learning is not done on these parameters. Probability

of a NE tag conditional to the current word and the history is shown below:

p(o|h) =
1

Z(h)

k∏
j=1

α
fj(h,o)
j

where fj represents the feature functions and αj are their associated weights. The

weights are calculated by maximum likelihood estimation which tries to minimize the

difference between the empirical and expected number of occurrences of each feature.

Overall process looks as follows:

P (c1, c2, ...cn|s,D) =
n∏

i=1

P (ci|s,D) ∗ P (ci|ci−1)

where the transition probabilities are two valued functions explained as above. In the

above equation, ci, s and D refer to named entity class prediction for ith word, sentence

and document respectively. Dynamic programming is used to find the most likely tag

sequence.

Altun et al. [46] combine HMM’s with SVM’s for NER. This paper uses a different

version of SVM that makes use of interdependency of tag predictions which are typical

of HMM based models. In their model, they take into account the tag information of
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the previous tokens in the sequence. In a way they have included in the features of the

SVM a new type of feature family which checks the previous token’s tag information.

However, the goal is not to create a generative model which counts the previous occur-

rence but to find discriminant functions to separate data. Label-label interaction only

considers the nearest neighbors as in the case with the HMM based model.

The features are appended for a given token and output label pair. In a hidden

markov perceptron model, learning the values of the dual function are incremented or

decremented based on the results. This is to train the model to achieve the optimal

results. The aim is to find the ai(y) values given the training data where y corresponds

to the sentence vector. In the end, the system returns the y value which maximizes

the F function which gets a higher score if the dot product of the two feature vectors

of two tokens are similar.

Zhou et al. [47] also use HMM’s for tagging chunks. Their approach is similar

to the previous work described on HMM in which the system learns the transition

probabilities between states, representing NE tag types.

The major difference of this paper is that they use a different version of conditional

probabilities. Rather than using:

P (T n|Gn) =
P (T n)P (Gn|T n)

P (Gn)

formalism, they use the following:

logP (T n|Gn) = logP (T n)−
n∑

i=1

logP (ti) +
n∑

i=1

logP (ti|Gn)

This equation helps using not only the word itself but the neighboring words and their

features for making a tag prediction. Yet this approach suffers from sparsity for which

they apply a back-off algorithm. The back-off scheme is very straightforward.
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The works described in this section was the early research done on this area which

used supervised learning and statistical sequence learners. The main idea behind all

of these systems is that, sequence transitions are Markovian processes. Both HMM,

CRF and ME use the same idea. Next section describes in detail one of the top

performing systems on NER for the CoNLL 2003 English dataset which is one of the

most frequently used datasets. The NER model implemented in the final phase of this

Thesis is similar to the neural network model that uses Bi-LSTM with a CRF layer.

That is why a separate section is devoted for explaining this work in detail.

2.2. Bi-LSTM Based Related Work

Lample et al. [48] created one of the top performing systems for NER on CoNLL

2003 English dataset.

This work describes two methods for the NER task. Both make use of Neural

Architectures. They do not use explicit name lists and gazetteers, and they have

achieved state-of-the-art results. They also refrain from using language specific hand

crafted rules which is considered to be crucial for portability of such systems.

They introduce two models :

• Bidirectional LSTM with an additional CRF layer for label sequence optimization.

• Transition based parsing with stack LSTM.

The intuition behind these models is that NEs are in general multiple token se-

quences. Second idea is about the orthographic and positional distributions of NEs.

For this, they use character based word embeddings. For the orthographic distribu-

tions, the two directional LSTM takes into account the context around the word which

represents the orthographic information.
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2.2.1. LSTM-CRF

LSTM-CRF model makes use of Ayi,yi+1
where A is the probability of a transition

from tag yi to yi+1 in addition to the probability of a word having a certain NE

tag. The probability Pi,yi of ith word having a tag y is learned in the LSTM layers.

The transition probabilities make the model somewhat CRF-like. The formulations

of the neural architecture are beyond the scope of this study. Adding the transition

probabilities and the tag probabilities gives a score of the likelihood of the tag sequence

for a given word sequence. During training, the neural net is trained to minimize the

loss for this score for each sequence.

Bi-LSTM takes as input d-dimensional word embeddings, and returns two rep-

resentations for each word: forward and backward. These are then concatenated, and

together they represent the word with which the tag likelihood is calculated.

2.2.2. Tag Scheme

IOBES tagging scheme is used in this work. IOBES is used to differentiate

between single token NEs, and differentiate internal and final words of a multiword NE

sequence. Single token NEs are tagged with the ‘S’ prefix. Final words of a multiword

sequence is tagged with the ‘E’ prefix. They did not observed significant improvement

over using the IOB representation [48].

2.2.3. Transition-Based Chunking

Rather than treating the input sequentially, stack based approach is used for

analyzing stacks of input simultaneously. The program has 3 parts : Stack, Out and

Buffer. Initially all words are in a buffer and one-by-one they are either sent to the stack

or directly sent to the Out part. If there are words in the Stack, they can be sent to Out

or additional words can be stacked from Buffer. All these actions are learned during

training. The LSTM takes into account the current context in all 3 parts of the model,

the words themselves and previous decisions for making a decision at each step. These
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decisions are learned during training with annotated corpus. Details and figures in the

paper nicely explain the procedure. Obviously since the NEs are detected in chunks,

this approach does not use any tagging scheme. Again the words are represented as

word embeddings which are character based models explained in the following section.

2.2.4. Word embeddings

Lample et al. [48] make use of character level embeddings obtained by using Bi-

LSTMs together with a word2vec variation of word embeddings. For a given word,

characters are given in forward and backward manner, and two representations are

learned by LSTMs. Then these are concatenated with the pretrained word representa-

tions.

These word embeddings are vectors that represent the words and fed into the

LSTMs for predicting tags. A similar embedding mechanism is used in the joint learner

model implemented in this Thesis. Yet pretrained embeddings are not used and each

embedding is initialized randomly.

2.3. Related Work on Turkish

We continued the literature survey with focusing on the previous work done for

the Turkish language. We grasped a general idea about the research done for other

languages. Our aim in this phase of the literture survey was to survey through the

work done for Turkish language and to find the points we can improve by using the

methods that are used for other languages and not applied to Turkish.

Demir et al. [49] uses word embeddings together with supervised learning. They

used the work of Mikolov et al. [50] for word embeddings which does not use non-linear

hidden layers. This enables having very short training times. Skip-gram model is used

which captures the information neighboring the word as well as the word itself.

In an unsupervised manner, the word representations are learned by using a
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large unannotated data. Then an additional clustering is applied to the words and 200

clusters are formed. During the supervised stage, these cluster membership features

are also used as additional features.

In the supervised stage, the NER model is trained using annotated data. The

model is a regularized averaged perceptron. Mainly the system calculates the prob-

abilities of having a certain NE tag given the previous tags and neighboring word

information. One of the advantages of their approach is that the model only makes

use of language independent features. This enables to apply this model easily to other

languages.

The only drawback of this approach is that they make use of hand crafted rules

which are given to the system manually.

Celikkaya et al. [51] explains an application of NER systems on real data in

Turkish. Rather than using formal texts which are easy to parse, the study attempts

to show the difficulties that arise when NE systems are applied on real data. The

F1-measures drop significantly which shows that by using the conventional methods

we can not achieve meaningful results on real data. However most of the data that we

would like to apply our NE systems on are in fact in the form of real data, meaning

that they contain a lot of non regular word forms, typos and grammatical errors.

They proposed several solutions to the most common problems occurring in real

data but the main aim of the paper is to show the difficulties rather than proposing

clear solutions. This paper can be viewed as a reference when the aim is to work on

real data because it shows the possible difficulties that frequently arise. Some of the

difficulties mentioned is; NE’s in their lower cased form which is ungrammatical for

Turkish and not using the apostrophe when it is needed.

Seker et al. [52] make use of a morphological preprocessing unit before applying a

CRF model on the same dataset we are planning to use. The morphological processing

consists of an analyzer step which gives the information required for morphological
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features. The disambiguator chooses the most probable way of analyzing a word based

on its context. This preprocessing unit is prone to errors.

The study makes use of the frequently used features for Conditional Random

Fields (CRF) based systems. Features extracted automatically by applying a morpho-

logical analyzer can be considered as a novelty yet these features are not gold labels

so they may contain inconsistencies. Inflectional information is also used as features.

A binary feature for proper noun indication in the morphological analysis is used to

detect whether the analyzer tagged the word as a proper noun or not. The study uses

manually created feature templates which can be either based on a single feature or a

conjunction of various features. They have created 92 different templates and gener-

ated around 2M different functions to be used by the CRF based model. The main

difficulty when using CRFs is the determination of these feature functions. In this

study the feature functions are determined manually using heuristics. This part can

be done automatically by using machine learning algorithms but it is a complicated

process on its own and such automatically created features are often outperformed by

manually picked feature sets since the human expertise in this area is quite high. Large

gazetteers are used for learning entities and these gazetteers are publicly available for

other researchers to use.

Kucuk et al. [53] used a hybrid system using manually written rules together with

statistical tools for this task. They have used a rule-based system which incorporates

extensive look up tables for tagging the words matching with the gazetteers. Then

the pattern bases for each NE type are applied on the previous tagged data to tag

the words that match with the patterns in the bases. Then this rule-based system is

extended into a hybrid design that uses rote learning.

In the hybrid approach, lexical resources and patterns are learned by using rote

learning for each specific genre. These genres include news domain, financial domain,

historical texts etc. Rote learning counts the number of occurrences, and for instance,

for a word that occurred 10 times appears with a person tag in the news domain it is

added to the person type entity list learned by rote learning for the news genre. Then
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a hybrid tagging scheme is applied to texts for which the genre is either known or not

known. If the genre is known, the rote learned genre specific resources are applied to

tag the entities in the learned list with a higher confidence score. Finally, the rule-based

system tags the remaining entities based on the lexical resources or pattern bases.

Yeniterzi [54] used morphological features of words in a CRF based model. The

novelty of this paper is that it uses a morphological model which treats every mor-

phological sub-token of a given word as separate tokens. Therefore, after expanding

the lexical forms of the words, the morphemes are treated separately in a sequential

manner. This way the paper claims to take into account the morphological information

in a more robust way.

Neural networks are also used for NER for Turkish [55, 56]. Gungor et al. [57]

produced a neural network based model for Turkish language. They make use of

morphological embeddings in addition to word and character embeddings for NER

task. Bi-LSTM with CRF like tag transition structure is used for predicting the NE

tags. Bi-LSTM uses forward and backward LSTM outputs for word representations.

Then these representations are concatenated and used to calculate the score for each

tag for this representation. By taking into account the transition probabilities as well

the system calculates the tag sequence with the highest score.

Three types of embeddings are used: word, character and morphological. Word

embeddings are loaded from pretrained vectors and never learned. Character embed-

dings are learned by incorporating Bi-LSTM’s. Additional morphological embeddings

are learned by morphologically analyzing the words. The analyzed result is turned into

an embedding in a couple of different ways and the results are shown in the paper for

each method. Best results are obtained when the morphological embedding is used

without the root word. Biggest advantages of this paper over previous approaches can

be listed as follows:

• Not using any manually entered features. Bi-LSTM is trained only by using

embeddings.
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• Using forward and backward systems which captures information both from pre-

vious words and words that follow the current word.

• Using morphological embeddings that capture valuable information for morpho-

logically rich languages. Representing morphological analysis of a word with

embeddings is a more robust way than using the analysis directly.

2.4. Related Work on Joint Learning

Joint learning is an emerging research area in machine learning especially for

NLP related tasks. Most NLP tasks contain valuable information which can speed

up or improve the learning process of other NLP tasks. In many NLP tasks low-

level information is used to improve performance of higher-level tasks. The low-level

information gives additional information besides the surface form of the word and it

is often useful. Systems making use of such low-level information mostly make use

of third party software for annotation or implement a separate system and use both

systems in a pipeline manner [3, 8]. A CRF-based system [58] is used for analyzing

entities in three levels: coreference, named entity recognition and linking. The analysis

for each level is used as additional information for other tasks.

Low-level tasks such as POS tagging require less abstraction than high-level tasks

such as semantic tasks. Previous work on multi purpose NLP systems does not gen-

erally take this phenomenon into account and use the same architecture for each task

as in [1]. Using the outermost layer output of a neural network for different tasks is

a frequently used method in neural network models especially in the area of computer

vision [59,60]. Yet in most NLP related tasks the level of abstraction required for each

task differs.

Hashimoto et al. [2] discuss the importance of building a single system that tackles

multiple NLP tasks at once. Their Joint Many-Task (JMT) model performs similar to

the state-of-the-art systems that specialized on each separate task. The main motiva-

tion of the model is that many of the state-of-the-art tools for different NLP tasks make

use of similar neural architectures. Especially Bi-LSTM based models outperformed
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other models in almost all NLP tasks. Thus most state-of-the-art systems for different

NLP tasks have a similar neural architecture and it is straightforward to combine them

for jointly solving different tasks.

JMT uses outputs of different layers to be used for different tasks which is shown

to perform well [61]. As the complexity of the task increases more neural layers are

added to have a higher level of abstraction. This way first layers of the network is

affected by the losses back propagated for more tasks but higher layer weights are

not updated directly during the training of low level tasks. These layers are more

specialized and can be considered as capturing the subtleties of more complex tasks

whereas the low level layers give us the fundamental and low-level information.

Their model tackles five different NLP tasks which are put into the following three

categories: word-level, syntactic-level and semantic-level. Word level tasks are POS

tagging and Chunking which are predicted using the first and second layer outputs of

the network respectively. These tasks require relatively less abstraction and therefore

first two layer outputs are used. Dependency parsing is the syntactic level task which

uses the output of third layer. The third layer receives as input the outputs of the

previous tasks in addition to the word representations and the hidden states. The

outputs of the previous tasks are the predicted labels which are converted into vector

representations before being fed to the third layer.

The final two tasks, Semantic Relatedness and Textual Entailment are the se-

mantic tasks which require considering the whole sentence at once. So a max pooling

is applied over all word-level representation which is proven to be an effective method

in text classification [62].

Detection and categorization of named entities are separated into different tasks

and learnt jointly in [63] where extensive external features are used for improving the

performance. Using the outputs produced for each task for the other task is shown to

improve performance of both systems [64,65].
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Nguyen et al. [4] attempts jointly learning of Part-of-Speech (POS) tagging and

Dependency Parsing using the CoNLL 2018 Shared Task dataset. Their model which is

called joint POS Tagging and Dependency Parsing (jPTDP) will be explained in detail

in the following section. As our final proposed model is similar to the model described

in this work we devote a separate section explaining their model in detail. The details

of the jPTDP model will be preceded by a short introduction to the CoNLL 2018

Shared Task, as the model is submitted to the shared task for dependency parsing.

CoNLL 2018 Shared Task [66], “Multilingual Parsing from Raw Text to Universal

Dependencies” focuses on the Dependency Parsing for many typologically different

languages and has three evaluation metrics. The participant systems are expected to

predict the labeled dependencies for each word. The datasets used for all languages are

publicly available and made possible by the Universal Dependencies initiative (UD).

The datasets are in CoNLL-U format. The UD dataset for Turkish is explained in detail

in the Datasets chapter which includes the details regarding the CoNLL-U format as

well. The task includes datasets for more than 60 languages.

2.4.1. jPTDP Model

jPTDP makes use of a Bi-LSTM based neural network to jointly learn POS

tagging and dependency parsing. Their model, which is an extension of the BIST graph-

based dependency parser [5], also includes a Bi-LSTM based POS tagging component.

The output of the POS tagging component is fed into the subsequent Bi-LSTM layers

responsible for dependency parsing. POS tag of a word contains valuable low-level

information which can be useful for high-level tasks such as dependency parsing. Thus

many dependency parsers make use of POS tag feature of the words. Yet most of these

parsers rely on third party POS taggers. So these parsers either require the dataset to

have gold label POS tags which is not available for many languages and require manual

labor or they make use of POS taggers which make mistakes. These mistakes cause

error propagation and remain unchanged throughout the training of the dependency

parser. Since the POS tagger is only used in the beginning to automatically annotate

the dependency parsing dataset, the errors made during annotation remain the same
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throughout the training phase of the dependency parser. Previous work on avoiding the

use of a separate POS tagger tool [67–69] can not successfully outperform the version

of the models that make use of a separate POS tagger tool. Yet using a separate tool

puts an upper limit to the success of the dependency parser. Jointly learning both

tasks is an attempt to solve both of these issues at once. Joint learner does not require

gold labels for POS tagging and does not require a separate tool for automatically

tagging the dataset for POS tags. Additionally joint learning enables improving the

accuracy of the POS tagger during the training phase so that the error, which remains

unchanged when the dataset is automatically annotated using a separate tool, gets

smaller. Another important benefit of using joint learning is that the losses obtained

for one task is used for improving the accuracy of the part of the architecture responsible

for the lower level task which in this particular model is the POS tagging part. So the

losses obtained for dependency parsing is used for updating the POS tagger which is

shown to improve the accuracy of the final tagger.

The architecture and the details of the jPTDP model is given in the following

section. The final model used for this thesis makes use of the same well-known BIST

dependency parsing architecture. The main difference from the dependency parser of

jPTDP is that our architecture does not make use of POS tag prediction. So the input

to the parser does not contain the additional vector representation of the POS tag, but

the architecture and the prediction mechanism is similar for the dependency parser.

The main motivation is to show that the dependency parsing prediction improves the

accuracy of the NER system rather than improving the state-of-the-art dependency

parser systems. So implementing a better dependency parser by changing the archi-

tecture or the prediction mechanism is not the primary aim of this study.

2.4.2. jPTDP Dependency Parsing Architecture

This section is devoted for explaining the parsing component of the joint learner.

The parsing component implemented during the work done in this Thesis is similar to

this component except for the input vector fed into the parser. The overall structure

of the model is given in Figure 2.1 which is taken from the work in [4]. In addition
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to the concatenation of the word and character level vector representations for each

word which is called the word vector representation they also concatenate the vector

representation of the predicted POS tag for each word. Let e
(W )
wi and e

(C)
wi represent

the word and character embeddings for each wi in a sentence respectively. So the ith

word of a sentence has the following word vector representation

ei = e(W )
wi
◦ e(C)

wi

where e
(W )
wi is initialized randomly and updated during training but can also be ini-

tialized with pre-trained word embeddings. Character embedding, e
(C)
wi , is obtained

by using the character embedding of each character making up the word. If we let

wi = c1c2...ck represent the ith word with k characters where each character ci is rep-

resented with a character embedding ci then the character-level vector representation

is learned by inputting the k character embeddings c1:k to a Bi-LSTM called sequence

Bi-LSTM (BiLSTMseq) and concatenating the forward and backward outputs.

e(C)
wi

= BiLSTMseq(c1:k) = LSTM(c1:k) ◦ LSTM(ck:1)

For each word wi the predicted POS tag is represented with a vector embedding e
(P )
pi .

The word vector representation is concatenated to this vector embedding so that for

each word wi we have a corresponding vector representation xi where

xi = e(P )
pi
◦ ei

So a sentence with n words is represented with x1:n. These vectors which represent

each word of a given sentence is fed into a Bi-LSTM layer which is named Bi-LSTMdep,

and the corresponding vector representations are called the latent feature vectors. Let

vi represent the latent feature vector of the ith word where

vi = Bi-LSTMdep(x1:n, i)
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The latent feature vector for each word is constructed by taking into account the

context of the word. Latent feature vectors are used to predict the head and the

relation labels of dependency parsing for each word. An arc-factored parsing approach

is used to decode the dependency arcs [70]. A multilayer perceptron (MLP) is used to

calculate a score for each pair of words in a given sentence by concatenating several

vector representations. One can think of the dependency tree as a directed graph where

each arc (h,m) is a head-modifier arc. So the scores for (h,m) are not equivalent to

(m,h) as the order denotes which word is the head and which word is the modifier.

The score for the arc from the ith to the jth word is calculated using the latent feature

vectors vi and vj as follows:

scorearc(i, j) = MLParc(vi ◦ vj ◦ (vi ∗ vj) ◦ |vi − vj|)

where (vi ∗vj) and |vi−vj| are element-wise multiplication and absolute element-wise

difference respectively. By using these scores for each pair of words, Eisner’s decoding

algorithm is used to find the highest scoring dependency parse tree. Eisner’s decoding

algorithm gives full coverage of the sentence so that no word is left without a head

index except for the root word of the sentence which has the head index -1. By using

these indices for each word another MLP called relation MLP is used to return scores

for each predicted arc in the decoded parse tree. The number of output nodes of the

relation MLP is the number of relation types. Highest scoring relation type for each

arc is used during the prediction phase. Figure 2.1 shows the overall architecture of

the above explained jPTDP model.
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Figure 2.1. Architecture of the jPTDP model for jointly learning POS tagging and

Dependency Parsing
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3. DATASETS

The datasets used during the experiments are explained in detail in this chapter.

Machine Learning based systems rely heavily on both annotated and unannotated

datasets. These systems are mostly data driven so the quality and the size of the

dataset affects the final performance of such systems especially in the case of NLP

related tasks. Thus creating high-quality and large size corpora is an important task.

Yet creating high-quality annotated corpora requires extensive manual labor and can

be really costly. Many efforts have been put in for the last decades to create such

corpora. The increase in the computing power and the emergence of deep learning

methods with easy-to-use libraries and tools enabled fast implementation of systems

with impressive results. Yet such systems are useful only if the datasets that they use

for learning is available and has high-quality. In other words, the performance of such

systems is bounded by the limitations enforced by the dataset itself. Limitations of

datasets can be grouped in several categories and may differ in importance for different

research fields.

Frequently occurring limitations for both annotated and unannotated corpora in

NLP is their generalizability. Language itself is an ever growing phenomenon and it is

simply infeasible and unsustainable to try to include all possible characteristics of even

a single language in a corpus of finite size. Recent research shows that the frequently

used datasets are not able to generalize to other domains and genres especially in the

case of NER task. Augenstein et al. [23] give a detailed analysis of the generalizability

of datasets for English language for the NER task. They report that the unseen

entities and unseen features of those entities that occur in a test set cause significant

performance drops. Even the majority of the performance scores of the state-of-the-

art systems on frequently used test sets are made up of the previously seen entities.

By analyzing the seen/unseen entity ratios in several datasets they show that the

performance of systems using those datasets are highly correlated with this ratio. Thus

memorization of entities and entity features is still a big issue for machine learning based

systems in NER task.
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3.1. NER Dataset for Joint Learning

For training and testing the final joint learning systems described in this work for

the NER task for Turkish, a commonly used dataset is used. This dataset is created

as part of a work [71] which tackles four information extraction task including NER.

It is made up of articles from a national newspaper. This section will give a detailed

explanation of the dataset along with some observations and statistics.

The dataset is created in 2003 and many researcher working on NLP tasks for

Turkish made use of this dataset in the past two decades. As researchers most naturally

make changes on the dataset or use only some parts of it according to their needs,

there are many versions of this dataset available. For example, at the beginning of the

experiments which are done using publicly available machine learning tools, a version of

this dataset is used where the training set is not splitted into training and development

sets. Also different researchers may use different sentence splitting mechanisms which

can have different outputs. The final proposed joint learner model makes use of a

development set. Using a development set with machine learning based systems is very

common for various purposes such as preventing over fitting. In order to have more

consistent results and be able to compare the results, the exact same version which was

used in [56] is used for all the experiments done with the joint model. In this version

of the dataset some parts of the dataset is taken out as they contained inconsistency

as described in the same work. These inconsistencies are related to the morphological

golden tags of the words. Even though those inconsistencies are not related to the NER

task for which the dataset is used for, same version is kept for the reasons mentioned

above. So this particular version of the dataset will be explained here.

The version of the dataset used in this work has the following fields of the CoNLL-

U format annotated:

• ID : Word index, starting from 1. Multiword tokens are ignored and every token

is counted separately.

• FORM : Surface form of the token.
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• FEATS : List of morphological features. The gold label morphological analysis

is used for this field. Yet during the training of the joint learner this field is not

used.

• MISC : This field is reserved for language specific annotations that does not belong

to other fields. In this version of this dataset MISC field is used for candidate

morphological analyses, NER tag and correct morphological analysis which is the

same analysis with the list of morphological features given in FEATS field.

Remaining fields of the CoNLL-U format is not used and therefore marked with

an underscore ( ).

Number of sentences in this version is given in Table 3.1. Number of tagged entity

tokens and number of tagged entities are given in Table 3.2 and in Table 3.3 respectively.

Some evaluation metrics does not count the partial matches for a multiword named

entity as matches. So partial match and complete miss of the entity is counted as the

same. For such metrics the difference between the number of entities and number of

entity tokens becomes an important parameter about the dataset.

The most important part of this version of the dataset is the content of the MISC

field. The field is designed in a dictionary format where each entry is a key-value pair.

The first key is ‘ALL ANALYSES’ and the value is a list of all possible morphological

analyses for the given token. The second key is ‘NER TAG’ and the value is the NER

tag of the token. This is the only key-value pair used in this Thesis but the data format

is kept to same in order to have consistency. The final key in the version which is used

during the experiments is ‘CORRECT ANALYSIS’ and the value is the gold label

morphological analysis of the token. As the number of key-value pairs of this field may

increase this description should not be considered as a final description. It is rather

given to describe the dataset used during this work. An annotated example sentence

from this dataset is given in Figure 3.1. The annotated example sentence is: ‘Ayvalı

Türkiye’nin büyük patronlarının yöreye duydğu ilgiden memnum’ which corresponds

to the following sentence in English: ‘Ayvaık is happy with the interest shown by the

heads of the big companies of Turkey to the area.’
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Table 3.1. Number of sentences in the Turkish NER dataset.

Subset Number of Sentences

Training 25,514

Development 2,954

Test 2,915

Table 3.2. Number of annotated tokens in the Turkish NER dataset.

Subset LOC ORG PER

Training 7,865 13,561 10,292

Development 904 2,026 1,347

Test 1,103 1,711 1,260

Table 3.3. Number of annotated entities in the Turkish NER dataset.

Subset LOC ORG PER

Training 6,720 9,260 6,249

Development 769 1,412 824

Test 907 1,174 670
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Figure 3.1. An example sentence from the Turkish NER dataset in CoNLL-U format.

Misc field is used for Morphological analyses and NER label.

3.2. NER Dataset for Initial Models

As mentioned above, the NER dataset for Turkish contains many versions. Dur-

ing the initial experiments the version of the dataset was different than the dataset

explained above. The dataset is made up of same sentences but this version is splitted

to training and test sets. So the development set of the above mentioned version is

included in the training set. Also as will be explained in detail in following sections

this version of the dataset includes several features which are used by the initially

implemented models. The dataset is not in CoNLL-U format. This version is also in

token-per-line format where each line contains a token and sentences are separated with

a blank line. Each word line contains several hand crafted features which are fed as

input to feature based machine learning tools. Initially the dataset contained only the

surface forms of each word together with the gold NER label. Then by using heuris-

tics and reading the related literature the number of features are increased gradually.

Figure 3.2 gives an example annotated sentence from the final version of this dataset.

Each field in the dataset will be explained in Chapter 4 so here we only give the title

for each field in the order they appear in Figure 3.2. They are as follows: surface

form, final POS tag, capitalization, stem of the word, start of sentence, proper noun

feature, acronym feature, nominal feature, final suffix, index of the dependency head
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and dependency relation. Previous versions of the dataset can be inferred easily as the

features always appended to the second to last field since the last field is always the

gold label that is being predicted. Dependency related features are added at the end

so they appear at 10th and 11th positions. The example sentence given in Figure 3.2

is: ‘POZİTİF ve Açık Radyo işbirliğiyle düzenlenecek olan İstanbul Müzik Şenliği 2,

müzikseverlere Aralık ayında merhaba demeye hazırlanıyor’, which can be translated

into English as: ‘Istanbul Music Festival 2 which will be organized in collaboration

with POZITIF and Open Radio will welcome the music lovers in December.’

Figure 3.2. Final version of the NER dataset used in the initial phases of this Thesis.

Each line includes a token, 10 features about the token and the gold NER label.

3.3. Dependency Dataset

Final proposed joint learning model make use of the publicly available Universal

Dependencies framework for the labeled dependency parsing dataset. The dataset is

provided for the CoNLL 2018 Shared Task [66] for multilingual parsing. Universal De-

pendencies is a framework for cross-linguistically consistent grammatical annotation.

The primary aim of this framework is to create datasets for multiple languages in a

consistent format. This will allow the development and testing of multilingual parsers.
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Another benefit of cross-linguistically consistent grammatical annotations is that it

allows cross-lingual learning. It is harder to obtain a high-quality corpora for all lan-

guages. On the other hand, several frequently used languages have vast grammatically

annotated sources. By creating a framework which contains all datasets in a consistent

format, knowledge gained on a certain language can be used in the other language

settings with limited annotated resources. Universal Dependencies is an important

step towards creating generalizable systems and enabling fast research on grammatical

tasks. Before going on explaining the IMST dependency dataset for Turkish, which

is the dataset used for the dependency task in this Thesis, Universal Dependencies

framework and the specific dataset format which is called CoNLL-U or CoNLLU will

be explained.

3.3.1. CoNLL-U Format

CoNLL-U format is an extended and revised version of CoNLL-X. Detailed in-

formation about these dataset formats can be accessed from the relevant website of

the framework [72]. Below a brief summary of the CoNLL-U format is given which is

sufficient if the main purpose is to make use of a dataset in CoNLL-U format. The

basic structure of the CoNLL-U format is as follows:

• A single token occurs in a line with a total of 10 fields each separated by a tab

character. Fields with no entries are marked with an underscore (‘ ’), so that

none of the fields are left blank.

• Each sentence is separated with blank lines.

• ‘#’ Character precedes comment lines and those lines are not taken into account.

The definitions of each of the 10 fields of a word line given in the official website

of Universal Dependencies are as follows :

(i) ID: Word index, integer starting at 1 for each new sentence; may be a range for

multiword tokens; may be a decimal number for empty nodes.
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(ii) FORM: Word form or punctuation symbol.

(iii) LEMMA: Lemma or stem of word form.

(iv) UPOS: Universal part-of-speech tag.

(v) XPOS: Language-specific part-of-speech tag; underscore if not available.

(vi) FEATS: List of morphological features from the universal feature inventory or

from a defined language-specific extension; underscore if not available.

(vii) HEAD: Head of the current word, which is either a value of ID or zero (0).

(viii) DEPREL: Universal dependency relation to the HEAD (root iff HEAD = 0) or

a defined language-specific subtype of one.

(ix) DEPS: Enhanced dependency graph in the form of a list of head-deprel pairs.

(x) MISC: Any other annotation.

Above given information is necessary and sufficient for researchers who would

just like to use a CoNLL-U format dataset for their research. An example annotated

sentence from this dataset is given in Figure 3.3. The example sentence in Turkish

is: ‘Karşısında, pantolonu dizlerine dek ıslak, önlük torbası ham eriklerle dolu İbrahim

dikiliyordu’, which corresponds to the following English sentence: ‘Against him Ibrahim

was standing with his pants wet up to the knees and with his bag filled with plums.’

The final field is made available so that annotation teams and researchers who would

like to use additional annotations can append them to the final field. This way the

CoNLL-U format allows flexibility while keeping the format consistent. Researchers

who would like to ignore the final entry or any other entry can just skip the certain

entry. This way CoNLL-U format allows tackling different NLP tasks without making

any changes on the dataset.

3.3.2. IMST-UD Dataset

UD Turkish Treebank or IMST-UD Treebank is used for the dependency parsing

task for Turkish in this study. This treebank is a part of the Universal Dependencies

framework and annotated according to the CoNLL-U format. It is a semi-automatic

conversion of the IMST Treebank [73], which is itself a reannotated version of the
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METU-Sabanci Turkish Treebank [74]. The dataset is publicly available and can be

obtained easily online. Detailed statistics about the dataset is given in the relevant

GitHub repository of the work as well. The dataset is made up of 5,635 sentences from

daily news reports and novels. The details of the annotations and other characteristics

of the dataset is given in the official website of the Universal Dependencies.

This dataset is used at the later stages of this Thesis with the joint model. Below

is the list of the cases this dataset is used in:

(i) Training a dependency parser on the training set and using the trained model

to annotate the NER dataset for Turkish for dependency relations. This anno-

tation are used as additional features for the feature based systems used in the

exploration phase of the experiments.

(ii) Training and testing a new dependency parser without joint learning to see

whether performance increases or decreases when a joint learning is incorporated.

(iii) Training and testing the dependency parser part of the joint learner model.

This dataset has all of the fields of the CoNLL-U format annotated except for

the 9th field which is given the name ‘DEPS’ and is reserved for enhanced dependency

graph annotation. MISC field is used for denoting the existence and nonexistence of a

space right after the token.

Figure 3.3. An example sentence from the IMST-UD Treebank dataset used by the

dependency parser of the joint learner. The joint learner only makes use of the

surface form, dependency relation type and dependency head index fields.
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4. METHODOLOGY

4.1. CRF Model

After finalizing the initial literature survey phase, implementation of a NER sys-

tem is started. A simple model is implemented and the complexity is gradually in-

creased by observing the weaknesses and by using the knowledge obtained during the

literature survey. We do not view this as the final architecture. Rather we have found

it more useful to start with a simple model and then by observing the weaknesses and

the limitations move onto a new system as necessary. For this purpose the initial model

is developed using a CRF-based third party software. The main reference article of

this initial model, the work of Seker et al. [52], also applies CRF’s on the same Turkish

dataset we have used.

The CRF-based tool uses an annotated training data and feature functions and

tries to find the optimal linear combination of weights by observing the annotated

dataset. We try to maximize the conditional expectation of the transitions that occur

frequently in the training data. CRF’s are suitable for NER task because they can

capture the sequential nature of a natural language and make use of features.

The CRF-based tool used is named ‘CRF++’ and the version of the tool used

is 0.58. We have started with a baseline model and gradually improved the model

by using different features and feature functions by observing the weaknesses of the

system and using the methodology described in the reference article. We have obtained

a Conll score of 89.79% without using gazetteers. This is the best obtained result for

Turkish using CRF as the learning algorithm without using gazetteers.

This section describes the ‘CRF++’ toolkit [75]. The results are given in the

Experiments and Results chapter. This toolkit is an open source implementation of

Conditional Random Fields and can be used for various sequential labeling tasks in-

cluding NER. Below is a list of some of the features the toolkit offer:
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• Feature sets can be redefined. This allows testing the system with different feature

sets.

• Fast training based on L-BFGS. Compared to the ‘Wapiti’ toolkit which will be

explained later this tool does not offer options for the optimization algorithm

being used.

• The output probabilities can be retrieved which enables observing the confidence

of the model about a specific prediction. This feature is especially important

when making use of several tools and combining their predictions to boost the

performance.

The tool requires inputting a feature template which is used for automatically

generating all possible features that will be used by the CRF model. The feature

functions are generated by considering all possible cases in the training set which fit

the definition of a feature given in the feature template. Thus even if the dataset

with the features stay the same the tool enables training the model with different

feature combinations. This allows faster research as the same dataset can be preserved

throughout the experiments. The only requirements for the datasets given as input to

the tool is as follows:

• The datasets must be in token-per-line format as in the case of CoNLL-2003

datasets.

• All the datasets (training and testing) must have equal number of features with

the same ordering. The number of features also must be kept the same for all

tokens in both datasets.

• The features must be separated by a blank space and the final field must contain

the label that will be learned and predicted.

The template file for the patterns also has a specific definition. An example

segment from the template file is given in Figure 4.1. The lines starting with ‘U’

refer to the unigram features. The feature functions are only generated for the current

token when U prefix is used. ‘B’ prefix is used for bigram features which are generated
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Figure 4.1. Example for the template file for the features of the CRF++ tool.

considering the label of both the previous and the current token. In Figure 4.1, B is

used without any other specification. This means that only the bigram tag transition

probabilities will be generated using this pattern template. Below is an example line:

U15 : %x[−2, 1]/%x[−1, 1]

The following number of the first character, which is ‘15’ in this case, denote the ‘ID’ of

a feature. This enables looking at the weights of each layer in the model file generated

at the end of the learning mode. ‘%x’ denote a feature. ‘[-2,1]’ means that the second

previous token’s (-2), second feature (1) must be used. ‘/’ sign denotes that the first

feature must be combined with the succeeding feature which is the second feature (1)

of the previous word (-1). So this way any number of features can be combined but

this will increase the memory used and the time required to train the model. So the

feature template should only include relatively important features and only important

combinations of those features so that the model can be trained efficiently without

suffering from low performance.
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4.2. Models using Wapiti toolkit

This section explains in detail the ‘Wapiti’ toolkit used for training several feature

based models. This toolkit explained in [76], is a sequence classifier toolkit which allows

training models using various model types and optimization algorithms. The results

achieved by this toolkit on the CoNLL-2003 English dataset is comparable to the state-

of-the-art neural network based systems even though the training time is shorter and

the memory requirement is significantly lower. After observing that this toolkit is

more suitable for conducting extensive experiments with different configurations, we

have switched to this toolkit. The toolkit is chosen primarily because it enables fast

configuration of various training models as well as fast configuration of the features that

are being used by the model. Following subsections will describe the specific aspects

of this toolkit.

4.2.1. Training models

The wapiti toolkit allows using various machine learning models for training as

mentioned previously. The models and their brief description are as follows:

• Maximum Entropy (MAXENT): Maximum Entropy models are very general

probabilistic methods that pick the output with the highest entropy by con-

sidering the observations and the prior knowledge. These models are frequently

used in NLP related tasks. A statistical machine translation system making use

of maximum entropy models for reordering of the phrases is explained in [77]. A

Maximum Entropy based model is used in [78] for the POS tagging task.

• Maximum Entropy Markov Models (MEMM): It is an extension of the Maximum

Entropy models which consider the hidden features of Hiddden Markov Models.

It is also frequently used in NLP, especially for the sequence labeling tasks such as

POS tagging [79] and NER [80]. Main difference between MEMM and MAXENT

is that the former calculates the conditional probability of each prediction by

taking into account the previous information. MAXENT assumes independence

between individual predictions.
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• Conditional Random Fields (CRFs): This model calculates the transition proba-

bilities from one prediction to another in addition to the Markovian assumption

of the MEMM. Thus the output prediction of CRF’s is a sequence of outputs

for a given sequence of inputs such as words in a given sentence. Transition

probabilities between tags are learned from the training dataset.

A very nice and detailed explanation of CRF model is given in [81]. The work

also contains a very nice illustration of the relationship between the models explained

above. This illustration is given in Figure 4.2.

Figure 4.2. Illustration of the relationship between various machine learning models

taken from [81].

4.2.2. Optimization Algorithms

4.2.3. Data Format

Wapiti can use only a specific data format. The data for training and testing must

be in the same token-per-line format with same number of features. The last token of

each line must be the label of the token. The sequence that corresponds to sentences
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must be separated by a blank line. If not the program considers the document as a

single sequence and learns transition probabilities from previous sentences meanwhile

decreasing the training speed.

The number of features must be the same for each word of each dataset in order

the toolkit to function. If no annotation is available for a given word for a specific

feature or field then a special character must be replaced for each such case. Thus

none of the fields must be empty.

The token-per-line format is a highly frequently used data format in NLP related

tasks. This format allows word level annotation which is enough in most cases. Sub-

word level annotation can be required for some tasks for which this format must be

revised. In the case of NER task word level annotation is the most frequent method-

ology.

4.2.4. Modes

Wapiti has 2 main modes: training and labeling. During training the user can

choose among different training models and different learning algorithms which are

explained previously. The training mode requires a pattern file which contains the

information about how to generate feature functions in CRF which will be used in

transition likelihood calculations. Given a pattern file and a training corpus the tool

creates a model which contains the transition probabilities. This model is used for

prediction.

Labeling mode is the prediction mode of the wapiti program and requires the

model file and test file as inputs and outputs the prediction file containing the label

prediction at the end of each line for each token. The tool has the option to calculate

and output the recall, precision and F1-score at the end of the prediction. The scores

will not be correct if the tagging format is different from the format of the corpus(BIO,

BIOES etc.).
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As the toolkit offers a wide range of configuration options for both training and

testing modes the following section is devoted for explaining them.

Wapiti toolkit allows full flexibility in configuration. The user can change ev-

ery hyper parameter of the model by a simple command. Below is the list of some

parameters that can be configured for the training mode along with their definitions:

• –train: type of model to train.

• –algo: type of optimization algorithm used for training the model.

• –nthread: number of threads to be used which can increase the model perfor-

mance.

• –sparse: used for enabling sparse computation during forward and backward

iterations.

• –rho1: defines the L1 component of the elastic-net penalty.

• –rho2: defines the L2 component of the elastic-net penalty. Increasing these

penalties result in smaller models.

• –clip: Enables the gradient clipping for L-BFGS. Generally useful for sparse

models regularized with L2-only penalty.

The above list is not an exhaustive list of all the configurable parameters of the

training mode of the toolkit. The above given ones are picked by their effect on the

resulting performance of the final trained model.

Labeling mode also contain various configurable parameters two of which are as

follows:

• –me: used for activating the pure maxent mode. In default the program switches

between linear-chain and maxent mode depending on the data observed. Speci-

fying the pure maxent mode forces the program to use this for all observations.

• –post: used for allowing the posterior decoding algorithm instead of the default

Viterbi algorithm. This often results in an increase in performance with slower

decoding times.
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The patterns given as input determine the feature functions that will be gener-

ated. Feature functions are binary-valued functions such as: 1 if previous word is ‘in’

else 0. They can combined to produce more complicated patterns. The patterns can

be the features given in the corpus as shown in the example above or Regex patterns.

Wapiti allows simple Regex patterns which enables adding features like capitalization

without making changes in the dataset itself through annotations. The program re-

quires a specific pattern file format to be inputted. The format is very similar to the

pattern format used by the CRF++ tool. In addition there is a specific format for

Regex patterns as CRF++ does not have that functionality. The details of the pattern

file format can be accessed from the relevant website of the toolkit.

4.3. Joint Learning Model

This section is devoted to explain the final proposed model of this Thesis. It

contains the details of the most important contribution of the work and explains the

model implemented for the main hypothesis of the work. The model is Bi-LSTM based

and attempts joint learning of two tasks: Dependency Parsing and Named Entity

Recognition. The architecture and the details of the models will be explained in detail.

The final proposed model has different variations which tackle each task separately or

tackle both tasks in different ways. Each variation will also be described in detail in this

section. Yet these variations are highly similar and explaining each variation separately

will cause redundancy. Thus, initially the main version of the model is explained in

detail. Only the differences with the main version is given for the remaining variations.

This model is used to test our main hypothesis in this Thesis. The main hypothe-

sis is that we can do joint learning by training different parts of a neural network using

different datasets. This approach will increase the flexibility of data driven systems as

it does not require the same dataset to be annotated for each task. Rather the model

attempts learning whatever information is available in a given dataset to improve the

performance for all tasks. For example, a trained model can be retrained on a dataset

which only has the NER tags and this will help tuning the parameters of the part of

the neural network which is responsible for the dependency parsing task as well.
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Related work is explained in detail in the Chapter 2. The extensive literature

survey reveals that the joint learning of Dependency Parsing and Named Entity Recog-

nition is not attempted previously. Also joint learning by using different datasets for

each task is another novelty of this model as other work on joint learning use a single

dataset annotated for each task.

4.3.1. General Information

The model is implemented using the version 2.7 of Python programming language.

DyNet neural network library [82] is used for the implementation of the neural network

architecture. Below, a short introduction of this library is given.

4.3.2. DyNet Introduction

DyNet is a neural network library which can be used in Python programming

language. The library is especially designed for neural networks with dynamical struc-

tures. Dynamical networks are useful for natural language related tasks as the part of

the neural network used for each training instance is different. Conventional libraries

do not offer convenient ways to handle this difference in the input data. DyNet offers a

convenient parameter based approach to define the neural network. Only the relevant

parameters for a given instance is taken into account and updated. In DyNet terminol-

ogy a neural network is a ‘Parameter Collection’ where the parameters correspond to

the weights in the network. Each layer is defined by the number of input and output

dimensions which correspond to the number of connections to the previous and next

layers.

Consider the task of named entity recognition. The typical input received by a

machine learning system is a text of varying size such as a document or a sentence. A

general approach is to represent all possible words in the vocabulary and the additional

special word ‘unkw’ for unknown words with a vector embedding. Let wemb and

slen represent the size of a word embedding and the number of words/tokens in some
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sentence S. Then the size |IS| of the input IS to the neural network is,

wemb× slen

This means that the size of the input varies for each input instance as well as the

words in each input sentence. Thus only a small portion of the weights of the neural

network is used. A rough estimate of the ratio of the first layer connections used for

each sentence can be calculated as follows. Let ŝ , v̂ represent the average number of

words in a sentence and the number of distinct words in a vocabulary for a particular

language respectively. By making use of the huge data available, we can find really

close estimates of these values. Then the ratio r of the first layer connections used will

be,

r =
ŝ

v̂
.

DyNet offers denoting each connection in a key-based manner with a lookup table

structure. Thus for each training instance the small portion of the relevant connections

is considered and used. Two possible ways to interpret this mechanism is as follows:

(i) For each training instance a new neural network is constructed which has the

input layer node size equivalent to the size of the input sentence, which varies

for each sentence. The weights are the corresponding weights of each word in the

instance sentence in the order the words appear.

(ii) There is a huge neural network for all possible words in a dictionary. For each

instance sentence only the relevant nodes are switched on and used, and the rest

of the network is inactive.

DyNet library offers builders for the initialization of recurrent neural network

(RNN) layers. RNN layers are frequently used in applications which make use of

dynamic network structures. As the input is fed into the network sequentially RNN’s

are suitable for sequential applications such as the NER task. Unlike classical multi



44

layer perceptrons the value of the previous input to the network affects the final output

for the current input. This feature has particular importance for sequential inputs. In

the joint learning model a specific type of RNN Builder is used: Vanilla LSTM Builder.

Vanilla LSTM Builder creates a standard LSTM with decoupled input and forget gates

and no peehole connections. Below the details of this builder is given. The dynamics

of the Vanilla LSTM Builder are given in Figure 4.3.

it = σ (Wixxt +Wihht−1 + bi)

ft = σ (Wfxxt +Wfhht−1 + bf + 1)

ot = σ (Woxxt +Wohht−1 + bo)

c̃t = tanh (Wcxxt +Wchht−1 + bc)

ct = ct−1 ◦ ft + c̃t ◦ it

ht = tanh (ct) ◦ ot

Figure 4.3. Dynamics of the VanillaLSTM Builder

In the Figure 4.3, σ denotes the sigmoid activation function and the input connec-

tions and recurrent connections are initialized by sampling from specific distributions.

it and ft are calculated using the current token xt and the hidden output ht of the pre-

vious LSTM cell. They correspond to the input and forget gates respectively. These

are used as gates that allow or block the memory information and the current cell

information respectively. Output vector ot is also calculated by taking into account

the current token and the hidden output of the previous LSTM cell, and it is used to

calculate the hidden output of the current cell. c̃t is the candidate cell vector. The

cell vector ct of the current cell is calculated by using the cell vector of the previous

cell ct−1, candidate cell vector c̃t and the above mentioned memory gates ft and it.

Final line shows the hidden output vector ht of the current LSTM cell which uses the

context vector ct and ot. The outputs of the LSTM cells are the ht vectors calculated at

each step using these dynamics. Figure 4.4 gives an illustration of the above explained

calculations made in each cell [83].
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Figure 4.4. LSTM cell illustration.

The following are the parameters of the Vanilla LSTM Builder:

• layers: Number of layers.

• input dim: Dimension of the input xt.

• hidden dim: Dimension of the hidden states ht and ct.

• model: ParameterCollection which holds the parameters.

• ln lstm: binary feature for using layer normalization.

• forget bias: value to use as bias for the forget gate. The default value is 1.0.

4.3.3. Input Data

As explained previously in the relevant section of the datasets chapter, the input

to the system must be in the CoNLL-U format. The details of this format is given in

the relevant section. After receiving the data in the CoNLL-U format, preprocessing is

done on the input data. Preprocessing is done to store the given CoNLL-U format data

in a convenient data structure. Vocabulary of the dataset is generated in the beginning

and then various features are generated by observing the vocabulary. These features

are used during the training and prediction phases of the system. As the neural model

takes as input vector representations which are numerical, every feature is converted

into a vector representation by random initialization.
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Input CoNLL-U format dataset

for each annotated field that will be used do

Initialize a Counter to store relevant data

end for

Initialize char dict

Set char dict[‘unkw’] = 0

Set char dict[‘< w >’] = 1

Set char dict[‘< /w >’] = 2

for each line in dataset do

if line 6= empty line OR comment then

Update each Counter

for each c in line[1] do

if c not in char dict.keys() then

char dict[c] = char dict[len (char dict.keys())]

end if

end for

end if

end for

for all Counteri in initialized Counters do

j = 0

for all key in Counter.keys() do

Dicti [key] = j ++

end for

end for

Return all Dicti and char dict

Figure 4.5. Vocabulary Generation Algorithm. This algorithm converts the

vocabulary and the entries in each field into indexes. These indexes is used to

initialize the vector representations.
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The vocabulary generation algorithm shown in Figure 4.5 is used to store all en-

tries in the dataset into dictionaries which maps entries and characters to indexes. This

algorithm is followed by another algorithm which converts the dataset into sentences

which are made up of Entry objects. The initialization function of the Entry objects

is given in Figure 4.6. Each token in a line in the dataset is an Entry object with

variables representing the values of each field in CoNLL-U format. During training

and prediction phases each sentence is considered separately. Thus the main input to

the model can be considered as an array which is made up of Entry objects.

class Entry :

def i n i t ( id1 , word , nertag , r e l t ag , cap in fo , pa r en t id ) :

s e l f . id1 = id1

s e l f . form = word

s e l f . c ap in fo = cap in fo

s e l f . nertag = nertag

s e l f . r e l a t i o n = r e l t a g

s e l f . pa r en t id = par en t id

s e l f . p r ed pa r en t i d = None

s e l f . p red ner tag = None

s e l f . p r e d r e l a t i o n = None

Figure 4.6. Entry object is initialized by reading each line of the CoNLL-U format

dataset

4.3.4. Output Data

The program has two main modes: Training and Prediction. The output of the

model changes depending on the current mode. Besides, the output of the neural

network and the overall program can be considered as different outputs. The output of

the neural network in both modes is the scores for the Dependency and Named Entity

tags. These scores are used to calculate losses and to find the best prediction of the

model. The output of the overall program during training is a model file which stores all
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the information necessary for rebuilding the trained neural network and a parameters

file which stores the information related to the training process including the hyper

parameter information. The output of the overall program during the prediction mode

is an annotated dataset with predictions for each token appended at the end of each

corresponding line. The joint learner makes predictions about both the dependency

tags and the named entity tags, so two output files are produced.

4.3.5. Work flow

There are various steps in a neural network based machine learning model. In

the case of joint learning models, the number of steps increase even further. Thus, it

can be difficult to track down the overall work flow. This section explains what the

joint learning model does step by step. Figure 4.7 shows the overall workflow of the

model in a diagram.

Below is the step by step explanation of the overall work flow of the joint learning

model in the training mode:

(i) Reading the dataset and creating the vocabulary. Initializing dictionaries for

each field of the CoNLL-U format that is not empty. The vocabulary generation

algorithm is shown in Figure 4.5. Each token in the dataset is initialized as an

‘Entry’ type instance. The initialization of an instance is shown in Figure 4.6.

(ii) Initializing the parameter collection weights using the vocabulary data and the

initialized dictionaries.

(iii) Initializing the neural network architecture using the parameters given to the

system (embedding dimensions, lstm output dimension) and using the vocabulary.

(iv) Training is started and the dependency parser is trained only for 1 epoch on the

dependency parsing dataset. After calculating the scores for the dependency arcs

for each pair of words Eisner’s decoding algorithm [84] is used to find the highest

scoring spanning tree. Then another neural network layer with softmax activation

is used for calculating the likelihood of each possible label for all the arcs in the

previously found spanning tree. This approach is similar to the method employed
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in [85]. During this step the neural network part that is responsible for the NER

task is not used and the weights are not updated. Loss function only makes use

of the loss from the dependency parser output. Yet, since the dependency parser

output is used in the NER training, that part can also said to be trained in an

indirect way.

(v) Training continues with 1 epoch of NER task on the NER dataset. This time

the model makes use of both parts of the network. First, the dependency parser

is run and the parser generates scores for arcs and labels for a given sentence.

These information are fed into the NER part of the neural network. Yet the loss

function does not take into account the dependency parser output at this step.

Only the scores generated by the neural network for the NER tags is used to

calculate the loss value by making use of the gold NER labels.

(vi) After the NER epoch the system continues with making predictions on the de-

velopment sets of each task separately. First dependency parser accuracy is mea-

sured over the relevant dataset using the dependency dataset. Then NER accu-

racy is calculated again by making use of the dependency parser predictions of the

network for the NER dataset sentences. During the NER part of this prediction

step the system has an additional CRF layer for finding the highest scoring NER

label sequence for each sentence. The highest scoring sequence found using the

Viterbi decoding algorithm is used as the final prediction for the NER task.

(vii) Single epoch for the overall system ends. The process is repeated starting from

step 4 for the designed number of epochs in the same manner.

4.3.6. Architecture

This section explains the details of the neural network. A neural network is

created following neural architectures of the previous state-of-the-art systems for NER

task in Turkish and English. This Bi-LSTM based architecture is commonly used

not just for the NER task but also for many NLP related tasks. Even though each

system have their own unique part and each have specialized parts for improving the

performance for the relevant task the fundamental idea is similar. The idea is to
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Figure 4.7. Work flow of the joint learner model. The dependency parser is used for

all training sentences. During the training of the NER model it is used as additional

information.

represent each token with the concatenation of forward and backward vector outputs

of LSTM layers. The input to the LSTM layer in each system is subject to changes but

in general word and character embeddings are given as inputs. Character embeddings

are shown to boost performance of Named Entity Recognition systems [86] as well

as many other systems tackling NLP-related tasks .In addition, task specific features

can be converted into vector representations and can be appended to the word and

character embeddings. Different number of layers of Bi-LSTM can be used where

output of each layer can be considered as a different level of abstraction for a given

token. These representations are then given to a neural network which performs task

specific calculations.

Following the related state-of-the-art work in NLP related tasks a Bi-LSTM is

used to create vector representations of length ldims for both tasks. The value of ldims

is a hyper parameter and experiments with various values can be done to find its optimal

value. In the main joint learning model, the output of the dependency parsing network

is given as input to the neural network responsible for the named entity recognition

task. The input to the first Bi-LSTM layer is the concatenation of word embedding

wemb, forward and backward character embeddings cfemb and cbemb which are generated

using a single LSTM layer and the vector representation capemb of the capitalization
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information of the token. capemb vector is the vector representation of the capitalization

information and initialized by randomly mapping all possible capitalization types into

vectors of fixed length, since LSTMs take as input only vectoral representations. Using

vector representations also has the benefit of enabling the learning of the relations

between different types of capitalizations of words.

The output of the first Bi-LSTM layer is the concatenation of the vectors created

by going over a given sentence in forward and backward directions. Since the output of

the LSTM layer has length ldims for each direction, the output is of length 2× ldims.

The second Bi-LSTM layer takes as input a vector of size 2× ldims for each token in a

sentence. The program again goes over these vector representations to create forward

and vector outputs of size ldims each.

The outputs of the second Bi-LSTM layer are used as the input for the multi layer

perceptrons (MLP) responsible for calculating the scores for the dependency parsing

task. Dependency parsing task contains two sub-tasks: creating a parse tree for a given

sentence and labeling the arcs of the parse tree.

For the first sub-task the system finds the highest scoring parse tree which is

a directed graph that covers all edges where each vertex corresponds to a token in

a sentence. The head of the sentence is called ‘root’ and has the ‘parent id’ as ‘-1’.

All other tokens have ‘parent id’ set equal to the index of the arc that points to that

token. The algorithm for finding the highest scoring parse tree will be explained in

the following sections. This algorithm takes as input arc scores for all possible arcs

in a given sentence. Since the parse tree is a directed graph, for a sentence with n

tokens n2 − n scores must be calculated. The multi layer perceptron responsible for

calculating these arc scores takes as input a vector of length 8× ldims. For tokens wi

and wj in a sentence, the input to the perceptron is the concatenation of the following

vectors:

(i) Concatenated forward and backward vectors of wi and wj. Since each vector has

dimension 2× ldims, this vector is of size 4× ldims.
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(ii) Absolute value of the point wise difference of the concatenated forward and back-

ward vectors of each token. This vector is of size 2× ldims.

(iii) Point wise multiplication of the concatenated forward and backward vectors of

each token. This vector is also of size 2× ldims.

In total the input to the multilayer perceptron is of size 8× ldims. The number

of layers and the number of hidden units of this perceptron are also hyper parameters

which can be tuned by making experiments with different configurations. In this work

number of hidden layers is 1 and the number of hidden units is 100. State-of-the-art

work on dependency parsers which make use of a similar neural network [4] is taken as

reference for obtaining these hyper parameter values. The output of this perceptron

is the score of the directed arc from wi to wj. It is important to remember that since

the dependency is a directed relation this score is different for the arc from wj and wi.

Eisner’s decoding algorithm [84] is used to find the highest scoring dependency tree

which covers all tokens by using these scores calculated for each pair (wi, wj). Figure

4.8 shows the multi-layer perceptron for producing the arc scores for each pair. To

avoid confusion each vector is represented separately but the overall input is a single

vector which is the concatenation of these four vectors.

Let ew denote the vector representation of a given token w. Also let, wemb, cemb

and capemb represent the corresponding word, character and capitalization embeddings

of the word respectively . The vector representation is calculated by concatenating the

above mentioned three vectors:

ew = wemb ◦ cemb ◦ capemb

where cemb is calculated by using a BiLSTM layer. For a character x, we randomly

initialize a character embedding cx. To calculate the character embedding for a given

word each character embedding ci is fed into a BiLSTM which produces forward and

backward character representations, cf
emb and cb

emb. These are concatenated to produce
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the character embedding:

cemb = cf
emb ◦ cb

emb

So the overall vector representation of a given word is:

ew = wemb ◦ cf
emb ◦ cb

emb ◦ capemb

These vector representations for the words are given as input to the first BiLSTM

layer. The output of the first BiLSTM layer is the concatenations of the vectors created

by going over a given sentence in forward and backward directions. The output of the

LSTM layer has length ldims for each direction, thus the output is of length 2× ldims.

The second Bi-LSTM layer thus takes as input a vector of size 2× ldims for each token

in a sentence. The program again goes over these vector representations to create

forward and vector outputs of size ldims. Let elstm
wi

represent the final lstm output for

word wi. Following the related work [4], four vectors are concatenated and given as

input to the MLP called MLParc, which outputs the score for a directed arc from wi

and wj:

scorearc(i, j) = MLParc(e
lstm
wi
◦ elstm

wj
◦ (elstm

wi
∗ elstm

wj
) ◦ (|elstm

wi
− elstm

wj
|)

where (elstm
wi
∗ elstm

wj
) and |elstm

wi
− elstm

wj
| are element-wise multiplication and absolute

element-wise difference, respectively. Loss Lossarc is calculated by maximizing the

difference between the gold parse tree and the highest scoring incorrect parse tree

following the related work [5].

For the second sub-task the system uses a separate multi layer perceptron with

‘softmax’ activation function to determine the relation type for each arc in the highest

scoring dependency parse tree. The input to this multilayer is the same with the

perceptron for the first task. Thus the input is of size 8 × ldims. This relation MLP,
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Figure 4.8. MLP for producing the arc scores for each pair of tokens. Each input

vectori is explained above and each have size 2× ldims.

called MLPrel, takes the same input with the previous MLP and outputs a vector

containing a score for each relation type:

scoresrel(i, j) = MLPrel(e
lstm
wi
◦ elstm

wj
◦ (elstm

wi
∗ elstm

wj
) ◦ |elstm

wi
− (elstm

wj
|)

Cross entropy loss Lossrel is computed over this score vector for gold label.

The number of output nodes is equal to the number of possible relation types.This

number is obtained either by observing the training dataset or by loading a pretrained

model which also contain all such information extracted using the vocabulary genera-

tion algorithm explained previously. A hidden layer of 100 hidden units is used with

‘tanh’ activation function and the hidden layer is connected to the output layer. Fi-

nally a softmax layer is used to convert the scores of the output layer into probabilities

which represent the likelihood of each relation type for the given arc from wi to wj.

It is important to notice that, since this MLP is used only for predicting the labels

of the arcs in the dependency parse tree these scores are not calculated for each word

pair. Figure 4.10 shows the multi-layer perceptron for producing the likelihood score

for each relation type for a given dependency arc. Each input vectori is explained

above and each have size 2 × ldims. The number of the output nodes is equal to the
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Figure 4.9. Dependency parser of the joint learning model.



56

number of possible dependency relations. The final softmax layer converts the scores

into probabilities which add up to 1. The relation type with the highest probability is

picked during the prediction mode.

Figure 4.10. MLP for producing the likelihood score for each relation type for a given

dependency arc from wi to wj.

The part of the overall architecture which is responsible for the dependency pars-

ing task is shown in Figure 4.9. Until this point, the part of the system which is used of

dependency parsing is described. This part of the system is made up of two Bi-LSTM

layers connected to two multi layer perceptrons. The way the joint learning model

makes use of the dependency parser output is explained in the following subsection

which describes the part of the system responsible for the named entity recognition

task.

4.3.7. Named entity recognition module

This subsection explains the neural network for the named entity recognition

task. This network is connected to the neural network responsible for the dependency

parsing. This enables joint training of both networks simultaneously. Even though the

named entity recognition dataset is not annotated for the dependency parsing task,

the back propagated error for the named entity recognition task is used to tune the

weights of the neural network responsible for the dependency parsing task.
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Figure 4.11. Named entity recognition component of the joint learning model.
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The architecture of this part of the system is similar to the tagging component

of the previously described dependency parsing model jPTDP [4], and is shown in

Figure 4.11. In addition to the word embeddings, forward and backward character

embeddings and the capitalization embedding, the first Bi-LSTM layer also takes as

input the embedding of the relation type prediction of the previous network relemb for

each token which is of size rdims and set equal to 100 in our model. Thus the total

size of the input to the first Bi-LSTM layer is wdims + (3 × cdims) + reldims where

wdims and cdims correspond to the sizes of the word and character embeddings. The

size of the capitalization embedding capemb is set equal to cdims which is the reason

cdims is multiplied by 3.

The first Bi-LSTM layer takes the above mentioned input vectors and again

produces two output vectors by going over the input sentence in forward and backward

directions. These two vectors are fed into a second Bi-LSTM layer. Thus the second

Bi-LSTM layer takes as input the concatenation of forward and backward vectors for

each , and outputs two vectors of size ldims. These vector representations are used

for calculating the scores for each named entity tag in the named entity recognition

task. The main advantage of these vectors over other vector representations is that

they take into account the context information. Following the work in [56] these vector

representations are given to a neural network which outputs scores for each named

entity tag. For a given sentence, output scores for each token is kept in a matrix. If we

have a sentence with n tokens and if the named entity task contains t different named

entity tags ,which in the case of this work is equal to 7 ( B-PER, I-PER, B-LOC,

I-LOC, B-ORG, I-ORG, O), then the matrix is of size (n, t). Each row of the matrix

contains the scores for each possible named entity tag type for each word. Figure 4.12

shows the score matrix used in the NER task. Each row represent the scores for each

possible named entity tag for a given token. These scores are decoded using the Viterbi

algorithm during the prediction to find the optimal tag sequence. scorei,j refers to the

score for the ith token having the jth entity tag.

Each dependency relation type rel is represented with an embedding erel. Given

the relation type prediction ereli , of the dependency parsing component for a given
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word wi, the word is represented by concatenating the embedding of this relation to

the vector representation of the word:

ener
wi

= ewi
◦ ereli

For a given input sentence with n words, we represent each sentence with the

sequence of vector representations for each word ener
w1:n

and feed this sequence of vectors

into LSTMs in forward and backward directions. The LSTM outputs vectors for each

word wk in a given sentence by taking into account the context in both directions:

vk = LSTMf (ener
w1:k

) ◦ LSTMb(e
ner
wn:k

)

These vectors of size 2 × ldims are fed into a second LSTM layer which outputs the

final vector representation of each token:

vfin
k = LSTMf (v1:k) ◦ LSTMb(vn:k)

Each vector vfin
k are given as input to an MLP called MLPner. The score matrix of

size (n, t) is created where scorei,j refers to the score for the ith token having the jth

tag:

Scoresner(i) = MLPner(v
fin
i )

During the prediction mode, these scores are normalized into probabilities to be used

for finding the optimal tag sequence. For each tag for a given word probability is

calculated by normalizing the scores produced for each entity tag type tagj:

P (i, j) =
exp(score(i, j))∑

(j′∈tags) exp(score(i, j
′))

where score(i, j) represents the score produced for tagj for a given word wi in a sentence.



60

Finally, we model the tag sequence jointly rather than predicting each label in-

dependently. For this a CRF layer [87] is used to find the highest scoring named entity

tag sequence. Transitions between named entity tags are important because of the se-

quential nature of the task and CRFs are used frequently for the NER task [56,88,89].

Using the score vectors produced for each word and a randomly initialized score ma-

trix scoretrans(tagi, tagj) for transitions between each named entity tag, we find the

optimal tag sequence. Viterbi decoding algorithm [90] is used to find the optimal tag

sequence during prediction. Negative log likelihood loss Lossner is used to calculate the

loss of the gold label ner tag for each word in the sentence. The transition probabilities

between entity tag types are included implicitly in Lossner as the final prediction of the

model is calculated using the Viterbi algorithm.

The final loss value Losssum of the model is the sum of all the above explained

loss values. The model tries to jointly learn to minimize this loss value:

Losssum = Lossarc + Lossrel + Lossner



score1,1 score1,2 . . . . . . . . . . . . . . . score1,t
... score2,2 score2,3 . . . . . . . . . . . .

...
... score3,2 . . . . . . . . . . . . . . .

...
... . . . score4,3 . . .

. . . . . . . . .
...

... . . . . . .
. . . . . . . . . . . .

...
... . . . . . . . . .

. . . . . . . . .
...

... . . . . . . . . . . . .
. . . . . .

...

scoren,1 . . . . . . . . . . . . . . . . . . scoren,t


Figure 4.12. n× t score matrix for a given sentence for the named entity recognition

task.

This (n, t) matrix is used to find the named entity tags for a given sentence.

Named entity recognition is a sequence labeling task. In sequence labeling tasks the

labels of each token is related with the labels of the neighboring words. In such tasks
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using a greedy algorithm and taking the highest scoring tag type for a given token

without considering the score of a transition from one tag type to another performs

poorly. For this reason, by following the related work an additional CRF-layer is used

to find the optimal named entity tag sequence for a given sentence. The optimal tag

sequence is found by using the Viterbi algorithm. The input to the Viterbi algorithm

is the above described matrix in addition to a randomly initialized (t+ 2, t+ 2) matrix

which correspond to the tag transition scores. 2 additional entries is used for transitions

from ‘BOS’ and ‘EOS’ which correspond to beginning and end of sentence tags in order

to be able to take into account the transition probabilities properly. It must be noted

that some of the entries in the matrix correspond to invalid tag transitions such as a

transition from ‘BOS’ to ‘EOS’. These transition scores does not cause a problem as

the system quickly learns that such transitions never occur by observing the training

dataset. The tag transitions are initialized randomly at the beginning of the training

when the model is first initialized together with all other weights of the neural networks.

The complete architecture for the joint learner model is shown in Figure 4.13.

This architecture is the union of the two parts of the architecture shown in Figure 4.9

and Figure 4.11. First the dependency parsing part of the network is fed with inputs

and then the part of the model responsible from named entity recognition is fed with

the output of the dependency parser together with other input vectors.

4.3.8. Decoding Algorithms

This section explains several algorithms that have critical importance for the

system in detail.

Eisner’s decoding algorithm [84] is used during the dependency parsing to find

the highest scoring dependency tree that spans the whole sentence. Eisner’s decoding

algorithm is a dynamic programming algorithm that always finds the best tree for a

given scoring matrix which contains scores for arcs between each pair of words in a

given sentence.
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Figure 4.13. Complete architecture for the joint learner model.
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The Viterbi decoding algorithm [90] used in the prediction mode of the joint

learning model. Viterbi algorithm is a popular algorithm for finding the best scor-

ing sequence of states where there is state transition scores in addition to the static

state scores. Figure 4.3.8 shows a pseudocode for the algorithm. The Viterbi-path is

equivalent to the path obtained by choosing the highest scoring state for each element

whenever there is no state transition available or all transition scores are equal. Viterbi

algorithm is a dynamic programming algorithm which finds the optimal solution faster

than a trivial algorithm which compares all possible state sequences by using more

memory.

The main idea behind the algorithm is to start from the initial state and for

each state finding the optimal state sequence until that state by considering the state

transition scores. If we let N number of possible states that an element in the sequence

can be in then for each new element at position i, the algorithm only calculates N scores

because the best scoring state sequences are already calculated before arriving to this

new element, rather than making N × (i− 1) as in the case of a trivial solution.
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Input. N × T matrix ‘S’ and T × T matrix ‘A’ for state-tag scores and tag-tag

transition scores respectively where N is the number of elements in a sequence

and T is the number of possible tag types.

Output. An N element long array ‘V’ which represents the ‘Viterbi-path’.

best parents = list([-1 for x in range(T)])

best scores = S[0]

for i = 1 to N do

Initialize best score , best parent inds same way as above

for k = 0 to (T − 1) do

best score[k] = max(S[i][k]+A[j][k]) where j is from 0 to T-1

best parent inds[k] = argmax(S[i][k]+A[j][k]) among j from 0 to T-1

end for

best scores.append(best score)

best parents.append(best parent inds)

end for

final = argmax(best scores[-1])

V = [final]

parent = best parents(-1)[final]

for i = N − 2 to 1 do

V.append(best parents[i][parent])

parent = best parents[i][parent]

end for

Return reversed(V) {Return the best parents in reverse direction.}

Figure 4.14. Viterbi Algorithm. The algorithm is written in pseudo-code format

similar to the python programming language syntax.
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5. EXPERIMENTS AND RESULTS

This chapter explains the experiments done and the results obtained in detail.

The experiments done can be grouped into three phases: Re-implementation, explo-

ration and testing. Accordingly, this chapter is divided into three sections and the

experiments done for each category will be explained. Re-implementation and explo-

ration phases contain experiments only for the NER task. The testing phase include

experiments for the final proposed joint learning model. Thus this phase includes

experiments for both NER and Dependency Parsing tasks. First two phases aim at

getting familiar with the previous models and finding ways to improve on the previous

implemented NER systems. At the end of these two phases several hypotheses are put

forward mainly regarding the improvement that can be obtained by using the depen-

dency parsing information for each word for the task of NER. The experiments done

in the final testing phase is for testing these hypotheses by using various models as

explained in detail, in the methodology chapter.

5.1. Re-implementation Phase

The initial experiments are conducted for obtaining the previously achieved re-

sults for the NER task for Turkish. A CRF-based model is used in this stage, and

the features used as inputs to the CRF-based model are obtained from the previous

works [49,52,54]. The main motivations of this phase are to put in practice the exten-

sive analysis done during the literature survey and to get familiar with the NER task

and commonly used techniques. We have re-implemented the model described in [52]

and showed that by using new features we can obtain improvements over the version

of their model which does not make use of gazetteers. This section explains in detail

the features used and the results obtained.

During this stage ‘CRF++’ toolkit is used for conducting experiments which is

described in [75]. It is a CRF-based machine learning toolkit for sequence labeling. The

toolkit is convenient and allows conducting experiments using different configurations
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with ease. This allowed starting with simple models, which only make use of the surface

form of the words to make predictions about the NER label, and gradually increasing

the complexity of the model by taking into account more features and larger window

sizes. This is a frequently used approach in feature-based models as considering all

candidate features at once makes it difficult to track the useful features. It is a common

practice to start with the most fundamental feature such as the surface form of a token

and gradually take into account other less frequently used features. Some of them turn

out to increase the complexity of the model without bringing a significant improvement,

some of the features degrade the performance as they mislead the model and finally

some turn out to be useful and bring significant improvements. The latter features

are then considered as core features for the task and new features are tested. This

is a commonly used technique which works well in most cases. On the other hand,

certain feature combinations are shown to degrade the performance even though the

addition of each feature separately improves the performance. In order to detect such

combinations and all possible feature combinations must be tested extensively which

can not be feasible in models with a large number of candidate features.

5.1.1. Features Used

This part explains the features used in the re-implementation phase with the

CRF++ toolkit. As mentioned these features are added one by one and the perfor-

mance change obtained is observed. These features require feature engineering and

each of them are included using heuristics rather than using automatic feature extrac-

tion techniques. Yet such features are also shown to be important as they contain

highly specialized information about the task. Below is a list of all the features used

at this phase. As mentioned above, these features are not considered altogether but

rather included to the model one by one. A third party morphological analyzer [91] is

used to annotate the dataset for several features.

(i) Surface form : The surface form of each word is the first feature. This is the

most fundamental especially for CRF-based models which use complete matching

of feature values. Yet, compared to word embeddings this method performs worse
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as it can not detect the similarity between tokens that are not the same.

(ii) Initial POS tag : The POS tag prediction for the lemma form of the word

by a third party morphological analyzer. As Turkish is a morphologically rich

language, words may undergo several POS changes as different suffices are ap-

pended. Lemmatization is done to extract the stem of the word and then the

POS tag prediction of the analyzer is used as a feature. This feature turned out

to degrade the performance of the system.

(iii) Final POS tag : The POS tag prediction for the complete surface form of the

word by the third party morphological analyzer. Experiments showed that Final

POS tag increases the performance.

(iv) Capitalization Feature : A four valued feature giving information about the

lowercase and uppercase letters. Capitalization feature is a fundamental feature

for the NER task for Turkish as almost all named entities are capitalized or at least

supposed to be capitalized. This feature significantly increases the performance

in languages like Turkish.

• 0 : All lowercase letters e.g. araba

• 1 : Only the first letter is uppercase, also called proper name case e.g.

Istanbul

• 2 : All letters are uppercase , e.g. ABD

• 3 : Mixed capitalization : e.g. LaPalombara

(v) Stem of the word : A morphological analyzer is used to predict the morpholog-

ical analysis of the word and the root word of the prediction is used. The main

motivation of this feature is to overcome the data sparsity which occur frequently

for morphologically rich languages. As the CRF++ use complete matching it

can not detect that two words are different versions of the same stem word with

different suffixes. By using the stem form the model more complete matches are

obtained. The stem form is also obtained from the morphological analysis of the

analyzer.

(vi) Start of sentence : This is a binary feature which denotes whether the token

is the first word of a sentence. This is used to tackle the ambiguity caused by

the case feature, because in Turkish, as in the case for many other languages, the
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first word in each sentence has the first letter uppercased by default.

(vii) Proper noun : The third party morphological analyzer also differentiates be-

tween regular nouns and proper nouns during prediction. This binary feature

takes the value 1 if the morphological analyzer predicts the word to be a proper

noun and 0 otherwise. This prediction is not necessarily through but used as a

supporting evidence.

(viii) Acronym feature : Binary feature denoting whether the morphological analyzer

predicts the word to be an acronym or not, e.g. ABD - Acro and Istanbul -

Notacro.

(ix) Nominal feature : This is a complex feature, which is a combination of three

atomic features. Observing the morphological analyses of the labeled entities in

the training set showed that, most of them share the following three features:

They are capitalized, they are in their stem form so there are no inflections

appended to the token and finally the morphological analyzer predicts them to

be a nominal denoted as ‘Nom’. This nominal features is a binary feature which

takes the value ‘Nom’ only if the above mentioned three conditions are satisfied

simultaneously for a given token and ‘Notnom’ otherwise.

(x) Final suffix : The final suffix of the word is given in the morphological analysis

format. If the word does not have any suffix ‘None’ value is given. In order to

overcome the data sparsity of complete matching the surface form of the suffix

is not used. For example the final suffix of the word ‘kalitesinin’ is ‘nin’ but the

feature value is ‘NHn’ where the uppercased letters denote the letters are subject

to change in other words but the suffix itself is the same. By using this feature

CRF++ can detect the words that have the same suffix even though the surface

form of them differ as in the case of ‘kalitesinin’ - ‘NHn’ and ‘ormanın’ - ‘NHn’.

In order to increase readability the names of the features explained previously

are shortened as follows :

• Surface form: Surf

• POS tag: POS
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• Capitalization feature: Cap

• Stem form: Stem

• Start of sentence feature: SS

• Proper noun: Prop

• Acronym feature: Acro

• Nominal feature: Nom

• Final suffix: Suf

5.1.2. Results

As explained above, simple models are trained and tested initially and then grad-

ually the model complexity is increased. Four features given below are selected for the

base model trained using the ‘CRF++’ tool and new features are tested one by one.

The four features are as follows:

• surface form

• final POS tag

• Capitalization

• Stem of the word

The model with the above given features are called ‘CRF++BM’ (BM as an

intuitive abbreviation for ‘Baseline Model’). All the models make use of a window size

of 2 unless specified. Only one the models is tested with a window size of 3 and it

did not a significant improvement, even though the training time increased. So the

rest of the models are trained with a window size of 2. The results of this phase is

given in Table 5.1. ‘+’ sign refers to the addition of a feature abbreviated in the above

explained way.
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Table 5.1. Initial results obtained using the ‘CRF++’ toolkit together with the

training times.

MUC F1-Measure Training Time

CRF++BM 0.919 0.889 3,000s

+SS 0.921 0.889 3,300s

+Prop 0.924 0.896 3,400s

+Acro 0.924 0.897 3,900s

+Nom 0.925 0.896 4,800s

5.2. Exploration Phase

Previous phase aimed at starting with a simple model and build up gradually by

reimplementing the previous work done for the NER task for Turkish. In the previous

phase, similar features and the same machine learning toolkit is used with a previous

work [52]. In this phase ‘Wapiti’ toolkit [76] is used instead of ‘CRF++’ as it includes

more training options.

The dataset used in this phase is explained in the dataset chapter and an example

annotated sentence is given as well.

Dependency information is used frequently to improve the performance of NER

systems [28, 42]. Sasano et al. [42] uses the output of a parser such as the head of

a word and the relation as features given to an SVM based model. As they do not

use gold standard labels for the dependency features the performance of the parser

puts an upper limit to the performance. The parser used in their work is a Japanese

parser called ‘KNP’ (Kurohashi Nagao Parser) [92]. An efficient method for using

dependency information for NER systems is explained in [41] which attempts using

the global structure of the dependency tree in addition to the dependency relation

information.
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Through these observations, dependency parsing information is explored in this

stage by using the ‘Wapiti’ toolkit. Using the dependency parsing information for the

NER task for Turkish is not a common methodology. Many of the feature based systems

for Turkish make use of the similar feature sets. As Turkish is a morphologically rich

language, most of the feature sets include morphological features in order to reflect the

underlying syntactic information for a given word. Yet dependency parsing information

which also contains important clues about the semantic-level NER task is not used

frequently.

The dependency parser named ‘jPTDP’ [4] is used to tag the NER dataset ex-

plained above. The final two fields before the last gold NER label seen in the Figure 3.2

is the predictions made by this system. The system is submitted to the CoNLL 2018

Shared Task which focuses on creating multilingual dependency parsers. This system

is trained and tested for many languages including Turkish. We used the pretrained

model for Turkish to annotate the datasets and trained various models which take into

account these features as well as the previous features used in the re-implementation

phase. In this phase, we have also used several regular expression features which cap-

ture the character level information for a given word. Below is a list of newly added

features that are frequently used in the feature based systems:

• 1,2,3,4 character long suffixes

• 1,2,3,4 character long prefixes

• punctuation feature: binary feature which takes the value of 1 if the first character

of the token is a punctuation mark and 0 otherwise.

• all-punctuation feature: binary feature which takes the value of 1 if the all char-

acters of the token a punctuation mark and 0 otherwise.

• inside-punctuation feature: binary feature which takes the value of 1 if a punctu-

ation character occurs inside of the token. So it must be preceded and succeeded

with non-punctuation characters.

• number feature: binary feature with value 1 if the token includes a digit.

• all-number feature: binary feature with value 1 if the token only includes digits.
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The addition of these sub-word level features are straight forward with the ‘Wapiti

toolkit’, as it also supports a simple kind of regular expression matching. Addition

of the regular expressions to the pattern list is enough to automatically generate all

features values for each token.

Finally, the two predictions made by the ‘jPTDP’ model for dependency parsing

is used as features in this phase which are as follows:

• index of the head: This is the index of the word which is predicted to be the

head of the word in question in the dependency parse tree. The root word of a

sentence does not have a head word, so by default it takes the value ‘-1’. The

indexes start from ‘1’ so the index of the first word is ‘1’ rather than ‘0’.

• dependency relation: The predicted relation between the word in question and

its predicted head word. The parser first predicts a parse tree and then for each

predicted arc in the parse tree, makes a second prediction about the relation type.

The relation types are determined by the Universal Dependencies.

5.2.1. Results

First, the experiments done with ‘CRF++’ is redone with the ‘Wapiti’ toolkit.

During these experiments, the tool does not make use of the dependency features but

only make use of the features used previously and the sub-word level regex features.

Each experiment will be explained in detail.

Also the models in this section make use of two new features called: ‘index of the

head’ and ‘dependency relation’ which are referred to as ‘Depind’ and ‘Deprel’ in the

following sections.

Again in this section, a similar approach is used and features are included one-

by-one. First model trained using ‘Wapiti’ only takes into account the surface form

and the POS tag feature with a window size of 2. In addition the above mentioned

sub-word level regex features are used in all of the experiments done using ‘Wapiti’.
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This model is called the base model (WapitiBM) and each feature is added to this

model one-by-one.

Second trained model also takes into account capitalization feature, stem form of

the word feature and start of sentence feature. In total, this model takes into account

the first 5 fields of the dataset explained previously. As can be seen on Table 5.2

that gives the results obtained for all ‘Wapiti’ models there is a slight decrease in

performance when more features are included. Yet, this is not a significant performance

difference and the features are preserved.

Third trained model takes into account three additional features previously used

by the ‘CRF++’ model. This model outperforms the previously trained two models

slightly and shows that taking into account all of the features gives the best performing

model. Yet, the exhaustive search of previously used feature combinations is not done

as the primary aim of this section is not to obtain a state-of-the-art performing model.

Rather the main aim is to show that adding certain features like regex features and most

importantly the dependency related features give relative performance improvements.

Fourth model takes into account all features used previously in the reimplemen-

tation phase. Taking into account the final suffix increased the performance slightly.

Finally the dependency relation features are taken into account to train the fifth

‘Wapiti’ model. All of the results explained above are given in Table 5.2. A performance

drop is observed when all the dependency related features are included. Yet this drop

is not significant enough to suggest that such information degrades the performance.

In order to better explore the change of performance when these new features

are included, we have performed extensive experiments testing all combinations of all

model types and training algorithms provided by the ‘Wapiti’ toolkit. Following section

is devoted for explaining the results obtained from these extensive experiments.
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Table 5.2. Early results using Wapiti toolkit.

Precision Recall F1-Measure

WapitiBM 0.914 0.879 0.896

+Cap+Stem+SS 0.916 0.873 0.894

+Prop+Acro+Nom 0.920 0.879 0.899

+Suf 0.920 0.880 0.900

+Depind+Deprel 0.917 0.881 0.899

5.2.2. Results for Extensive Experiments

This section explains the extensive search done over the following parameters:

features used, training model type and training algorithm. Previous experiments using

the ‘Wapiti’ toolkit made use of the default setting of the tool. In the default setting the

training model is Conditional Random Fields (CRF) and the optimization algorithm is

Limited-memory BFGS which approximates the Broyden-Fletcher-Goldfarb-Shannon

(BFGS) algorithm using a limited computer memory [93]. The algorithm is the most

popular algorithm from a family of methods called Quasi-Newton methods [94].

In this part all possible training model and optimization algorithm combinations

are tried, and the results are given in a Table 5.3. The models make use of all the

11 feature fields available in the final version of the dataset. F1-Measure scores are

given for each entity type and for overall together with the MUC score. Some vari-

ations are made on the feature list being used as well. Initial experiments showed

that using ‘blockwise coordinate descent’ (bcd), ‘stochastic gradient descent with L1

regularization’ (sgd-l1), ‘rprop-’ which is a variant of ‘rprop+’ without backtracking as

mentioned in the description of the toolkit [76] is not suitable for our task.

Thus the experiments done here only made use of the following optimization

algorithms :
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• l-bfgs

• rprop

• rprop+

And all available training models are tested. They are as follows:

• maxent : Maximum Entropy Model

• memm : Maximum Entropy Markov Model

• crf : Conditional Random Fields Modes

Table 5.3. Exploration of combinations of all training models and optimization

algorithms.

Model Optimization Algorithm PER LOC ORG Overall F1 MUC

crf

l-bfgs 0.909 0.898 0.883 0.899 0.919

rprop 0.904 0.892 0.860 0.887 0.904

rprop+ 0.903 0.892 0.860 0.887 0.905

maxent

l-bfgs 0.910 0.890 0.865 0.892 0.915

rprop 0.913 0.887 0.847 0.887 0.908

rprop+ 0.913 0.887 0.847 0.887 0.908

memm

l-bfgs 0.910 0.879 0.845 0.883 0.909

rprop 0.911 0.883 0.826 0.879 0.901

rprop+ 0.911 0.883 0.826 0.879 0.901

During the early results of this exploration phase, we have observed that the index

feature for the head of a dependency arc given directly to the system has several issues

and cause the performance to drop. Also we have observed that the best performing

‘training model + optimization algorithm’ combination is ‘crf + l-bfgs’. This is the

default combination of the ‘Wapiti’ toolkit and we have validated this choice for the

default setting. These two observations resulted in updating the feature set and setting

the model to perform in the default mode. The resulting setting is the final version

of the model we have used in this exploration phase. The result for this version is
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given in Table 5.4. This version of the model outperforms all the previous models both

in this phase and in the re-implementation phase. This version does not make use of

the head index feature but makes use of the dependency relation feature. Thus, this

result successfully shows that using the dependency relation feature brings a relative

performance improvement. This final version is named ‘WapitiFIN’.

Table 5.4. This table shows the results for the final version of the model with ‘Wapiti’

toolkit.

PER LOC ORG Overall F1 MUC

WapitiFIN 0.916 0.896 0.886 0.902 0.923

5.3. Joint Learner Phase

The experiments of this phase are done for testing the final system implemented

which attempts joint learning of the dependency parse tree and named entity tags for a

given sentence. The architecture and the model is explained previously on Chapter 4.

The system has different variations and trained with different configurations in order

to be confident with the results obtained. To test the validity of the hypotheses made,

different variations of the model are implemented. These variations are as follows:

(i) Named entity recognition only model: This model is the baseline model for the

NER task. The architecture of this model is the same with the other variations.

The only difference is that the model does not make use of the dependency parser

and its output. This model only tackles the NER task. Thus only the NER results

are given for this model.

(ii) Joint learning model using single dataset annotated for both tasks: This model

includes a dependency parser as well as the above mentioned architecture for the

NER task. This model assumes that there is a dataset which gold label tags for

both tasks available. So a single dataset is used and joint learning is done on the

same dataset. Thus, results of this model include both the dependency parser

related results as well as the named entity recognition related results. Since there



77

is no available dataset which includes gold standard labels for both tasks for

Turkish, we have used the version of the NER dataset tagged for dependency

features using a third party tool. This version of the dataset was previously used

during the exploration phase.

(iii) Joint learning model using separate datasets annotated for each task: This model

is the same, in terms of the architecture, with the above mentioned model. The

main difference is that it can receive different datasets for each task. Thus this

model also tackles both tasks and the results of this model include results related

for both dependency parsing and named entity recognition. This version of this

model is the main contribution of this work.

This section is divided into three parts corresponding to the above mentioned

variations of the final model. The main motivation of using these variations is to

compare the relative performances of the final proposed joint learning model with

other variations on NER performance.

5.3.1. Results for NER only model

This section contains the results obtained for the NER only model. The architec-

ture of this model is the same, but the part of the neural network responsible for the

dependency parsing task is not used. One can think of this model with the dependency

part of the network ‘silenced’. We have used the same training and development sets

in all these models to have consistency. The dataset used is explained in the ‘Datasets’

section. Figure 5.1 shows the results obtained for running this model for 40 epochs.

Best F1-Measure of 0.915 is obtained over the development set in the 34th epoch. This

score outperforms the F1-Measure scores obtained in all previous experiments using

the CRF-based third-party tools. So the neural network model implemented in this

study brings a relative improvement over the CRF-based tools for this dataset.
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Figure 5.1. Results for the NER only model in each epoch tested on the development

set.

5.3.2. Results for joint learner on a single dataset

The results of this section are obtained for running the final version of the joint

learner model on the same dataset for both tasks. The NER dataset used by the

previous NER only model is annotated using a separate dependency parsing tool [4].

So at each epoch loss is calculated by taking into account the loss obtained from

the NER predictions and also the dependency parsing predictions. This is the main

difference between this model and the final proposed joint learner model. As the

corpus used for these experiments are not annotated with gold standard labels for the

dependency parsing, the results should not be viewed as the final performance of this

version. Future work includes finding datasets which includes gold standard labels for

both tasks and repeating these experiments on these datasets.

Figure 5.2 and Figure 5.3 show the results after each epoch for the joint learning

model on jointly annotated dataset for dependency parsing and NER tasks respectively.

The best results obtained for each task and the epoch number are given in Table 5.5.

Best score for dependency parsing is calculated by taking the average of LAS and UAS
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accuracy scores for each epoch. For the NER task, the best result refers to the result

with the highest F1-Measure score. The high dependency parser results are probably

due to the fact that the architecture of the tool used for annotating the dataset is quite

similar to the dependency parser implemented in our system. This similarity can make

it easier for the system to quickly learn and mimic the parser used.

Table 5.5. Best results for the joint learning model on a single dataset. DEP refers to

the dependency parser score.

Task Name Metric Best Results Best Epoch

DEP Average LAS - UAS Accuracy 0.760 13

NER F1-Measure 0.878 12

Figure 5.2. Results for the dependency parsing task of the joint model on a single

dataset annotated jointly.

5.3.3. Results for joint learner on separate datasets

This section explains the results for the final version of the joint learning model.

Thus, the experiments done in this section is more extensive compared to the experi-

ments for the previous two versions. The final version is trained using various parameter
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Figure 5.3. Results for the NER task of the joint model on a single dataset annotated

jointly.

combinations on the same dataset. All of these parameter combinations is explained

in detail together with the results obtained.

First, we give the results for the default configuration. Figure 5.4 and Figure

5.5 show the results obtained at each epoch for dependency parsing and named entity

recognition tasks respectively. The parameters of the default configuration are set

using the previous work on joint learning [4, 56]. The list of parameters together

with their default values is given in Table 5.6. This will be followed by the results

of the grid search done over various parameter value combinations. Grid search is

done to find a better performing parameter combination which does not increase the

complexity of the model substantially. For the evaluation of the performance of the

both parts, frequently used evaluation metrics are used. For the dependency task

‘Labeled Attachment Score’ (LAS) and ‘Unlabeled Attachment Score’ (UAS) is used.

For the named entity recognition task CoNLL evaluation metric is used which is the

standard metric for the NER task. Partial matching is ignored in the CoNLL evaluation

metric for NER, so performance scores considering the partial matches are only given

on the development sets.
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Table 5.6. Parameters of the joint learning model together with the default values.

Parameter Name Default Value

Word embedding size 100

Character embedding size 50

Capitalization feature embedding size 50

Relation embedding size 100

Hidden units 100

Activation function tanh

Lstm layers 2

Lstm dimensions 128

Enable dependency parsing True

Enable viterbi decoding True

Figure 5.4. Dependency parsing scores for joint learner on separate datasets on the

development set.
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Figure 5.5. NER scores for joint learner on separate datasets on the development set.

5.3.4. Experiments with different parameter configurations

This section gives the results obtained for training the system with different

parameter combinations and testing on the development sets. Experiments for different

values of the ‘character embedding size’ parameter showed that the default setting gives

the best performance. Thus for the following experiments this parameter always has

the default value. Table 5.7 shows the results obtained for different configurations for

the ‘word embedding dimension size’ and ‘lstm dimensions’. Yet one can observe that

best results obtained for the NER task has the smallest lstm dimension size which can

be counter-intuitive. F1-Measure and Average of Labeled Attachment Score (LAS) and

Unlabeled Attachement Score (UAS) are given for NER and DEP tasks respectively.

All results are quite close which makes it difficult to conclude that one configuration

outperforms others significantly. Best F1-Measure scores are obtained for the NER

task with the following two configurations:

• ‘wemb dim’ : 100 , ‘lstm dim’ : 64

• ‘wemb dim’ : 150 , ‘lstm dim’ : 64
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Table 5.7. Results for joint learning model with different parameter combinations.

wemb dim lstm dim NER F1-Measure Average LAS & UAS

50

64 0.905 0.587

128 0.908 0.580

256 0.904 0.588

100

64 0.909 0.595

128 0.904 0.600

256 0.907 0.593

150

64 0.909 0.594

128 0.908 0.595

256 0.908 0.591

5.3.5. Final experiments on the test set

This section gives the results obtained on the test set of the NER dataset used

throughout experiments with the joint learner model. Previous experiments were done

on the development set to have an idea about the relative performances of different

models with various configurations. In this section we compare performance of each

model using the CoNLL evaluation metric. Previous results are calculated taking into

account partial matches of entities so every match between a gold label and a prediction

is counted without checking whether a multi-word entity is completely predicted by

the system or not. Yet, in order to have consistent results we use the CoNLL metric

to evaluate the performance of each system. The CoNLL 2003 Shared Task provides

a ready-to-use program which evaluates the predictions of a system using the CoNLL

evaluation metric. This ensures that each system is evaluated by using the exact same

code so that the results obtained will be consistent. We have used that same CoNLL

evaluation program to evaluate the performance of each version of the joint learner in

this section. Table 5.8 shows the results with the following parameter combination:

• Activation function: tanh
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• Word Embedding size: 100

• Lstm output size: 128

Table 5.8. Results for the joint learning model on test set for each NE type.

Precision Recall F1-Measure

PER 86.29 86.66 86.48

LOC 86.84 85.89 86.36

ORG 80.97 76.41 78.63

Overall 85.23 83.91 84.56

Next, the NER only model is tested on the test set. This model has a faster

training time because the model is trained using only the NER dataset. So in each

epoch the program observes less sentences compared to the joint learner model. This

enables training the model for longer epochs. Table 5.10 shows the results for the NER

only model on the test set. NER only model outperforms the joint learning model on

the test set with the CoNLL evaluation metric.

Results show that our suggested model brings a relative improvement over the

joint learning model which uses a single dataset, as can be seen from Table 5.8 and

Table 5.9. The joint learning model using different datasets for each task outperforms

the other model on each entity types. The results on the test obtained using the NER

only model suggest updating the dependency parsing information used by the NER

component of the model. Even though we have shown a relative improvement with the

Table 5.9. Results for the joint learning model using a single dataset.

Precision Recall F1-Measure

PER 92.43 77.82 84.50

LOC 77.07 87.53 81.97

ORG 81.21 75.67 78.34

Overall 83.78 80.51 82.11
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Table 5.10. Results for the NER only model on the test set for each NE type.

Precision Recall F1-Measure

PER 89.74 89.89 89.81

LOC 89.95 90.04 89.99

ORG 87.56 86.65 87.10

Overall 89.28 89.15 89.21

feature based models by using the dependency relation information, same improvements

are not observed with our final joint learning model. Yet, the results obtained are

comparable to the NER only tools and we have successfully shown that both tasks can

be learnt jointly using different datasets without sacrificing from performance.
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6. CONCLUSION AND FUTURE WORK

In this study, we started with the analysis of some available tools and improved

their performance by using the dependency parsing information. Next, we have imple-

mented a novel neural network based system that jointly learns dependency parsing

and named entity recognition tasks using separate datasets. Our results show that

the joint learner outperforms several previous work on the Turkish dataset and has

comparable results with the version of the system that focus only on the NER task.

Thus far, we have focused on the implementation of the novel joint learner system.

Future work includes focusing on improving the performance of this system in several

ways. Using embedding representations for outputs instead of the output directly is

shown to increase performance of NLP systems for various tasks [29, 95]. Represen-

tation learning is applied to the coarse label NER task in various studies [1, 96, 97].

Yogatama et al. [29] show that using output representations of NER labels increase the

performance for both coarse-grained and fine-grained NER tasks. Future work includes

learning the representations of output labels to calculate losses in a more robust way.

We will also try changing the proposed architecture to take into account the

dependency prediction of the dependency parsing component in different ways. We will

implement a joint learning model that takes into account the head of the dependency

arc for a given word as well as the dependency relation.

Future work also includes combining our joint learner model with the model of

Gungor et al. [56] to create a system that jointly learners more than two tasks. Our

final objective is to have a system that jointly learns many NLP tasks by using separate

datasets for each task to solve the joint labeling problem completely. The systems will

not be limited to the Turkish language but will be applicable to all languages with

datasets available.
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36. Reddy, S., O. Täckström, M. Collins, T. Kwiatkowski, D. Das, M. Steedman and

M. Lapata, “Transforming dependency structures to logical forms for semantic

parsing”, Transactions of the Association for Computational Linguistics , Vol. 4,

pp. 127–140, 2016.

37. Poon, H. and P. Domingos, “Unsupervised semantic parsing”, Proceedings of the

2009 Conference on Empirical Methods in Natural Language Processing: Volume

1-Volume 1 , pp. 1–10, Association for Computational Linguistics, 2009.

38. Galley, M. and C. D. Manning, “Quadratic-time dependency parsing for machine

translation”, Proceedings of the Joint Conference of the 47th Annual Meeting of the

ACL and the 4th International Joint Conference on Natural Language Processing

of the AFNLP: Volume 2-Volume 2 , pp. 773–781, Association for Computational

Linguistics, 2009.

39. Cui, H., R. Sun, K. Li, M.-Y. Kan and T.-S. Chua, “Question answering passage

retrieval using dependency relations”, Proceedings of the 28th annual international



92

ACM SIGIR conference on Research and development in information retrieval , pp.

400–407, ACM, 2005.

40. Liang, P., M. I. Jordan and D. Klein, “Learning dependency-based compositional

semantics”, Computational Linguistics , Vol. 39, No. 2, pp. 389–446, 2013.

41. Jie, Z., A. O. Muis and W. Lu, “Efficient Dependency-Guided Named Entity Recog-

nition.”, AAAI , pp. 3457–3465, 2017.

42. Sasano, R. and S. Kurohashi, “Japanese named entity recognition using struc-

tural natural language processing”, Proceedings of the Third International Joint

Conference on Natural Language Processing: Volume-II , 2008.

43. Bikel, D. M., S. Miller, R. Schwartz and R. Weischedel, “Nymble: a high-

performance learning name-finder”, Proceedings of the fifth conference on Applied

natural language processing , pp. 194–201, Association for Computational Linguis-

tics, 1997.

44. McCallum, A. and W. Li, “Early Results for Named Entity Recognition with Con-

ditional Random Fields, Feature Induction and Web-enhanced Lexicons”, Proceed-

ings of the Seventh Conference on Natural Language Learning at HLT-NAACL

2003 - Volume 4 , CONLL ’03, pp. 188–191, Association for Computational Linguis-

tics, Stroudsburg, PA, USA, 2003, https://doi.org/10.3115/1119176.1119206.

45. Chieu, H. L. and H. T. Ng, “Named entity recognition: a maximum entropy ap-

proach using global information”, Proceedings of the 19th international conference

on Computational linguistics-Volume 1 , pp. 1–7, Association for Computational

Linguistics, 2002.

46. Altun, Y., I. Tsochantaridis and T. Hofmann, “Hidden markov support vector

machines”, Proceedings of the 20th International Conference on Machine Learning

(ICML-03), pp. 3–10, 2003.



93

47. Zhou, G. and J. Su, “Named entity recognition using an HMM-based chunk tag-

ger”, proceedings of the 40th Annual Meeting on Association for Computational

Linguistics , pp. 473–480, Association for Computational Linguistics, 2002.

48. Lample, G., M. Ballesteros, S. Subramanian, K. Kawakami and C. Dyer, “Neu-

ral architectures for named entity recognition”, arXiv preprint arXiv:1603.01360 ,

2016.

49. Demir, H. and A. Ozgur, “Improving Named Entity Recognition for Morphologi-

cally Rich Languages Using Word Embeddings.”, ICMLA, pp. 117–122, 2014.

50. Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado and J. Dean, “Distributed

representations of words and phrases and their compositionality”, Advances in

neural information processing systems , pp. 3111–3119, 2013.

51. Celikkaya, G., D. Torunoglu and G. Eryigit, “Named entity recognition on real

data: a preliminary investigation for Turkish”, Application of Information and

Communication Technologies (AICT), 2013 7th International Conference on, pp.

1–5, IEEE, 2013.
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