
MULTILINGUAL IDENTIFICATION OF VERBAL MULTIWORD EXPRESSIONS

USING BIDIRECTIONAL LONG SHORT-TERM MEMORY BASED

ARCHITECTURES

by

Gözde Berk

B.S., Computer Engineering, Boğaziçi University, 2017

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in M.S., Computer Engineering, Boğaziçi University

Boğaziçi University

2019

ii

MULTILINGUAL IDENTIFICATION OF VERBAL MULTIWORD EXPRESSIONS

USING BIDIRECTIONAL LONG SHORT-TERM MEMORY BASED

ARCHITECTURES

APPROVED BY:

Prof. Tunga Güngör

(Thesis Supervisor)

Assoc. Prof. Arzucan Özgür

Assoc. Prof. Gülşen Cebiroğlu Eryiğit

DATE OF APPROVAL: 11.06.2019

iii

ACKNOWLEDGEMENTS

First of all, I would like to express my very great appreciation to my advisor Prof.

Tunga Güngör for his continuous support throughout my master’s study. I am grateful

to work with him due to his patience, motivation, enthusiasm, and mentoring during

all stages of this study.

I would like to acknowledge that this research was supported by Boğaziçi Univer-

sity Research Fund Grant Number 14420.

I would like to offer my special thanks to my colleague Berna Erden. We have

been through all the hardships, joys, and successes of this study together.

Last but not least, I would like to thank my family and friends for always being

there for me, supporting and encouraging me.

iv

ABSTRACT

MULTILINGUAL IDENTIFICATION OF VERBAL

MULTIWORD EXPRESSIONS USING BIDIRECTIONAL

LONG SHORT-TERM MEMORY BASED

ARCHITECTURES

Verbal multiword expression (VMWE) identification is a challenging task for

many natural language processing studies. In this study, sequence tagging approach

accompanied with stochastic models and variants of IOB tagging scheme is used for

VMWE identification. In the scope of this thesis, a VMWE annotated Turkish corpus

is constructed as the first part of the PARSEME shared task 1.1 which is constructing

VMWE annotated corpora in many languages. Additionally, a multilingual system

called Deep-BGT is developed as the second part of the shared task which is developing

language-independent VMWE identification systems using the corpora constructed in

the first part. The Turkish corpus is one of the biggest corpora in the shared task.

The training and test corpora that was published in the PARSEME shared task 1.0 are

updated as the PARSEME shared task 1.1 training and development corpora according

to the new guidelines. A new test corpus is constructed from scratch. Deep-BGT uses

the bidirectional Long Short-Term Memory model with a Conditional Random Fields

layer on top (BiLSTM-CRF). To the best of our knowledge, this study is the first

one that employs the BiLSTM-CRF model for VMWE identification. Deep-BGT was

ranked the second in the open track in terms of the general ranking metric. Moreover,

a novel tagging scheme called bigappy-unicrossy is introduced to rise to the challenge

of overlapping VMWEs. Finally, the VMWE identification system is advanced by

evaluating a subset of hyperparameters which consists of tagging scheme, number of

units, number of BiLSTM layers, and classifier. A comprehensive analysis of BiLSTM

based architectures for multilingual identification of VMWEs is presented accordingly.

v

ÖZET

ÇİFT YÖNLÜ UZUN-KISA VADELİ BELLEK TABANLI

MİMARİLER KULLANILARAK ÇOK SÖZCÜKLÜ FİİL

İFADELERİNİN ÇOK DİLLİ SAPTANMASI

Çok sözcüklü fiil ifadesi saptama birçok doğal dil işleme çalışmaları için zorlayıcı

bir görevdir. Bu çalışmada, stokastik modeller ve IOB etiketleme şemasının varyant-

ları eşliğinde dizi etiketleme yaklaşımı çok sözcüklü fiil ifadesi saptaması için kul-

lanılmaktadır. Bu tez kapsamında, PARSEME ortak çalışmanın ilk bölümü olan birçok

dilde çok sözcüklü fiil ifadesi etiketli derlemlerin oluşturulması dahilinde çok sözcüklü

fiil ifadesi etiketli Türkçe derlem oluşturulmuştur. Ek olarak, Deep-BGT adında çok

dilli bir sistem, PARSEME ortak çalışmanın ikinci bölümü olan dilden bağımsız çok

sözcüklü fiil ifadesi saptama sistemlerinin birinci bölümde oluşturulan derlemlerin kul-

lanılarak geliştirilmesi kapsamında geliştirilmiştir. Türkçe derlemi ortak çalışmadaki

en büyük derlemlerden biridir. PARSEME ortak çalışma 1.0’da yayınlanmış eğitim ve

test derlemleri yeni etiketleme kurallarına göre düzenlenerek PARSEME ortak çalışma

1.1 eğitim ve geliştirme derlemleri olarak güncellenmiştir. Sıfırdan yeni bir test derlemi

oluşturulmuştur. Deep-BGT üstte koşullu rastgele alanlar katmanı ile birlikte çift yönlü

uzun-kısa vadeli bellek (BiLSTM-CRF) modelini kullanmaktadır. Bildiğimiz kadarıyla,

bu çalışma çok sözcüklü fiil ifadesi saptaması için BiLSTM-CRF modelini kullanan

ilk çalışmadır. Deep-BGT genel sıralama ölçevine göre açık yarışta ikinci olmuştur.

Buna ek olarak, zorlayıcı çakışan çok sözcüklü fiil ifadelerinin üstesinden gelmek için

bigappy-unicrossy adında yeni bir etiketleme şeması tanıtılmaktadır. Son olarak, çok

sözcüklü fiil ifadesi saptama sistemi, etiketleme şeması, ünite sayısı, BiLSTM katmanı

sayısı ve sınıflandırıcıdan oluşan bir üst değişkenler altkümesinin değerlendirilmesiyle

geliştirilmiştir. Çok sözcüklü fiil ifadelerinin çok dilli saptanması için BiLSTM tabanlı

mimarilerin kapsamlı bir analizi bu doğrultuda sunulmuştur.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . ix

LIST OF SYMBOLS . xi

LIST OF ACRONYMS/ABBREVIATIONS . xii

1. INTRODUCTION . 1

1.1. What is Verbal Multiword Expression? 1

1.2. VMWE Identification . 1

1.3. Approach and Contributions . 1

1.4. Outline . 3

2. RELATED WORK . 4

2.1. VMWE Annotation . 4

2.2. VMWE Identification . 4

2.2.1. The BiLSTM-CRF Model . 6

3. THE PARSEME SHARED TASK . 9

3.1. Motivation of the Shared Task . 9

3.2. Annotation Guidelines . 10

3.3. The PARSEME Corpora . 14

3.4. The PARSEME Evaluation Metrics . 16

4. CONSTRUCTION OF TURKISH VMWE CORPUS 18

4.1. Annotation Procedure . 18

4.2. Annotation Specifications for Turkish 23

4.3. Final Corpus . 25

5. THE DEEP-BGT SYSTEM . 26

5.1. Motivation . 26

5.2. Tagging Scheme . 26

5.3. BiLSTM-CRF Model . 26

vii

5.4. Results . 28

5.5. Extending Deep-BGT to 19 Languages 31

5.6. Improving Deep-BGT . 34

6. A NOVEL TAGGING SCHEME: BIGAPPY-UNICROSSY 35

6.1. Motivation . 35

6.2. Challenges . 35

6.3. Tagging Schemes . 38

6.3.1. The IOB1 Tagging Scheme . 38

6.3.2. The IOB2 Tagging Scheme . 38

6.3.3. The Gappy 1-level Tagging Scheme 40

6.4. The Bigappy-unicrossy Tagging Scheme 41

6.5. Model and Experiments . 43

6.6. Results . 45

7. A COMPREHENSIVE ANALYSIS OF BILSTM BASED ARCHITECTURES

FOR MULTILINGUAL IDENTIFICATION OF VMWES 50

7.1. Motivation . 50

7.2. Hyperparameter Selection and Evaluation Strategy 50

7.3. Experiments and Results . 51

7.3.1. Tagging Scheme . 51

7.3.2. Number of Units . 54

7.3.3. Number of BiLSTM Layers . 56

7.3.4. Classifier . 56

7.4. The Overall Result . 60

8. CONCLUSION AND FUTURE WORK . 62

REFERENCES . 64

viii

LIST OF FIGURES

Figure 2.1. A Long Short-Term Memory cell. 8

Figure 3.1. Decision tree for joint VMWE identification and classification. . . 11

Figure 3.2. The cupt format. 16

Figure 4.1. Differences of categories between the shared tasks. 19

Figure 4.2. Decision tree for categorization of VID. 20

Figure 4.3. Decision tree for categorization of LVC. 21

Figure 5.1. The BiLSTM-CRF model. 27

Figure 6.1. Bigappy-unicrossy Tagging Algorithm 44

Figure 6.2. Comparison of the tagging schemes. 45

Figure 6.3. Comparison of the tagging schemes. 48

Figure 7.1. BiLSTM model. 51

Figure 7.2. 2 layer stacked BiLSTM model. 56

Figure 7.3. 3 layer stacked BiLSTM model. 58

Figure 7.4. 3 layer stacked BiLSTM-CRF model. 60

ix

LIST OF TABLES

Table 3.1. Number of VMWEs according to the categories 12

Table 3.2. PARSEME 1.1 corpus statistics . 15

Table 4.1. Turkish corpus . 25

Table 4.2. PARSEME 1.1 Turkish corpus statistics 25

Table 5.1. Model parameters . 28

Table 5.2. The macro-averaged results of Deep-BGT 29

Table 5.3. The language-specific results of Deep-BGT 31

Table 5.4. MWE-based F1 scores per VMWE category of Deep-BGT 32

Table 5.5. Token-based F1 scores per VMWE category of Deep-BGT 32

Table 5.6. Model parameters . 33

Table 5.7. The performance of Deep-BGT on 19 languages 33

Table 6.1. The percentage of discontinuous VMWEs for each language in the

PARSEME corpus . 36

Table 6.2. Examples to the tagging schemes 39

x

Table 6.3. The language-specific mwe-based results for the IOB2, the gappy 1-

level, the bigappy-unicrossy tagging schemes and the best PARSEME

shared task results in the open track 46

Table 6.4. The language-specific token-based results for the IOB2, the gappy 1-

level, the bigappy-unicrossy tagging schemes and the best PARSEME

shared task results in the open track 47

Table 7.1. The language-specific mwe-based results for the gappy 1-level and

the bigappy-unicrossy tagging schemes with different models 52

Table 7.2. The language-specific token-based results for the gappy 1-level and

the bigappy-unicrossy tagging schemes with different models 53

Table 7.3. The language-specific results for different number of units 55

Table 7.4. The language-specific results for different number of bilstm layers . 57

Table 7.5. The language-specific results for different classifiers 59

Table 7.6. The overall results . 61

xi

LIST OF SYMBOLS

Wcf The weight matrix from the cell to forget gate vector

Wci The weight matrix from the cell to input gate vector

Wco The weight matrix from the cell to output gate vector

Whf Hidden-forget gate matrix

Whi Hidden-input gate matrix

Who Hidden-output gate matrix

Wxf Input-forget gate matrix

Wxi Input-input gate matrix

Wxo Input-output gate matrix

xii

LIST OF ACRONYMS/ABBREVIATIONS

AR Arabic

BG Bulgarian

BiLSTM Bidirectional Long Short-Term Memory

CRF Conditional Random Fields

DE German

DEPREL Dependency Relation

EL Greek

EN English

ES Spanish

EU Basque

F F1 Score

FA Farsi

FR French

HE Hebrew

HI Hindi

HU Hungarian

HR Croatian

IAV Inherently Adpositional Verbs

ID Idiom

IReflV Inherently Reflexive Verb

IRV Inherently Reflexive Verb

IT Italian

LSTM Long Short-Term Memory

LT Lithuanian

LVC Light Verb Construction

MVC Multi-Verb Construction

MWE Multiword Expression

NER Named Entity Recognition

xiii

NLP Natural Language Processing

OTH Other

P Precision

PL Polish

POS Part-of-speech

PT Brazilian Portuguese

R Recall

RNN Recurrent Neural Network

RO Romanian

SL Slovene

TR Turkish

VID Verbal Idiom

VMWE Verbal Multiword Expression

VPC Verb-Particle Construction

1

1. INTRODUCTION

1.1. What is Verbal Multiword Expression?

Multiword expressions (MWEs) are “a pain in the neck for natural language

processing (NLP)” [1]. According to the conventional understanding, MWEs are lexical

items which are formed of multiple words and their properties are unpredictable by

their component words [2, 3]. For example, the meaning of kick the bucket is to die

but it cannot be predicted by looking at its components. Moreover, lexical, syntactic,

semantic, pragmatic and/or statistical idiomaticity occurs in MWEs [3].

According to the definition of PARSEME [4], the component words of a MWE

consist of a head word and at least one other syntactically related word. If the head

word of a MWE is verb, it is called verbal MWE (VMWE). Considering the kick

the bucket example, kick is the head word and the remaining words are syntactically

related words. Also, kick is verb. So, kick the bucket is a VMWE. According to the

same definition, single-token MWEs also exist such as snowman.

1.2. VMWE Identification

The process of identification of MWEs is considered as the detection of the occur-

rences of MWEs separately in running text [3]. Identification of VMWEs is challenging

for many NLP studies such as parsing and machine translation because of the nature

of MWEs [5]. According to Constant et al. [2], the automatic annotation of MWEs can

be handled by rule-based methods, classifiers, sequence tagging models, and parsing.

1.3. Approach and Contributions

There are mainly three key points focused on throughout this thesis. First of

all, it is hard to carry out studies without having enough annotated corpora. The

main importance is not just having a large amount of corpora. The consistency and

2

quality of the corpora within and between languages should be also parallel to measure

the performance of the identification system properly. So, constructing an extensive

multilingual corpus with VMWE annotations is necessary [5]. The very same idea is

also valid for Turkish due to inadequate VMWE-annotated Turkish corpora. So, one

aim of this study is to construct a Turkish VMWE Corpus.

Identification of MWEs is challenging for many NLP studies. In this study,

sequence tagging approach is used for VMWE identification. In recent years, deep

learning architectures have been broadly applied for a wide range of NLP tasks, espe-

cially for sequence tagging. However, they are not widespread in the area of VMWE

identification. Therefore, another aim of this study is to develop a multilingual system

for automatic identification of VMWEs using deep learning architectures. Different

bidirectional long short-term memory (BiLSTM) based architectures are compared

throughout the study. To the best of our knowledge, this is the first study that em-

ploys the bidirectional long short-term memory (BiLSTM) model with a Conditional

Random Field (CRF) layer on top (BiLSTM-CRF) for VMWE identification.

Moreover, sequence tagging models are accompanied with tagging schemes. Due

to the challenging nature of VMWEs, current tagging schemes are not sufficient to

represent them. Therefore, a novel tagging scheme called bigappy-unicrossy is proposed

in this study.

In the scope of this thesis, 3 papers and 1 corpus have been published as follows:

• Turkish Verbal Multiword Expressions Corpus [6]

• Annotated corpora and tools of the PARSEME Shared Task on Automatic Iden-

tification of Verbal Multiword Expressions (edition 1.1) [7]

• Deep-BGT at PARSEME Shared Task 2018: Bidirectional LSTM-CRF Model

for Verbal Multiword Expression Identification [8]

• Representing Overlaps in Sequence Labeling Tasks with a Novel Tagging Scheme:

bigappy-unicrossy [9]

3

1.4. Outline

This thesis is organized as follows:

• Chapter 2 presents related work.

• Chapter 3 explains the PARSEME shared task edition 1.1 on automatic identifi-

cation of VMWEs.

• Chapter 4 gives detailed information about the construction of Turkish VMWE

corpus.

• Chapter 5 describes the Deep-BGT system that participated to the PARSEME

shared task edition 1.1.

• Chapter 6 proposes a novel tagging scheme called bigappy-unicrossy to represent

overlaps in sequence labeling tasks and explores the effect of a tagging scheme

for VMWE identification

• Chapter 7 presents a analysis of bidirectional long short-term memory (BiLSTM)

based architectures for multilingual identification of VMWEs and evaluates hy-

perparameters for this task.

• Chapter 8 brings this thesis to a conclusion and describes the future work.

4

2. RELATED WORK

2.1. VMWE Annotation

There are various studies focusing on the annotation of VMWEs. Rosén et al. [10]

present a survey that compares the existing treebanks with MWE annotations in terms

of MWE categories and the annotation strategy. It is seen that there is no common

way of annotating MWEs between languages and theoretical frameworks [10]. Adalı et

al. [11] also mention the lack of standards in Turkish MWE resources and they attempt

to ameliorate this situation.

The PARSEME network [12] intends to present a unified methodology for VMWE

annotation [4,5]. The PARSEME shared task 1.0 [5] aims to construct a corpus which

covers 18 languages based on universal terminologies, guidelines and methodologies. In

the PARSEME shared task 1.1 [4], the objective is to have more flawless and compre-

hensive annotation guidelines and methodologies and to extent the corpus by including

more languages.

2.2. VMWE Identification

MWE identification is one of the challenging and well-known tasks of NLP [4,5].

Constant et al. outline the challenges about MWE processing and the processing

methods to cope with the nature of MWEs [2]. The PARSEME shared task 1.0 [5]

and 1.1 [4] are interested in automatic identification of VMWEs. The desire is to have

language-independent VMWE identification systems.

There are several studies that approaches the MWE identification task using

different methods such as rule-based methods, classifiers, sequence tagging models, and

parsing [2]. In rule based methods, rules varied from simple to advanced are applied

for projection of MWE lexicons [2]. In general, classifiers are applied to word sense

disambiguation [2]. A candidate is classified to distinguish a true MWE from a regular

5

co-occurence [2]. If MWE identification is approached as a tagging problem, stochastic

models along with an IOB tagging scheme can be used [2]. Since the sequence taggers

applying deep learning architectures are waiting to be discovered [2] and we treat

MWE identification as MWE tagging, the sequence tagging approach accompanied

with stochastic models and variants of IOB tagging scheme is used throughout the

thesis and the attention is on such methods.

Ramshaw and Marcus [13] proposed the IOB tagging scheme which is the most

classic tagging scheme. The IOB2 tagging scheme is the same with the IOB tagging

scheme except the way of treating the single-token chunks [14]. Schneider et al. [15]

propose different tagging schemes which are variants of the IOB tagging scheme. The

proposed tagging schemes include no gaps 1-level, no gaps 2-level, gappy 1-level, and

gappy 2-level. The gappy 1-level and the gappy 2-level tagging schemes [15] attempt

to encode discontinuous and nested MWEs. The no gaps 2-level and the gappy 2-level

tagging schemes [15] discriminate the expressions as strong and weak.

Deep neural networks are commonly employed for many NLP tasks including

sequence tagging recently [8]. Graves et al. [16] make use of deep recurrent neural net-

works (RNNs), especially bidirectional Long Short-term Memory (LSTM) RNNs for

phoneme recognition. The end-to-end training methods such as Connectionist Tem-

poral Classification and RNN transducer are combined with deep, bidirectional LSTM

RNNs. In phoneme recognition, this combination together with weight noise attains

state-of-the art results.

Lample et al. [17] use two different neural architectures and deliver the state-of-

the-art results for named entity recognition (NER). The first architecture uses bidi-

rectional LSTMs and Conditional Random Fields (CRF). The second one applies a

transition-based approach. Hand-crafted features and domain-specific knowledge is re-

quired for the state-of-the-art NER systems that work on small and supervised training

corpora. In this study, character based and unsupervised word representations learned

from the supervised and unannotated corpora are used rather than any language-

specific knowledge or resources.

6

Legrand and Collobert [18] applies a neural network model to learn phrase repre-

sentations for phrase tagging, especially MWE tagging. In phrase prediction problems,

the widespread method is to use special tagging schemes. This study proposes to learn

fixed-size continuous representations for arbitrarily sized chunks by word embeddings.

The proposed method competes with a baseline IOBES-based system for MWE tag-

ging.

Huang et al. [19] presents various architectures based on LSTM networks for

sequence tagging. LSTM networks, bidirectional LSTM networks, LSTM with a Con-

ditional Random Field (CRF) layer on top, and bidirectional LSTM with a CRF layer

on top are the proposed models. The bidirectional LSTM CRF model is evaluated

on POS, chunking and NER tasks. The bidirectional LSTM takes both past and fu-

ture input features into consideration. The CRF layer takes the sentence level tag

information into account.

In PARSEME shared task, the deep learning architectures are widespread among

the participating systems. For instance, Mumpitz [20] uses a BiLSTM network. GBD-

NER [21] combines a graph-based encoding layer with the BiLSTM layer. Moreover,

Veyn [22] uses a RNN together with three different tagging schemes. Deep-BGT [8]

which is developed as part of this thesis makes use of BiLSTM-CRF with the gappy-1

level tagging scheme.

2.2.1. The BiLSTM-CRF Model

A RNN has a memory which keeps track of history based on long distance features

[19]. A RNN consists of an input layer x, hidden layer h and output layer y [19,23]. A

RNN connects the previous hidden state with the current hidden state different form

the feedforward network [19]. The computation of the values in the hidden and output

layers are as follows [19]:

7

h(t) = f(Ux(t) + Wh(t− 1)) (2.1)

y(t) = g(Vh(t)) (2.2)

The connection weights U, W, and V are computed in traning time. f(z) and

g(z) are sigmoid and softmax activation functions.

In LSTM networks, purpose-buit memory cells shown in Figure 2.1 [24] are used

for the hidden layer updates to utilize long range dependencies in the data [19,25]. The

implementation of the LSTM memory cell is as follows [19]:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (2.3)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf) (2.4)

ct = ftct−1 + ittanh(σ(Wxcxt +Whcht−1 + bc)) (2.5)

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bf) (2.6)

ht = ottanh(ct) (2.7)

σ is the logistic sigmoid function. The input gate, forget gate, output gate and

cell vectors are represented by i, f , o, and c respectively.

A BiLSTM network makes use of future features in addition to past features by

backward and forward states apart from a LSTM network [16,19].

Conditional Random Fields (CRF) are proposed by Lafferty et al. [26]. A CRF

model connects both the inputs and outputs different from a LSTM and a BiLSTM

networks [19,26]. It is more advantageous than hidden Markov models and stochastic

8

Figure 2.1. A Long Short-Term Memory cell.

grammars in respect of sequence labeling [26]. When a CRF model is combined with

a BiLSTM network for sequence tagging tasks, not only past and future input features

but also sentence level tag information is used [27].

9

3. THE PARSEME SHARED TASK

3.1. Motivation of the Shared Task

The IC1207 COST Action, PARSEME (PARSing and Multi-word Expressions)

[12] is a scientific research network which focuses on multiword expressions (MWEs)

and gathers experts from different disciplines and from 31 countries which have signed

the Memorandum of Understanding. 30 languages and 6 dialects from 10 language

families are covered.

PARSEME organized two shared tasks (edition 1.0 [5] and edition 1.1 [4]) on

automatic identification of VMWEs in 2017 and 2018. Both shared tasks are divided

into two parts. The first part is constructing VMWE annotated corpora in many

languages. The second part is identification of VMWEs in running text. The aim is

to compare and evaluate language-independent VMWE identification systems using a

gold standard corpus annotated by the PARSEME participants in the first part.

I participated in the PARSEME shared task 1.1. In the first part of the shared

task, I was part of the Turkish annotation team. Turkish annotation team consisted of

three people with two annotators and one language leader. I was one of the annotators.

All of our team members were native speakers of Turkish. The PARSEME shared task

1.0 includes 18 languages and Turkish is one of these languages. The PARSEME shared

task 1.1 covers 20 languages including Turkish. Since Turkish is available in both of

the shared tasks, the responsibility in the PARSEME shared task 1.1 is to update the

Turkish training and test corpora from the previous shared task and present them as

training and development corpora. Also, the other responsibility is to construct a new

test corpus with at least 500 annotated VMWEs from scratch due to the fact that the

PARSEME shared task 1.0 test corpus became publicly available previously and there

should be a blind test corpus for the second part of the shared task.

10

As Turkish annotation team, we participated in the second part of the shared

task with a system named Deep-BGT. The second part has two different tracks which

are open and close. Systems using the provided corpora only submit their results to the

closed track. In the case of using additional resources such as word embeddings like in

our system, results should be submitted to the open track. There were 17 participating

systems. The Deep-BGT system submitted results for 10 languages to the open track

and ranked the second in terms of the general evaluation metric. Detailed information

about both parts of the shared task will be given thereafter.

3.2. Annotation Guidelines

PARSEME released generic annotation guidelines for all languages. To make all

languages consistent, all language teams should follow these guidelines. The guidelines

are based on decision trees which consist of sequential tests. A unified decision tree to

show which steps should be followed for VMWE annotation is shown in Figure 3.1 [4].

PARSEME divides VMWEs into 8 categories:

• Light verb constructions in which the verb is semantically totally bleached

(LVC.full)

• Light verb constructions in which the verb adds a causative meaning to the noun

(LVC.cause)

• Verbal idioms (VID)

• Inherently reflexive verbs (IRV)

• Fully non-compositional verb-particle constructions (VPC.full)

• Semi non-compositional verb-particle constructions (VPC.semi)

• Multi-verb constructions (MVC)

• Inherently adpositional verbs (IAV)

Light verb constructions (LVCs) and verbal idioms (VIDs) are two universal cat-

egories which means that they are valid for all languages participating in the task.

Inherently reflexive verbs (IRVs), verb particle constructions (VPCs) and multi-verb

11

Figure 3.1. Decision tree for joint VMWE identification and classification.

12

constructions (MVCs) are three quasi-universal categories. So, they are only valid for

some language groups or languages. Inherently adpositional verbs (IAVs) is an op-

tional experimental category. Table 3.1 shows the number of VMWEs belonging to the

categories for each language in the corpus.

Table 3.1. Number of VMWEs according to the categories.

Lang. VID IRV LVC.full LVC.cause VPC.full VPC.semi IAV MVC LS.ICV

AR 1320 17 1769 0 1080 0 0 33 0

BG 1260 3223 1909 222 0 0 90 0 0

DE 1341 308 294 32 1695 153 0 0 0

EL 645 0 1622 89 38 0 0 11 0

EN 139 0 244 43 297 45 60 4 0

ES 327 714 392 81 1 0 511 713 0

EU 774 0 2866 183 0 0 0 0 0

FA 17 1 3435 0 0 0 0 0 0

FR 2165 1509 1882 97 0 0 0 24 0

HE 959 0 904 223 153 0 0 0 0

HI 61 0 641 26 0 0 0 306 0

HR 180 725 577 102 1 0 886 0 0

HU 104 0 1143 401 5156 956 0 0 0

IT 1496 1144 748 191 106 2 499 34 37

LT 308 0 479 25 0 0 0 0 0

PL 503 2279 1833 228 0 0 309 0 0

PT 1130 863 3449 94 0 0 0 0 0

RO 1611 3784 313 183 0 0 0 0 0

SL 727 1631 241 65 0 0 714 0 0

TR 3690 0 3449 0 0 0 0 2 0

Total 18757 16198 28190 2285 8527 1156 3049 1127 37

An LVC consists of a verb and a noun which is predicative and thereby indicates

an event or a state (e.g. to make a decision). A preposition is followed by the noun (e.g.

to come into bloom) or the noun depends on the verb (e.g. to give a lecture). If the verb

is light which means that it only adds meaning expressed as morphological features,

the subcategory is LVC.full (e.g. to make a presentation). If the verb is causative

13

which means that the subject is the cause of the state or event, the subcategory is

LVC.cause (e.g. to give a headache).

A VID is formed of a head verb and one or more of the head verb’s dependents

(e.g. to kick the bucket). The type of the dependent is a characteristic feature to

categorize a candidate expression as a VID in the case of only one lexicalized dependent.

If the dependent is reflexive clitic or particle, the candidate may be an IRV or a VPC

but not a VID. If the verb has no lexicalized dependent, the candidate may be a MVC

or a VID. In the case of extended nominal phrases, the candidate may be an LVC

or a VID. If the dependent belongs to any other category, the candidate is a VID.

Moreover, VIDs also include sentential expressions without open slots like proverbs

and conventionalized sentences (e.g. Rome was not built in a day). When there are

multiple lexicalized dependents of the head verb, the candidate is definetely a VID but

sometimes there may be also embedded VMWEs (e.g. to let the cat out of the bag).

VIDs may also include expressions with no single clearly identifiable head verb (e.g. to

drink and drive).

IRVs are reflexive verbs which occur with the clitic or whose non-reflexive versions

have different meanings or subcategorization frames (e.g. to find oneself in a difficult

situation).

VPCs consist of a lexicalized head verb whose dependent is particle. If the se-

mantics of the VPC is fully non-compositional in which the meaning of the expression

is totally different from the particle, the subcategory is VPC.full (e.g. to do in). If it is

partly non-compositional in which the meaning of the expression is different from the

particle such that the particle adds non-spatial semantics which is slightly predictable,

the subcategory is VPC.semi (e.g. to eat up).

MVCs are formed by two successive adjacent verbs who have the same subject,

represent the common event, and behave as a single predicate (e.g. it will make do).

14

IAVs are formed by idiomatic combinations of verbs together with an idiomatic

selected preposition or postposition (e.g. to stand for something).

3.3. The PARSEME Corpora

The annotated corpora of the PARSEME Shared Task on Automatic Identifica-

tion of Verbal Multiword Expressions [7] cover 20 languages. These languages are as

follows according to their language families:

• Germanic languages: English (EN), German (DE)

• Romance languages: French (FR), Italian (IT), Romanian (RO), Spanish (ES),

Brazilian Portuguese (PT)

• Balto-Slavic languages: Bulgarian (BG), Croatian (HR), Lithuanian (LT), Polish

(PL), Slovene (SL)

• Other languages: Arabic (AR), Basque (EU), Farsi (FA), Greek (EL), Hebrew

(HE), Hindi (HI), Hungarian (HU), Turkish (TR)

A language is unique. There may be similarities between languages which share

some characteristics, families, grammar rules, and so on. However, no language is

identical with another one at the end of the day. As a result, the corpus of each

language will be different from each other in terms of categories of the VMWEs covered,

frequency of the VMWEs, and the size of the corpus. The PARSEME 1.1 Corpus

Statistics are shown in Table 3.2. The categories covered and the number of VMWEs

representing the categories were given in Table 3.1. It is seen that languages differ

in sizes in terms of number of sentences, number of tokens, total number of VMWEs

and number of VMWEs belonging to the categories. Additionally, another reason

behind the differences in the sizes of the corpora is that Arabic, Basque, Croatian,

English and Hindi are presented in the PARSEME Shared Task 1.1. So, there is no

available corpora from the previous shared task and all of them except Arabic has no

development corpora.

15

Table 3.2. PARSEME 1.1 corpus statistics.

Languages # of Sentences # of Tokens # of VMWEs

BG 21599 480413 6704

DE 8996 173293 3823

EL 8250 224762 2405

EN 7436 124203 832

ES 5515 182364 2739

EU 11158 157807 3823

FA 3617 61568 3453

FR 21067 528132 5677

HE 18700 369013 2239

HI 1684 35430 1034

HR 3837 89536 2451

HU 6159 156336 7760

IT 15728 430789 4257

LT 11104 208512 812

PL 16121 274318 5152

PT 27904 638002 5536

RO 56703 1015623 5891

SL 13511 280522 3378

TR 18612 376464 7141

Total 280838 6072331 79326

16

The provided corpora are in cupt format [4] which is an extended form of the

CoNLL-U format [28]. The cupt format gathers all 10 columns of a CoNLL-U file in the

same order with an additional column called PARSEME:MWE which is the eleventh

column. An example of cupt format is seen in Figure 3.2. The PARSEME:MWE

column is written in bold.

Figure 3.2. The cupt format.

Additionally, annotated corpora of the PARSEME Shared Task on Automatic

Identification of Verbal Multiword Expressions covering 19 languages except Arabic

are available at [7]. Since the Arabic corpus does not have an open licence, the corpus

can be obtained through LDC. Because of this requirement, Arabic was optional for

the second part of the shared task but no one submitted results for Arabic. Therefore,

the second part of the PARSEME shared task was evaluated based on 19 languages.

3.4. The PARSEME Evaluation Metrics

The second part of the shared task is to develop a language-independent system

for VMWE identification using the provided corpora. The PARSEME shared task

encourages the participants to design a multilingual system. A system’s result is the

automatic annotations of the blind test corpus by the system itself. This annotated

corpus is compared with the gold standard. Evaluation is based on precision (P), recall

(R), and F1 score (F). The evaluation metrics can be examined in two categories as

general metrics and metrics dedicated to specialized phenomena.

17

General metrics include VMWE-based and token-based results. The results are

also provided for each language and for all participating languages by taking macro-

average of the scores for each language. Macro-averages are calculated by arithmetically

averaging F1 scores obtained for each of the participating 19 languages. If a system

does not submit results for a language, the F1 score is accepted as 0. If there is

no VMWE belonging to the specific phenomena in a language, this language is not

included in the evaluation.

Metrics dedicated to specialized phenomena are continuity, length, novelty and

variability. These metrics are correlated with the challenges of VMWEs which will

be discussed later. Continuous and discontinous VMWEs are evaluated separately in

the continuity metric. VMWEs are divided into single-token and multi-token VMWEs

and evaluated accordingly in the length metric. The novelty metric evaluates based

on seen and unseen VWWEs. If a VMWE is annotated at least one in the training

corpus, it is accepted as seen. Otherwise, it is accepted as unseen. The last metric is

variability. The variants of a VMWE are formed by differentiating the strings between

the first and last lexicalized components of the VMWE. The results based on these

special metrics are provided only in the macro-averages.

18

4. CONSTRUCTION OF TURKISH VMWE CORPUS

4.1. Annotation Procedure

The PARSEME shared task 1.1 is the second edition of the shared task. At

the end of the PARSEME shared task 1.0, a corpus was released. This corpus was

annotated according to the previous annotation guidelines provided by PARSEME

[5]. Since Turkish was one of the languages in the previous corpus, there are three

tasks regarding the second edition of the shared task. The first task is to update the

PARSEME shared task 1.0 training corpus according to the new annotation guidelines

and release it as the PARSEME shared task 1.1 training corpus. The second task is

to update the PARSEME shared task 1.0 test corpus according to the new annotation

guidelines and release it as the PARSEME shared task 1.1 development corpus. The

third task is to construct a new test corpus with 500 annotated VMWEs from scratch

because the previous test corpus became publicly available beforehand.

Constructing PARSEME 1.1 test corpus and editing PARSEME 1.0 training and

development corpora took four months. PARSEME annotation guidelines are used for

annotation [4]. Additionally, some other specifications for Turkish are used.

There are some changes in the decision process and the scope of VMWEs regard-

ing the new annotation guidelines. Also, categories were changed as shown in Figure

4.1. In the PARSEME shared task 1.0, there were five groups of VMWEs which

are light verb constructions (LVCs), idioms (IDs), inherently reflexive verbs (IReflVs),

verb-particle constructions (VPCs), and other (OTH). Turkish had only three groups

of VMWES which are ID, LVC, and OTH. In the PARSEME shared task 1.1, some

groups changed their scope and their annotation procedure. Then, they changed their

names accordingly. Some new groups were added. Also, a group was removed. In the

end, there are five groups of VMWEs which are light verb constructions (LVCs) with

two subcategories (LVC.full and LVC.cause), verbal idioms (VIDs), inherently reflex-

ive verbs (IRVs), verb-particle constructions (VPCs) with two subcategories (VPC.full

19

and VPC.semi), and multi-verb constructions (MVCs). Turkish has only three groups

of VMWES which are VID, LVC.full, and MVC.

Figure 4.1. Differences of categories between the shared tasks.

The differences between the two annotation guidelines regarding Turkish can be

listed as follows:

• The category of ID is updated as VID.

• The category of LVC is divided into two subcategories. There is no VMWE

categorized as LVC.cause in Turkish. So, LVC is updated as LVC.full.

• A new category called MVC is added. MVCs are rarely seen in Turkish.

• The category of OTH is removed. So, the VMWEs belonging to this group may

be a VID or an LVC.full or a MVC according to the new guidelines. There is

also a possibility such that a VMWE belonging to this group is actually not a

VMWE in terms of the new guidelines.

As mentioned above, Turkish has three types of VMWEs: LVC.full, VID and

MVC. Each category has its own decision tree which includes tests specific to the

20

category. The sequence of categorical tests to apply is decided according to the decision

tree for joint VMWE identification and classification which was shown in Figure 3.1 [4].

This generic tree directs the annotator to the categorical decision trees. In the end,

the candidate expression is annotated as VMWE with a category or it is found to be

a non-VMWE.

Figure 4.2 [4] shows the decision tree of VID. This decision tree consists of five

tests. If one of the tests is passed, the candidate is annotated as VID. To understand

these tests, we can give an example and examine the tests one by one. For example,

let us consider the sentence Karakolda ifade verdim which means I gave statement at

the police station. Here, the candidate expression is ifade vermek which means to give

statement. The first test checks whether there is a cranberry word in the candidate

or not. In our example, ifade and vermek are both meaningful words. So, there is

no cranberry word and the candidate failed in the first test. The second test checks

whether there is a meaning shift in the case of a regular replacement of a component

or not. We can replace ifade which means statement with its synonym açıklama which

means explanation. After this replacement, it is seen that there is an unexpected

meaning shift. Therefore, ifade vermek passes the second test and is annotated as

VID.

Figure 4.2. Decision tree for categorization of VID.

To understand the remaining tests, we can continue with the same example. Test

three checks whether there is a meaning shift in the case of a morphological change

or not. We can replace ifade with its plural form ifadeler. After this replacement,

21

it is seen that there is an unexpected meaning shift. Therefore, ifade vermek passes

the third test. Test four checks whether there is a meaning shift in the case of a

morphosyntactic change or not. We can replace ifade with its possesive form ifadeni.

After this replacement, it is seen that there is an unexpected meaning shift. Therefore,

ifade vermek passes the fourth test. The fifth test checks whether there is a meaning

shift in the case of a syntactic change or not. We can take a look at the sentence

Karakolda verdiğim ifade tekrar kontrol edildi which means The statement I gave at the

police station was checked again. There is no unexpected meaning shift here. Therefore,

ifade vermek fails the final test.

The decision tree of LVC is shown in Figure 4.3 [4]. If all of the tests are passed,

the candidate is annotated as LVC. Let us follow the example Ali ders çalışmaya

karar verdi which means Ali decided to study to understand the tests. The candidate

expression in the example is karar vermek which is to decide. Test zero checks if the

noun is abstract. The noun is karar in the candidate and it is abstract. So, this test is

passed. Test one checks if the noun is predicative. The noun has at least one semantic

argument which is karar veren. Therefore, this test is also passed. The second test

requires the subject of the verb be a semantic argument of the noun. Ali is the subject

of the verb and also the semantic argument of the noun. Thereby, test two is passed.

Figure 4.3. Decision tree for categorization of LVC.

Test three checks whether the verb only adds meaning expressed as morphological

features or not. The verb vermek is semantically light. It only gives the meaning of

22

performing the activity of the noun. So, the third test is passed. The fourth test expects

that the noun phrase formed by verb reduction refers to the same event or state. So,

Ali’nin kararı which is Ali’s decision refers to the same event of deciding. Hence, this

test is passed too and the candidate expression is annotated as LVC.full. There is

no example of LVC.cause in Turkish. Consequently, the final test is unnecessary for

Turkish.

There is no multilingual decision tree for MVCs but there are some common

properties regarding them. There are three tests for Turkish. We can examine the

sentence İki seçenek arasında gidip geliyorum which means I go between two options.

The candidate expression is gidip gelmek which means to go between. Firstly, a MVC

is formed by a sequence of two adjacent verbs and both verbs should have the same

subject. In the example, gitmek which is to go and gelmek which is to come have the

same subject. Secondly, the verbs should depict closely connected actions and they

may be seen as part of the same event. The verbs gitmek and gelmek are part of the

same event. Finally, the verbs should function together as a single predicate. As we

can see, the predicate of the sentence is gidip gelmek. As a conclusion, gidip gelmek is

annotated as MVC.

The previous Turkish corpus consists of 2911 ID, 2624 LVC, and 634 OTH. Due

to the changes in the categories, the VMWEs annotated as LVC and ID were updated

as LVC.full and VID. Also, the previous training and test corpora are reviewed and

some minor mistakes especially considering nested VMWEs were corrected. Since there

is no more a category of OTH, the VMWEs annotated as OTH were examined.

While annotating Turkish corpus in edition 1.0, the study about categorization

of Turkish MWEs was taken into consideration [11]. According to this study, Turkish

VMWEs are divided into three categories which are verbal compounds, light verb

constructions and idiomatic expressions. The VMWEs annotated as OTH includes

the verbs vermek, almak etc., which match verbal compounds in the study. Using

the new guidelines and the specifications for Turkish which will be explained in detail

afterwards, the VMWEs categorized as OTH were re-annotated.

23

After the arrangements, the PARSEME shared task 1.0 training and test corpora

became the PARSEME shared task 1.1 training and development corpora. The last

task was to construct a new test corpus. The test corpus was created by gathering

newspaper articles on politics, world, life, art and columns. Milliyet was selected

as the newspaper source because it was used in the previous corpus. The articles

were tokenized and parsed sentence by sentence and transformed into ConLL-U format

using ITU NLP Pipeline [29]. Some paragraphs including tokens such as political party

abbreviations were removed beforehand. The annotation is handled separately by the

annotators using the guidelines. Then conflicts were resolved.

4.2. Annotation Specifications for Turkish

In Turkish, there are only three types of VMWEs which are LVC.full, VID and

MVC. LVCs and VIDs are more widespread in Turkish. However, MVCs are limited.

So, the main focus is on LVCs and VIDs. The annotation guidelines provided by

PARSEME are used while annotating the corpus. In addition to the guidelines, some

strategies are developed for Turkish and some inferences are obtained. These are

explained in detail as follows.

In Turkish, there are six light verbs which are olmak (to be), etmek (to do), yapmak

(to make), kılmak (to render), eylemek (to make) and buyurmak (to order) [11]. These

light verbs do not only form LVC. They may form other types of VMWEs too. On

the other hand, the verbs forming LVCs are not restricted with just light verbs. Also,

some supportive verbs may be used. For example, karar vermek is an LVC and the

verb vermek is not a light verb.

To categorize a candidate expression as LVC, all tests in the decision tree should

be passed as shown in Figure 4.3. However, the annotation of LVCs is mainly based on

the step of categorizing the verb as semantically light or not. If the verb is semantically

light, there is a big potential of being LVC for the candidate expression. Otherwise,

there is a little chance of being LVC. In general, the candidate expressions passing this

test are LVCs.

24

Some nouns have tendency to behave like they have transformed into a verb when

the noun is combined with a specific verb. It is referred as performing the activity of

the noun. For example, the noun talimat has the meaning of instruction. Also, it has

tendency to give the meaning of talimat vermek which means to instruct. Therefore,

the noun talimat is connected with the verb vermek which becomes semantically light

accordingly.

While annotating a VMWE consisting of a noun (n) and the verb almak, it should

be checked whether there is a LVC in the form of n+vermek or not. If there is such an

LVC, n+almak cannot be an LVC but it may be a VID because vermek may give the

meaning of performing an activity of n. In that case, n+almak cannot give the meaning

of performing an activity of n which results in the failure from the semantically light

test. For example, oy vermek which is to vote semantically is an LVC and it passes

the semantically light test since vermek adds no meaning to the noun oy which means

vote besides that of performing an activity. However, oy almak is a VID because almak

which means to receive gives meaning to oy and the total meaning becomes to receive

vote.

To decide light/void semantics of a verb, the Turkish dictionary provided by Türk

Dil Kurumu (TDK) [30] is made use of. For example, söz vermek means to promise

and söz means promise. Söz is also vaat which means vow and söz vermek means

vadetmek which is to vow in the dictionary. Therefore, vermek adds no meaning to

söz. It only adds the meaning of performing the activity of promise.

According to the inferences obtained from the annotation process, we observed

that the expressions formed with the verbs sağlamak, duymak, ulaşmak, karşılamak,

kullanmak, uygulamak are hard to annotate by applying the tests. However, it is seen

that they are not VMVEs in most of the cases in terms of annotators’ observations.

25

4.3. Final Corpus

To sum up, after modifications on the PARSEME 1.0 Turkish corpus, PARSEME

1.0 training set is updated as PARSEME 1.1 training set, PARSEME 1.0 test set is

updated as PARSEME 1.1 development set. Additionally, a new test set is constructed

and presented as PARSEME 1.1 test set. The results are shown in Table 4.1.

Table 4.1. Turkish corpus.

LVC VID OTH MVC Sum

PARSEME 1.0 Training Corpus 2624 2911 634 0 6169

PARSEME 1.1 Training Corpus 2950 3169 0 1 6120

PARSEME 1.0 Test Corpus 199 249 53 0 501

PARSEME 1.1 Development Corpus 227 273 0 0 500

PARSEME 1.1 Test Corpus 273 235 0 1 509

The PARSEME 1.1 test set consists of 14388 tokens and 577 sentences. The

overall PARSEME 1.1 Turkish corpus includes 376464 tokens and 18612 sentences.

Table 4.2 shows the statistics of the PARSEME 1.1 Turkish corpus. The PARSEME 1.1

corpora containing 19 languages including the final version of PARSEME 1.1 Turkish

corpus are available at [7].

Table 4.2. PARSEME 1.1 Turkish corpus statistics.

of sentences # of tokens

Training Corpus 16715 334880

Development Corpus 1320 27196

Test Corpus 577 14388

Total 18612 376464

26

5. THE DEEP-BGT SYSTEM

5.1. Motivation

As Turkish annotation team, we developed a language-independent system called

Deep-BGT [8] and participated in the second part of the shared task. After some

research, we found out that sequence tagging approach fits our problem well. Then, we

decided to combine sequence tagging with a deep learning model. It is known that the

bidirectional Long Short-Term Memory model with a Conditional Random Field layer

on top (BiLSTM-CRF) is a well-known architecture for sequence tagging tasks [19].

Also, our system is the first one that employs this architecture for VMWE identification.

Therefore, we agreed on BiLSTM-CRF model and developed the Deep-BGT system.

5.2. Tagging Scheme

According to [2], the MWE identification task can be addressed using sequence

tagging methods with the BIO tagging scheme. However, it is not the best tagging

option regarding the challenging nature of the MWEs. Therefore, Schneider et al. [15]

proposed the gappy 1-level tagging scheme to overcome the challenge of discontinuity

for MWE identification. The Deep-BGT system makes use of the gappy 1-level tagging

scheme. The tagging scheme will be explained in detail in the following chapter.

5.3. BiLSTM-CRF Model

The BiLSTM-CRF model has five layers as shown in Figure 5.1. The input

layer merges POS (part-of-speech) tag, DEPREL (dependency relation) tag and word

embedding of each token. DEPREL tag is used as a feature to perceive sentence level

dependencies. Since the provided corpora are not big enough to train word embeddings,

pre-trained fastText word embeddings are used [31]. These embeddings were trained

on Common Crawl and Wikipedia [31]. The vocabulary size of the embeddings is 2M

words. The vector dimension of the embeddings is 300.

27

Figure 5.1. The BiLSTM-CRF model.

The concatenation of the three embeddings is passed to the bidirectional LSTM

layer which takes past and future features into consideration through left-to-right and

right-to-left passes. The output of the BiLSTM layer is passed to the time distributed

dense layer which shapes the output according to the number of tags. Then, the CRF

layer comes to decode the sequence labels. Finally, the output layer produced from the

CRF layer includes tags for each token.

Keras [32] with Tensorflow [33] backend is used for the implementation of the

architecture. While developing the system, the time was limited because there was only

one month between the release of the corpora and the submission of results. Therefore,

there was no chance for fine tuning the parameters by taking all of the languages

into consideration. Thereby, a study about evaluating parameters for five sequence

tagging tasks was used [34]. According to the study, Nadam is found to be the best

optimizer comparing with SGD, Adagrad, Adadelta, RMSProp and Adam. Nadam

converges on average after nine epochs. So, Nadam is chosen as the optimization

algorithm. Moreover, variational dropout is found to be better than naive dropout and

no-dropout. So, a fixed dropout rate of 0.1 is chosen for the system.

Furthermore, the study claims that mini-batch sizes of 1 up to 16 are suitable

for small training sets and mini-batch sizes of 8 up to 32 are suitable for large training

sets. Mini-batch size of 64 does not perform well. Table 5.1 shows the chosen batch

28

sizes and number of epochs for each language according to the size of training corpora

by taking the results of study into consideration. The optimum number of recurrent

units are found to be 100 in the study. However, the study also states that the number

of recurrent units slightly change the results. Therefore, the number of units is chosen

as 20 to decrease the computation power. Since CRF is used as a classifer, the metric

and loss function are selected as crf viterbi accuracy and crf nll respectively.

Table 5.1. Model parameters.

Languages Batch Size # of Epochs

BG, FR, PT, RO 32 12

DE, ES, HU 16 15

IT, PL, SL 16 12

5.4. Results

The Deep-BGT system covered 10 languages in the PARSEME shared task 1.1.

Five of these languages are the Romance languages, which are Spanish (ES), French

(FR), Italian (IT), Brazilian Portuguese (PT), and Romanian (RO). The remaining

five languages are chosen according to two criteria. The system learns better with

more data because it has a deep learning architecture. So, the languages with more

data are favored. Moreover, the languages with higher occurring frequency of VMWEs

are considered. The sizes of the corpora are given in Table 3.2 and the frequencies

are calculated from the statistics provided in the table. As a result, Bulgarian (BG),

German (DE), Hungarian (HU), Polish (PL), and Slovenian (SL) are covered as the

remaining five languages. Turkish (TR) is not chosen because the Deep-BGT team

members and the Turkish annotation team members are the same. So, we did not

want to introduce bias to system evaluation. We wanted to submit results for all 19

languages but we did not have adequate computation power to run our system on all

languages in limited time.

29

The Deep-BGT system makes use of pre-trained word embedding additional to

the provided corpora by PARSEME. Therefore, the system competes in the open track.

The Deep-BGT system is ranked the second in the open track in terms of the general

ranking metric.

Table 5.2 shows the cross-lingual macro average results of the Deep-BGT system

over 19 languages in terms of MWE-based F-measure. Each row in the table represents

a metric from the general metrics and metrics focusing on specific phenomena. The

second column shows the official results on 19 languages. The Deep-BGT system

submitted results for 10 languages due to time constraint and lack of computation

power. As explained previously, the cross-lingual macro average results are calculated

based on 19 languages and the languages with no submitted results are assumed to have

0 precision, 0 recall and 0 F1 score. So, the results regarding 19 languages conceals

the real performance of the Deep-BGT system. To handle this issue, the results are

recalculated by arithmetic averaging over the 10 languages covered. Consequently, the

third column shows the unofficial results on 10 languages.

Table 5.2. The macro-averaged results of Deep-BGT.

Official Results on Unofficial Results on Official Best Results on

Metrics 19 Languages 10 Languages 19 Languages

General ranking 28.79 54.70 58.09

Continuous VMWEs 31.23 59.34 62.74

Discontinuous VMWEs 23.19 44.06 43.19

Multi-token VMWEs 29.24 55.56 59.93

Single-token VMWEs 25.87 43.12 28.32

Seen-in-train VMWEs 36.66 69.65 76.31

Unseen-in-train VMWEs 12.99 24.68 28.46

Variant-of-train VMWEs 29.94 56.89 63.25

Identical-to-train VMWEs 41.01 77.92 87.63

As already explained before, the shared task presents some specific metrics. The

performance of the system regarding these metrics can be understood better with a

30

reference. The third column of Table 5.2 shows the best results obtained for each

metric from the system ranked first. These results can be a reference to judge the

performance of the Deep-BGT system.

The Deep-BGT system handles not only continuous VMWEs but also discontin-

uous ones. The system performs better in continuous VMWEs compared to discontin-

uous ones as expected because it is easier to identify continuous VMWEs. However,

the performance of the Deep-BGT system regarding discontinuous VMWEs is slightly

higher than the performance of the best system by means of the gappy 1-level tagging

scheme.

According to the VMWE definition of PARSEME, single-token VMWEs also

occur. The Deep-BGT system also takes them into consideration. The performance of

the system in respect of multi-token VMWEs is higher than single-token ones. Actually,

there is an invisible success for single-token VMWEs because the Deep-BGT system

outperforms the best system.

It is known that the identification of seen-in-train VMWEs and identical-to-

train VMWEs is easier than the identification of unseen-in-train and variant-of-train

VMWEs in the case of deep learning architectures. The results also verifies this claim.

Table 5.3 shows the results of the Deep-BGT system in terms of languages. It

presents MWE-based and Token-based precision (P), recall (R), F-measure (F1), and

rankings in the open-track. Deep-BGT is the best system in Bulgarian (BG) according

to both MWE-based and Token-based F-measure, and in German (DE) according to

MWE-based F-measure. Discontinuity is more common in Germanic languages [2].

So, ranking the first in German in terms of MWE-based scores adds to the value of

Deep-BGT. The system was ranked first in terms of the Token-based F-measure in

French (FR) and Polish (PL). In general, the Deep-BGT system was ranked second.

Table 5.4 and Table 5.5 show MWE-based and Token-based F1 scores per VMWE

category of Deep-BGT respectively. If a language does not have a VMWE belonging

31

Table 5.3. The language-specific results of Deep-BGT.

MWE-based Token-based

Languages P R F1 Rank P R F1 Rank

BG 85.96 52.99 65.56 1 91.00 52.82 66.85 1

DE 60.94 36.35 45.53 1 77.92 37.64 50.76 3

ES 24.50 34.20 28.55 2 33.13 38.61 35.66 2

FR 57.81 49.80 53.51 2 78.88 56.45 65.80 1

HU 78.00 71.26 74.48 2 80.71 73.11 76.72 2

IT 45.52 25.60 32.77 2 70.00 27.63 39.62 2

PL 70.87 56.70 63.00 2 80.23 57.85 67.23 1

PT 72.44 46.11 56.35 2 79.40 44.83 57.30 2

RO 79.80 69.10 74.07 2 92.11 73.66 81.86 2

SL 58.90 38.40 46.49 2 72.19 40.34 51.76 2

to a category in the test corpus, the cell that combines the category and the language

is marked with ”-”. When we compare these tables with Table 3.1 which shows the

number of VMWEs per category for each language, there is a correlation between

them. F1 scores in Table 5.4 and Table 5.5 are correlated with the number of VMWEs

in Table 3.1. The underlying reason for the correlation is that the Deep-BGT system

makes use of deep learning architectures. To conclude, the system learns better with

more data and the role of the occurrence frequency of VMWEs cannot be ignored.

5.5. Extending Deep-BGT to 19 Languages

After the shared task, we wanted to test our system on all of the 19 languages

using the hyperparameters in Table 5.6. Table 5.7 shows the results of the Deep-BGT

extended to 19 languages in the columns labeled with extended. In the shared task, the

evaluation is based on the annotation of the blind test. The results of the participated

10 languages are preserved. For the remaining 9 languages, the evaluation procedure

applied is the same. Each result is the evaluation of a single run as in the shared task.

32

Table 5.4. MWE-based F1 scores per VMWE category of Deep-BGT.

Lang. LVC.full LVC.cause VID IRV VPC.full VPC.semi MVC IAV LS.ICV

BG 50.65 26.67 24.14 87.32 - - - 0.00 -

DE 4.17 0.00 24.35 33.77 63.47 0.00 - - -

ES 18.03 0.00 6.94 39.22 0.00 - 23.40 31.06 -

FR 61.38 0.00 32.26 78.70 - - 0.00 - -

HU 60.00 61.02 62.50 - 74.06 90.24 - - -

IT 31.71 20.51 9.59 51.14 57.89 - 33.33 28.07 0.00

PL 53.72 15.38 3.42 82.40 - - - 61.90 -

PT 66.56 0.00 21.94 50.70 - - - - -

RO 68.97 4.65 56.86 85.26 - - - - -

SL 16.33 0.00 10.11 65.61 - - - 44.60 -

Table 5.5. Token-based F1 scores per VMWE category of Deep-BGT.

Lang. LVC.full LVC.cause VID IRV VPC.full VPC.semi MVC IAV LS.ICV

BG 51.45 26.25 31.73 87.53 - - - 0.00 -

DE 9.43 0.00 36.62 48.19 67.44 6.25 - - -

ES 21.10 0.00 11.05 39.78 0.00 - 33.50 30.86 -

FR 62.67 0.00 59.92 79.35 - - 0.00 - -

HU 65.82 66.07 78.57 - 76.27 89.16 - - -

IT 37.39 26.67 21.13 52.72 58.23 - 30.77 33.85 0.00

PL 55.90 15.69 32.87 83.25 - - - 57.78 -

PT 67.60 0.00 28.77 50.35 - - - - -

RO 67.23 75.25 73.45 85.69 - - - - -

SL 21.05 22.22 25.64 66.97 - - - 43.77 -

33

Table 5.6. Model parameters.

Languages Batch Size # of Epochs

BG, FR, HE, LT, PT, RO, TR 32 12

DE, EL, ES, EU, HI, HU 16 15

FA, IT, PL, SL 16 12

EN, HR 8 15

Table 5.7. The performance of Deep-BGT on 19 languages.

MWE-based Token-based

Language shared task extended improved shared task extended improved

BG 65.56 65.56 67.03 66.85 66.85 67.72

DE 45.53 45.53 50.75 50.76 50.76 55.10

EL - 53.44 60.54 - 61.73 66.97

EN - 31.09 31.60 - 30.57 31.19

ES 28.55 28.55 33.59 35.66 35.66 38.64

EU - 72.05 72.62 - 75.42 75.03

FA - 71.44 79.31 - 78.01 81.33

FR 53.51 53.51 61.96 65.80 65.80 64.78

HE - 28.69 27.45 - 32.56 29.30

HI - 70.51 73.35 - 72.34 74.78

HR - 53.94 51.85 - 57.00 54.58

HU 74.48 74.48 74.83 76.72 76.72 76.48

IT 32.77 32.77 38.17 39.62 39.62 42.73

LT - 21.39 22.85 - 21.34 22.89

PL 63.00 63.00 65.87 67.23 67.23 67.70

PT 56.35 56.35 61.32 57.30 57.30 62.91

RO 74.07 74.07 85.89 81.86 81.86 86.33

SL 46.49 46.49 54.06 51.76 51.76 56.46

TR - 55.72 55.95 - 56.59 57.52

34

5.6. Improving Deep-BGT

We realized a minor mistake when a VMWE has more than two tokens and it is

discontinuous at the same time. In that case, the middle tokens were tagged as if not

belonging to the chunk instead of being part of the chunk. The tagging procedure of

discontinuous VMWEs with more than two tokens is corrected accordingly. The results

after correction is in the columns labeled with improved in Table 5.7. The results are

the computed by taking the macro-average of F-measures belonging to five separate

runs not just a single run as in the shared task. It is seen that the performances

increase for most of the languages.

35

6. A NOVEL TAGGING SCHEME:

BIGAPPY-UNICROSSY

6.1. Motivation

While developing the Deep-BGT system, it is seen that the hardest part is to

tackle with the challenging nature of MWEs. Especially, an overlapping MWE is an

important problem in the case of IOB encoding [2]. The gappy 1-level tagging scheme

[15] tries to solve this problem but the problem cannot be accomplished completely.

In this thesis, a new tagging scheme called bigappy-unicrossy [9] is introduced to rise

to the challenge of overlapping MWEs [9]. This novel tagging scheme can be used for

other sequence labeling tasks too.

6.2. Challenges

The nature of MWEs brings about some challenges. Discontinuity, overlaps,

ambiguity, and variability are the challenges for MWE identification [2]. A MWE can

appear in two different forms which are continuous and discontinuous. If a MWE takes

a token between its tokens and this token does not belong to the MWE, the MWE

is discontinuous [9]. For example, pay attention is a continuous VMWE if there is no

other tokens in between. When it has a token in between (e.g. pay much attention),

it becomes discontinuous because the VMWE is still pay attention here. Discontinuity

varies from language to language [2]. Table 6.1 shows how discontinuity varies from

language to language in the test sets.

Overlaps cover different problems such as nesting, shared tokens, and so on [2].

If there is at least one MWE inside an another MWE, it is called nesting [9]. There

are two VMWEs in the sentence She gave me the most over-rated piece of advice. The

first VMWE is gave advice which is LVC.full and this VMWE is an ordinary MWE

in terms of overlaps. The second VMWE is over-rated which is VPC.full and it is

36

Table 6.1. The percentage of discontinuous VMWEs for each language in the

PARSEME corpus.

Language Discontinuity %

BG 29

DE 46

EL 45

EN 41

ES 28

EU 19

FA 21

FR 44

HE 24

HI 7

HR 42

HU 8

IT 33

LT 40

PL 30

PT 43

RO 33

SL 51

TR 59

37

referred as a nested MWE. If two or more MWEs share one or more tokens, it is called

shared tokens [9]. It can be solved by being able to put more than one tag for each

token [2]. If preserving only one MWE by eliminating remaining ones that share tokens

is acceptable, some other strategies such as choosing the longest MWE [2], choosing the

first seen MWE etc. may be created. The sentence I made both changes and additions

is an example of shared tokens. Here, there are two VMWEs belonging to the category

of LVC.full: made changes and made additions. As it is seen, made is the shared token.

Crossing is a special case of overlaps [9]. It occurs when some or all tokens of

different MWEs are positioned crosswise [9]. The sentence I made not only changes but

also additions can be given as an example to both shared tokens, crossing, and nesting.

Made changes and made additions are both MWEs and they share the token make as

in the previous example. There is also one more MWE belonging to the category

of complex function words in this sentence which is not only but also. The example

sentence contains crossing regarding made changes and not only but also. Additionally,

nesting occurs considering made additions and not only but also. According to our

inference, overlaps brings about the challenge of discontinuity because crossing MWEs

are also discontinuous.

Ambiguity stems from the fact that the group of tokens can be a MWE if tokens

lose their original meanings or it can be a non-MWE if each token contributes to

the sentence with its original meaning [2, 9]. We can consider these two sentences to

understand ambiguity thoroughly: Proceedings will be published in hardcopy as well as

softcopy and He played as well as he usually does The ambiguity arises form as well

as because it is a complex function word and thereby a MWE in the first sentence but

it is only used for comparison in the second one.

Variability originates from the flexible nature of MWEs [2] since MWEs do not

always appear in fixed forms [9]. For example, to give advice is a VMWE and it can

appear in different forms such as gives advice, gave advice and so on.

38

6.3. Tagging Schemes

MWE identification is not straightforward due to challenges. In this study, it is

attempted to solve the challenges of discontinuity and overlaps that include nesting

and crossing by the bigappy-unicrossy tagging scheme [9]. Also, the bigappy-unicrossy

tagging scheme is compared with the IOB2 and gappy 1-level tagging schemes. Table

6.2 shows 8 example sentences which are tagged with IOB2, gappy 1-level and bigappy-

unicrossy tagging schemes separately to facilitate understanding the difference between

these tagging schemes.

6.3.1. The IOB1 Tagging Scheme

Ramshaw and Marcus [13] proposed the IOB tagging scheme. In the study, text

chunking is interpreted as a tagging problem. The chunk structure is encoded by words

together with tags. The tag set of the IOB tagging scheme is {I, O, B}. If the chunk

spans more than one token, the beginning of the chunk is represented by B and the

remaining of the chunk is represented by I. If the chunk is single-token, I is used. So,

B can be used when it is followed by I. O is used for a token outside of any chunk.

The IOB tagging scheme has also been referred as the IOB1 tagging scheme since the

IOB2 tagging scheme has been introduced [35].

6.3.2. The IOB2 Tagging Scheme

The idea behind the IOB2 scheme is to give B tag for single token-chunks instead

of I tag [14, 35]. Therefore, B represents every initial token of the chunk ignoring the

chunk size. The tag set of the IOB2 is as same as IOB1 which is {I, O, B}. B represents

a token in the beginning of the chunk and thereby single-token chunks. I stands for the

remaining part of the chunk other than the initial token. O symbolizes a token outside

of the chunk. Hence, I is only used when it follows B. The IOB2 tagging scheme seems

to be more convenient than the IOB1 tagging scheme for VMWE identification in terms

of single-token VMWEs. Thus the IOB2 tagging scheme is used in the experiments to

create a baseline for the other tagging schemes.

39

Table 6.2. Examples to the tagging schemes.

Example 1 Please double-check

IOB2 O B

gappy 1-level O B

bigappy-unicrossy O B

Example 2 Let’s have a look at your homework

IOB2 O B I I O O O

gappy 1-level O B I I O O O

bigappy-unicrossy O B I I O O O

Example 3 She didn’t pay much attention to that

IOB2 O O B O I O O

gappy 1-level O O B o I O O

bigappy-unicrossy O O B o I O O

Example 4 She gave me the most over-rated piece of advice

IOB2 O B O O O O O O I

gappy 1-level O B o o o b o o I

bigappy-unicrossy O B o o o b o o I

Example 5 I took her decision to move on seriously

IOB2 O B O O O O O I

gappy 1-level O B o o o b i I

bigappy-unicrossy O B o o o b i I

Example 6 I took her decision to make some changes seriously

IOB2 O B O O O O O O I

gappy 1-level O B o o o o o o I

bigappy-unicrossy O B o o o b o i I

Example 7 I made not only changes but also additions

IOB2 O B O O O O O I

gappy 1-level O B o o o o o I

bigappy-unicrossy O B b i o i i I

Example 8 I made not only changes but also additions

IOB2 O B O O I O O O

gappy 1-level O B o o I O O O

bigappy-unicrossy O B b i I i i O

40

6.3.3. The Gappy 1-level Tagging Scheme

The IOB1 and the IOB2 tagging schemes focus on continuous chunks. How-

ever, both continuous and discontinuous chunks should be taken into consideration

for VMWE identification task since VMWEs include both types of chunks. Moreover,

MWEs bring about some challenges as explained above. Some of these challenges can

be addressed by special tagging schemes. The gappy 1-level tagging scheme [15] is

introduced to touch upon discontinuity and nesting.

In the gappy 1-level tagging scheme, the tag set is {I, O, B, i, o, b}. I, O, B tags

have similar roles with the ones in the IOB tagging schemes. Schneider et al. [15] accept

MWEs as chunks containing more than one word. So, the difference between the IOB1

and IOB2 tagging schemes disappears. Consequently, B represents the beginning of

the chunk, I represents the remaining part of the chunk, O stands for a token outside

of the chunk. All B tags occur together with I tags because single-token MWEs are

not accepted by definition [15].

I, O, B tags and i, o, b tags have similar roles in general. If there is nesting, the

lowercase tags are used for nested chunks. Otherwise, the uppercase tags are used. b

stands for the beginning of the nested chunk, i represents the remaining part of the

nested chunk, and o is used for a token outside of the nested chunk which is called a

gap for the chunk that wraps the nested chunk. The co-occurrence strategy of b and i

tags is applied as in B and I tags.

The gappy 1-level tagging scheme allows only multi-token MWEs as already men-

tioned before. However, our definition of MWEs involves both single-token and multi-

token MWEs. To handle this issue, the gappy 1-level tagging scheme is modified by

allowing the single-token MWEs in the IOB2 tagging scheme fashion. b tag is used

for nested single-token MWEs. B tag is used for ordinary single-token MWEs. The

modified version of the gappy 1-level scheme is used in the experiments and is referred

as gappy 1-level.

41

The gappy 1-level tagging scheme solves the discontinuity problem partially since

it uses the o tag as a solution but it does not allow discontinuity in the nested chunks.

The rejection of discontinuity in the nested chunks is connected with the nesting prob-

lem since only continuous nested chunks are allowed. Therefore, the nesting problem

is also solved partially.

6.4. The Bigappy-unicrossy Tagging Scheme

The variants of IOB tagging schemes such as gappy 1-level tagging scheme offer

partial solutions for the challenges of MWE identification. The IOB2 tagging scheme

takes account of continuous chunks but disregards discontinuous chunks. The gappy 1-

level tagging scheme takes both continuous and discontinuous chunks into consideration

but only allows nested continuous chunks and ignores nested discontinuous chunks. As

a result, it proposes partial solutions to the challenges of discontinuity and nesting.

Moreover, the other cases of overlaps such as crossing and shared tokens are eliminated.

Therefore, it is noticed that a new tagging scheme to cover more of the challenges is a

necessity. A novel tagging scheme called bigappy-unicrossy [9] is developed to represent

overlaps in sequence labeling tasks and to solve the discontinuity problem accordingly.

The tag set of the bigappy-unicrossy tagging scheme is I, O, B, i, o, b. The tag set

of the bigappy-unicrossy tagging scheme and the gappy 1-level tagging scheme is the

same. The roles of the tags in gappy 1-level overlaps with bigappy-unicrossy. However,

the tags have some extra roles in the bigappy-unicrossy tagging scheme. The bigappy-

unicrossy tagging scheme allows two levels of discontinuity, one level of nesting, and

one level of crossing. The name bigappy-unicrossy is given accordingly.

B represents the beginning of the chunk and single-token chunks. I represents

the continuation of the chunk in the case of a multi-token chunk whose beginning is

tagged with B. O is used for a token outside of the chunk.

Discontinuous chunks, nested chunks, and chunks with crosswise positioned to-

kens are handled with the lowercase tags. Tokens that are in between of the chunk

42

but does not belong to the chunk can be called gaps [15]. o is used for a gap of the

chunk to represent the discontinuity in the chunk as in the gappy 1-level. From the

perspective of a nested chunk, o stands for a token outside of the nested chunk. In the

bigappy-unicrossy tagging scheme, the o tag has an additional role different from the

gappy 1-level tagging scheme. The gaps in the nested chunks are also represented by

the o tag. In other words, o is used for all gappy chunks including the nested ones and

each gap is tagged with o. The gaps are not differentiated as the ones belonging to

chunks or nested chunks due to the fact that the tokens symbolizing the gaps have the

same role, which is being a token that can be inserted to the chunk without being a

part of the chunk. From another point of view, a gap of an ordinary chunk and a gap

of a nested chunk do not have specific roles in terms of the type of the chunk.

We can examine the example 6 in Table 6.2 which is I take her decision to make

some changes seriously to understand the suggestion of treating all the gaps the same.

In the example, take seriously and make changes are VMWEs. The gaps for take

seriously are her, decision, to, make, some, and changes. Since make changes is a

nested VMWE here, the actual gaps are her, decision, to, and some. The gap for

make changes is some. some has the same role for both of the VMWEs. So, all the

gaps are tagged with o. Eventually, the bigappy-unicrossy tagging scheme allows two

levels of discontinuity: one level of discontinuity in the outer chunks and one level of

discontinuity in the nested chunks. Gappy 1-level tagging scheme cannot tag the nested

VMWEs in the examples 6 and 7 in Table 6.2 since it does not allow discontinuous

nested chunks. However, bigappy-unicrossy tags them due to two level of discontinuity.

The lowercase tags are specialized version of the uppercase tags to handle nesting

in the gappy 1-level tagging scheme. In the bigappy-unicrossy tagging scheme, the

lowercase tags are specialized for not only the nested chunks but also the crossy chunks.

b represents the beginning of the nested or crossy chunk. It is also used for single-token

ones. i stands for the remaining part of the nested or crossy chunk. It is used in the

case of multi-token chunks where b is followed by one or more i. o symbolizes the gaps

in the nested or crossy chunks as explained beforehand. The example 8 in Table 6.2

shows how crossy chunks can be tagged thanks to bigappy-unicrossy.

43

The bigappy-unicrossy tagging scheme treats crossing cases and nesting cases

similarly due to fact that both cases have the similar identification procedure to some

extent. Tagging procedure of the bigappy-unicrossy tagging scheme is shown in Figure

6.4. The similarity between a nested chunk and a crossy chunk is that the beginning

index of the nested or crossy chunk Y is larger than the beginning index of chunk X

but smaller than the end index of chunk X. The difference between a nested chunk and

a crossy chunk stems from the index of the last token and the middle tokens of chunk

Y. If the index of the last token of chunk Y is smaller than the index of the last token

of chunk X, it is called nesting. If the index of the last token of chunk Y is bigger than

the index of the last token of chunk X, it is called crossing. If the middle tokens of

chunk X and chunk Y are positioned crosswise in the first case, there is also crossing.

There are two types of tag sets which are uppercase and lowercase in the bigappy-

unicrossy tagging scheme. Therefore, bigappy-unicrossy supports only one level of

nesting or one level of crossing. The tagging procedure starts with using uppercase

tags. When an uppercase or a lowercase tag set is in use to tag a chunk, it is held

until the end of the chunk. So, the tag set cannot be used for another chunk till it is

released. After the last token of the chunk, the tag set is released.

To sum up, the bigappy-unicrossy tagging scheme solves the discontinuity prob-

lem in two levels. The challenges of crossing and nesting are overcomed in one level.

Incorporating more levels is not necessary since such a case is very scarce. So, the

overlapping nature of the MWEs is handled partially.

6.5. Model and Experiments

The bigappy-unicrossy tagging scheme is compared with the two other well-known

tagging schemes which are IOB2 and gappy 1-level in the verbal multiword expression

(VMWE) identification task using the same bidirectional LSTM-CRF model in the

improved version of the Deep-BGT system explained in Chapter 5.

44

for each sentence s in the text do

for each token t in s do

if (t belongs to the beginning of the chunk X and X is the first chunk in s) or (t

belongs to the beginning of the chunk X and t comes after the last token of the

previous chunk which is tagged with uppercase tags) then

tag t with B

if X is multi-token then

Find the remaining tokens and tag the tokens with I

Store the beginning index idxb and the end index idxe of X in the list l

end if

else if t belongs to the beginning of the nested/crossy chunk Y and (Y is the

first nested/crossy chunk in s or t comes after the last token of the previous chunk

which is tagged with lowercase tags) then

tag t with b

if Y is multi-token then

Find the remaining tokens and tag the tokens with i

Store the beginning index idxb and the end index idxe of Y in the list l

end if

end if

end for

for each (idxb,idxe) in l do

for each token g between idxb and idxe do

if g is not tagged then

tag g with o

end if

end for

end for

end for

filter the tokens with no tags in the text

tag them with O

Figure 6.1. Bigappy-unicrossy Tagging Algorithm.

45

As we use non-deterministic approach, we run our experiments five times in order

to maintain reproducible and reliable results and take the average. The aim is to present

an empirical study that explores the effect of a tagging scheme for VMWE identification

on 19 languages.

6.6. Results

Table 6.3 and Table 6.4 shows the language-specific results on 19 languages for

the IOB2, the gappy 1-level and the bigappy-unicrossy tagging schemes based on F-

measure respectively. The highest F1 scores obtained for each language in the open

track of the PARSEME shared task 2018 is also given for comparison and it is referred

as shared task. Also, the cross-lingual macro-averages are given in the last rows of the

tables. Figure 6.2 also depicts the MWE-based results of the tagging schemes and the

best results in the shared task.

Figure 6.2. Comparison of the tagging schemes.

Both the bigappy-unicrossy and the gappy 1-level tagging schemes outperform the

IOB2 tagging scheme for all 19 languages in terms of MWE-based results. They also

slightly outperform IOB2 according to token-based macro-averages. This supremacy

takes its source from the fact that they consider discontinuous VMWEs unlike IOB2.

46

Table 6.3. The language-specific mwe-based results for the IOB2, the gappy 1-level,

the bigappy-unicrossy tagging schemes and the best PARSEME shared task results in

the open track.

Language IOB2 gappy 1-level bigappy-unicrossy shared task

BG 64.60 67.03 66.89 65.56

DE 42.62 50.75 49.73 45.53

EL 52.10 60.54 61.11 58.00

EN 26.97 31.60 31.73 33.27

ES 31.07 33.59 35.00 38.39

EU 69.91 72.62 73.07 77.04

FA 75.07 79.31 81.37 78.35

FR 53.92 61.96 58.55 60.88

HE 24.93 27.45 26.74 38.91

HI 71.28 73.35 72.54 72.71

HR 44.62 51.85 52.83 47.84

HU 70.53 74.83 73.84 85.83

IT 31.52 38.17 37.58 45.40

LT 19.15 22.85 24.04 22.86

PL 58.54 65.87 64.65 63.60

PT 54.62 61.32 60.21 68.17

RO 82.34 85.89 84.60 87.18

SL 45.30 54.06 54.22 52.27

TR 52.26 55.95 52.93 58.66

AVG 51.12 56.26 55.88 57.92

47

Table 6.4. The language-specific token-based results for the IOB2, the gappy 1-level,

the bigappy-unicrossy tagging schemes and the best PARSEME shared task results in

the open track.

Language IOB2 gappy 1-level bigappy-unicrossy shared task

BG 67.21 67.72 67.24 66.85

DE 54.28 55.10 53.31 54.65

EL 63.73 66.97 65.61 66.79

EN 30.15 31.19 30.86 34.36

ES 37.54 38.64 39.76 44.69

EU 75.38 75.03 76.06 80.21

FA 82.01 81.33 84.48 82.95

FR 65.05 64.78 61.57 65.80

HE 28.56 29.30 28.74 44.02

HI 74.06 74.78 74.35 75.62

HR 53.68 54.58 56.18 58.19

HU 73.90 76.48 76.13 86.73

IT 40.28 42.73 43.61 55.13

LT 25.31 22.89 24.49 28.13

PL 64.78 67.70 66.41 67.23

PT 62.29 62.91 62.39 73.51

RO 85.31 86.33 85.19 88.69

SL 56.30 56.46 57.50 61.55

TR 58.12 57.52 54.30 61.63

AVG 57.79 58.55 58.33 62.99

48

Figure 6.3 shows the relationship between the discontinuity rates of VMWEs for

all languages and the relative success of the bigappy-unicrossy tagging scheme over

the IOB2 tagging scheme. Discontinuity percentages were given previously in Table

6.1. The relative success is found by subtracting the MWE-based F1 score of bigappy-

unicrossy from that of IOB2. It is seen that the discontinuity ratio and the improvement

in the success with the bigappy-unicrossy scheme are correlated to some extent. This

result verifies the claim that bigappy-unicrossy outperforms IOB2 since it captures

discontinuous VMWEs.

Figure 6.3. Comparison of the tagging schemes.

On the contrary, the results of gappy 1-level and bigappy-unicrossy is close to

each other. There is only a slight difference of 0.38. The gappy 1-level tagging scheme

gives better results in 11 languages while the bigappy-unicrossy tagging scheme gives

better results in 8 languages. The underlying reason behind this closeness is the low

frequency of overlaps in the PARSEME corpus. The corpus only covers VMWEs. If

other types of MWEs are also covered, the overlap frequency will be higher and the

bigappy-unicrossy tagging scheme will its actual performance.

49

Furthermore, the bigappy-unicrossy tagging scheme can be used in different se-

quence labeling tasks other than MWE identification. It can prove itself better in the

other domains of NLP or in their combinations.

The BiLSTM-CRF model together with the gappy 1-level tagging scheme or the

bigappy-unicrossy tagging scheme competes with the MWE-based best shared task

results as shown in Figure 6.2 and Table 6.3. The BiLSTM-CRF model combined

with the gappy 1-level tagging scheme is the best system in 5 languages consisting of

BG, DE, FR, HI, PL. The BiLSTM-CRF model combined with the bigappy-unicrossy

tagging scheme is the best system in five languages consisting of EL, FA, HR, LT, SL.

Both of the tagging schemes obtain better results than the best shared task results

in BG, DE, EL, FA, HR, PL, SL. In the case of token-based results, gappy 1-level is

the best in BG, DE, EL, PL and bigappy-unicrossy is the best in FA. Token-based

results seems to be higher than the MWE-based results as expected. However, token-

based results are not high enough to get ahead. Since the identification using deep

learning systems becomes more complex if the tagging scheme becomes more complex,

the token-based results of all three tagging schemes in Table 6.4 are similar. Above

all, the most valuable results are MWE-based results just because identification of the

whole is more important than the identification in pieces.

50

7. A COMPREHENSIVE ANALYSIS OF BILSTM BASED

ARCHITECTURES FOR MULTILINGUAL

IDENTIFICATION OF VMWES

7.1. Motivation

Previously, a brand new tagging scheme called bigappy-unicrossy has been devel-

oped to augment the performance of the system. Tagging scheme is just one parameter

of the deep learning architecture. There are various hyperparameters to be fine tuned.

The selection of optimal hyperparameters is vital for neural network architectures [27].

It goes without saying that trying out every possible combination of parameters is

nearly impossible. So, a subset of parameters are selected to conduct experiments for

ensuring the optimization of the system. Thus, a comprehensive analysis of BiLSTM

based architectures for multilingual identification of VMWEs is presented.

7.2. Hyperparameter Selection and Evaluation Strategy

In Reimers and Gurevych’s study [27], the hyperparameter set consists of pre-

trained word embeddings, character representation, optimizer, gradient clipping and

normalization, tagging schemes, classifier, dropout, number of LSTM-layers, number of

recurrent units, mini-batch size and backend. In this thesis, tagging schemes, number

of units, number of BiLSTM layers and classifier are selected for evaluation.

The identification system is non-deterministic. Thereby, there is randomness in

some parts of the system. To present reliable results, the experiments are run couple

times (three or five runs) and the averages of F1 scores are used. The median is not

used since the number of runs is not high enough which stems from the time and the

processing power constraints.

51

7.3. Experiments and Results

The idea is not only comparing the effects of the hyperparameters but also find-

ing the best combination of the hyperparameters. The BiLSTM-CRF network shown

in Figure 5.1 is simplified to a BiLSTM network shown in Figure 7.1 with a softmax

classifier. The optimum model will be constructed gradually by choosing the hyperpa-

rameters one after the other. Firstly, the tagging scheme is selected. Afterwards, the

number of units that fits best with the tagging scheme is chosen. Then, the number of

BiLSTM layers is chosen accordingly. Finally, the classifier is evaluated.

Figure 7.1. BiLSTM model.

7.3.1. Tagging Scheme

The gappy 1-level and the bigappy-unicrossy tagging schemes are compared using

BiLSTM and BiLSTM-CRF architectures. The results of the BiLSTM-CRF model is

taken from the studies that were explained previously. The base BiLSTM architecture

is also constructed with 20 and 100 BiLSTM units separately. As a result, the tagging

shemes are compared under three different combinations. Table 7.1 and Table 7.2 show

the MWE-based and token-based comparison between these two tagging schemes re-

spectively. According to the results, gappy 1-level and bigappy-unicrossy compete with

each other. Since the bigappy-unicrossy is created as part of this thesis, it is favored.

Therefore, the experiments continue with the biggapy-unicrossy tagging scheme.

52

Table 7.1. The language-specific mwe-based results for the gappy 1-level and the

bigappy-unicrossy tagging schemes with different models.

Tagging Scheme gappy 1-level bigappy-unicrossy

Model BiLSTM BiLSTM-CRF BiLSTM BiLSTM-CRF

Languages

of Units
20 100 20 20 100 20

BG 57.50 60.02 67.03 55.82 59.56 66.89

DE 32.19 42.55 50.75 32.66 45.31 49.73

EL 45.62 50.98 60.54 44.72 46.04 61.11

EN 18.83 17.08 31.60 17.01 24.94 31.73

ES 20.15 27.19 33.59 22.58 25.63 35.00

EU 61.96 64.44 72.62 61.86 63.94 73.07

FA 73.53 72.84 79.31 74.67 74.46 81.37

FR 49.28 49.90 61.96 47.15 51.60 58.55

HE 13.06 22.96 27.45 11.27 19.91 26.74

HI 62.70 65.74 73.35 67.33 65.95 72.54

HR 36.76 40.07 51.85 38.88 40.04 52.83

HU 60.85 67.20 74.83 59.97 68.25 73.84

IT 20.22 25.91 38.17 21.37 26.12 37.58

LT 0.76 21.86 22.85 5.00 18.67 24.04

PL 50.16 52.29 65.87 52.53 54.38 64.65

PT 47.71 54.02 61.32 45.17 47.03 60.21

RO 77.75 82.33 85.89 76.44 80.77 84.60

SL 32.92 45.17 54.06 26.23 44.83 54.22

TR 50.37 51.99 55.95 45.20 48.29 52.93

AVG 42.75 48.13 56.26 42.41 47.67 55.88

53

Table 7.2. The language-specific token-based results for the gappy 1-level and the

bigappy-unicrossy tagging schemes with different models.

Tagging Scheme gappy 1-level bigappy-unicrossy

Model BiLSTM BiLSTM-CRF BiLSTM BiLSTM-CRF

Languages

of Units
20 100 20 20 100 20

BG 64.82 66.41 67.72 63.50 66.29 67.24

DE 47.84 55.10 55.10 49.62 53.45 53.31

EL 63.75 65.45 66.97 64.65 64.74 65.61

EN 24.30 25.22 31.19 23.64 32.20 30.86

ES 34.54 39.58 38.64 36.82 37.95 39.76

EU 73.46 73.59 75.03 74.13 73.80 76.06

FA 82.15 80.86 81.33 81.15 83.32 84.48

FR 65.93 65.77 64.78 62.54 66.26 61.57

HE 22.78 32.44 29.30 18.86 27.27 28.74

HI 71.19 72.48 74.78 74.40 71.99 74.35

HR 50.81 54.26 54.58 51.92 53.60 56.18

HU 67.61 73.25 76.48 67.28 74.61 76.13

IT 37.26 43.08 42.73 40.31 42.81 43.61

LT 2.96 34.47 22.89 16.40 29.62 24.49

PL 61.19 64.45 67.70 64.94 65.75 66.41

PT 61.29 66.26 62.91 58.55 60.84 62.39

RO 84.84 86.62 86.33 84.19 85.59 85.19

SL 47.39 57.10 56.46 46.19 57.55 57.50

TR 60.10 60.65 57.52 52.71 57.18 54.30

AVG 53.91 58.79 58.55 54.30 58.15 58.33

54

7.3.2. Number of Units

There are so many possibilities in the case of number of units. The optimal

number of units is not obvious because it depends on the architecture, the data, the

task and so on. If the number of units is very small, the system loses information. If

it is very large, overfitting occurs [27].

The set of the number of units is chosen as {20, 100, 200, 300}. These are the

number of units per LSTM-network. A BiLSTM-network consists of one forward and

one reverse running LSTM-network which have same number of units [27]. Therefore,

the number of units per LSTM-network is multiplied by two to find the total number

of units in a BiLSTM network. In the case of multiple BiLSTM layers, the number

of units per BiLSTM-network is multiplied by the number of BiLSTM layers since all

BiLSTM layers in our system use the same hyperparameters.

Table 7.3 shows the language specific MWE-based and token-based F1 scores for

20, 100, 200, and 300 number of units respectively. Reimers and Gurevych’s study [27]

states that the number of recurrent units does not have a significant effect on the

results of part-of-speech tagging, chunking, named entity recognition, entities, and

events tasks. However, the number of units has a significant impact on the VMWE

identification task in terms of the results in Table 7.3.

According to the experiments, using more than 20 units obviously improves the

results more than 4%. Since each language has different properties, the effect of the

number of units differ from language to language. Selection of 100 units suits the

languages from Balto-Slavic and Germanic language families well. Languages from

Romance language family have higher performance with 200 or 300 units. Owing to the

fact that the aim is to develop a multilingual system, the priority is the macro-averaged

results. In respect of MWE-based and token based cross-lingual macro-averages, the

number of units is selected as 100 because it gives the highest results with 47.67 and

58.15 F1 scores.

55

Table 7.3. The language-specific mwe-based results for different number of units.

MWE-based Token-based

Language

of Units
20 100 200 300 20 100 200 300

BG 55.82 59.56 58.62 55.68 63.50 66.29 66.08 63.70

DE 32.66 45.31 36.83 36.90 49.62 53.45 50.92 52.20

EL 44.72 46.04 46.36 46.24 64.65 64.74 62.56 61.79

EN 17.01 24.94 18.09 21.59 23.64 32.20 24.64 28.57

ES 22.58 25.63 27.11 26.28 36.82 37.95 39.02 37.84

EU 61.86 63.94 63.00 64.00 74.13 73.80 73.49 73.32

FA 74.67 74.46 70.12 73.47 81.15 83.32 79.05 81.54

FR 47.15 51.60 49.03 52.47 62.54 66.26 64.79 65.79

HE 11.27 19.91 20.30 18.82 18.86 27.27 28.98 28.68

HI 67.33 65.95 69.59 68.11 74.40 71.99 74.62 74.49

HR 38.88 40.04 37.44 40.46 51.92 53.60 49.97 52.03

HU 59.97 68.25 66.67 69.74 67.28 74.61 72.93 74.77

IT 21.37 26.12 28.51 25.74 40.31 42.81 46.64 44.32

LT 5.00 18.67 19.97 20.52 16.40 29.62 26.45 31.99

PL 52.53 54.38 54.25 53.64 64.94 65.75 64.44 65.33

PT 45.17 47.03 50.16 52.05 58.55 60.84 64.12 63.51

RO 76.44 80.77 80.86 81.86 84.19 85.59 86.23 86.21

SL 26.23 44.83 43.89 42.16 46.19 57.55 56.62 54.97

TR 45.20 48.29 45.15 44.03 52.71 57.18 52.88 53.73

AVG 42.41 47.67 46.63 47.04 54.30 58.15 57.07 57.62

56

7.3.3. Number of BiLSTM Layers

The BiLSTM network that have been used so far has one BiLSTM layer. The

aim is to explore the effect of using stacked BiLSTM. Therefore, the stacked BiLSTM

networks with 1 (Figure 7.1), 2 (Figure 7.2), and 3 (Figure 7.3) stacked BiLSTM-layers

are compared.

Figure 7.2. 2 layer stacked BiLSTM model.

Table 7.4 shows the language-specific MWE-based and token-based results of 1,

2, and 3 layer stacked BiLSTM models. As the number of stacked BiLSTM-layers

increases, both of the MWE-based and the token-based F1 scores increase generally.

There is a remarkable improvement from 1 layer stacked BiLSTM to 2 layer stacked

BiLSTM. The BiLSTM network with 3 stacked BiLSTM-layers gives the best results in

terms of cross-lingual macro-averages. Hence, 3 is selected as the number of BiLSTM

layers.

7.3.4. Classifier

At the final stage, the decision is to choose the last layer of the network. Actually,

there are so many options in terms of activation functions but we reduce the choices to

two: a dense layer with Softmax activation function or a dense layer with a linear ac-

57

Table 7.4. The language-specific results for different number of bilstm layers.

MWE-based Token-based

Language

of Layers
1 2 3 1 2 3

BG 59.56 62.69 61.98 66.29 68.35 66.82

DE 45.31 43.80 47.19 53.45 54.03 56.22

EL 46.04 55.88 57.86 64.74 65.16 67.09

EN 24.94 26.62 25.49 32.20 31.28 28.61

ES 25.63 29.59 29.29 37.95 39.65 37.90

EU 63.94 71.42 74.51 73.80 75.95 77.81

FA 74.46 78.28 77.67 83.32 83.27 83.35

FR 51.60 58.72 60.96 66.26 67.53 68.46

HE 19.91 24.11 28.98 27.27 34.17 36.19

HI 65.95 67.82 69.64 71.99 73.34 73.93

HR 40.04 45.99 48.47 53.60 55.47 54.43

HU 68.25 73.18 74.50 74.61 77.60 77.91

IT 26.12 34.69 36.94 42.81 47.25 48.57

LT 18.67 24.18 27.25 29.62 30.11 32.97

PL 54.38 59.36 62.76 65.75 65.60 66.70

PT 47.03 58.74 59.42 60.84 65.93 65.46

RO 80.77 84.87 84.57 85.59 87.75 86.78

SL 44.83 52.76 53.50 57.55 60.18 60.15

TR 48.29 57.00 59.78 57.18 63.81 64.78

AVG 47.67 53.14 54.78 58.15 60.34 60.74

58

Figure 7.3. 3 layer stacked BiLSTM model.

tivation function followed by a linear-chain CRF by following Reimers and Gurevych’s

study [27]. In the Softmax classifier, each tag has a probability distribution regarding

each token in a sentence [27]. Therefore, each token is evaluated individually apart

from other tokens and there is no link between the tags. In the CRF classifier, the tags

of the sentence has a probability distribution as a whole and the aim is to maximize

this probability [27]. Thus, the relationship between tags is taken into consideration.

When a CRF classifier is combined with a BiLSTM network for sequence tagging

tasks, not only past and future input features but also sentence level tag information

is used [19]. There is a strong dependency between tags of the tokens in the case of

VMWE identification and this dependency makes the CRF classifier suitable.

In the experiments, two different models are compared. The first model is a 3

layer stacked BiLSTM combined with a Softmax classifier. The second one is 3 layer

stacked BiLSTM combined with a CRF classifier shown in Figure 7.4. Table 7.5 shows

the MWE-based and token based F1 scores of these two models.

59

Table 7.5. The language-specific results for different classifiers.

MWE-based Token-based

Language

Classifier
Softmax CRF Softmax CRF

BG 61.98 67.06 66.82 68.06

DE 47.19 53.65 56.22 56.78

EL 57.86 61.99 67.09 65.28

EN 25.49 30.96 28.61 33.06

ES 29.29 35.30 37.90 39.16

EU 74.51 75.90 77.81 77.62

FA 77.67 81.00 83.35 83.29

FR 60.96 63.82 68.46 66.08

HE 28.98 31.67 36.19 33.62

HI 69.64 71.79 73.93 73.76

HR 48.47 51.08 54.43 54.82

HU 74.50 76.35 77.91 78.52

IT 36.94 37.80 48.57 43.12

LT 27.25 30.54 32.97 30.65

PL 62.76 66.31 66.70 66.38

PT 59.42 63.80 65.46 65.31

RO 84.57 85.31 86.78 85.95

SL 53.50 57.23 60.15 59.85

TR 59.78 58.29 64.78 58.88

AVG 54.78 57.89 60.74 60.01

60

Figure 7.4. 3 layer stacked BiLSTM-CRF model.

The CRF classifier is more successful than the Softmax one in terms of MWE-

based results since it tries to maximize the probability of tags in the sentence as a whole.

The Softmax classifier seems better than the CRF one according to token-based results

because it tries to maximize the probability of each tag individually.

7.4. The Overall Result

Table 7.6 shows the MWE-based and token-based cross-lingual macro-averaged

F1 scores of all models. It is clearly seen that the models with the CRF classifier

have higher performance in terms of MWE-based scores. The best model according to

the MWE-based results includes the bigappy-unicrossy tagging scheme, 100 number of

units, 3 layer stacked BiLSTM, and the CRF classifier. The models with 20 number of

units, 1 layer stacked BiLSTM, and the CRF classifier follows the best model. It proves

the fact that the CRF classifier makes a significant difference. The reason behind this

fact is that CRF connects the tags of the tokens in the sentence and maximizes the

61

probability of the tags accordingly which are necessary since VMWEs consist of more

than one token generally.

Table 7.6. The overall results.

Network Tagging Scheme # of Units # of Layers Classifier MWE-based F1 Token-based F1

BiLSTM IOB2 20 1 CRF 51.12 57.79

BiLSTM gappy 1-level 20 1 CRF 56.26 58.55

BiLSTM bigappy-unicrossy 20 1 CRF 55.88 58.33

BiLSTM gappy 1-level 20 1 Softmax 42.75 53.91

BiLSTM gappy 1-level 100 1 Softmax 48.13 58.79

BiLSTM bigappy-unicrossy 20 1 Softmax 42.41 54.30

BiLSTM bigappy-unicrossy 100 1 Softmax 47.67 58.15

BiLSTM bigappy-unicrossy 200 1 Softmax 46.63 57.07

BiLSTM bigappy-unicrossy 300 1 Softmax 47.04 57.62

BiLSTM bigappy-unicrossy 100 2 Softmax 53.14 60.34

BiLSTM bigappy-unicrossy 100 3 Softmax 54.78 60.74

BiLSTM bigappy-unicrossy 100 3 CRF 57.89 60.01

The model with the bigappy-unicrossy tagging scheme, 100 number of units, 3

layer stacked BiLSTM, and the Softmax classifier obtains the best token-based F1

score. It is followed by the model with 2 layer stacked BiLSTM with the Softmax

classifier and 3 layer stacked BiLSTM with the CRF classifier. Firstly, we can infer

that the Softmax classifier is more suitable for token-based evaluations since it treats

the tag of each token individually. Moreover, the number of layers has an important

role on token-based results.

According to both MWE-based and token-based results, as the number of layers

increases, the model advances. In addition, switching from 20 number of units to 100

number of units evidently improves the performance. To conclude, the aim was to

improve the Deep-BGT system by fine tuning the hyperparameters. It is clearly seen

that the objective is accomplished as expected.

62

8. CONCLUSION AND FUTURE WORK

In the scope of the PARSEME shared task edition 1.1, a Turkish corpus with

annotated VMWEs is constructed. The Turkish corpus is one of the biggest corpora

in the shared task. In the annotation process, it is observed that the annotation

guidelines provided by various sources differ for Turkish. Due to the deficiency in

Turkish MWE sources, the annotated corpus will be a valuable source for studies on

Turkish natural language processing such as syntactic parsing, machine translation and

n-gram language modeling. Not content with VMWEs, the corpora can be extended

to MWEs.

A language-independent and deep learning based system called Deep-BGT is

developed for the second part of the PARSEME shared task edition 1.1. The sequence

tagging approach is followed for VMWE identification. Deep-BGT is a hybrid system

which uses the BiLSTM-CRF model along with the gappy 1-level tagging scheme. To

the best of our knowledge, Deep-BGT is the first bidirectional LSTM-CRF model used

in the VMWE identification task. The challenges of discontinuity and overlaps are

attempted to be solved.

Deep-BGT is based on a deep learning architecture. Thereby, the more training

data is available, the more the system learns. The occurrence frequency of VMWEs

in the data is also a significant factor. Therefore, Deep-BGT submitted results for

10 languages accordingly. The system was ranked first in two languages in terms of

MWE-based results. It was ranked first in three languages according to token-based

results. In general ranking, Deep-BGT is ranked second in the open-track of the shared

task. Afterwards, Deep-BGT is improved and extended to 19 languages.

The Deep-BGT system attempted to solve the challenges of discontinuity and

overlaps by the gappy 1-level tagging scheme. However, gappy 1-level is not adequate

for this objective. Hence, a novel tagging scheme called bigappy-unicrossy is introduced

to represent overlaps in sequence labeling tasks.

63

An empirical study that explores the effect of a tagging scheme for VMWE

identification on 19 languages by using BiLSTM-CRF network is presented. The

bigappy-unicrossy tagging scheme competes with the gappy 1-level tagging scheme.

The bigappy-unicrossy tagging scheme is expected to be by far the best scheme on

data sets with higher frequency of overlaps. On this basis, the bigappy-unicrossy tag-

ging scheme can be applied on such data sets as future work.

To enhance the performance the Deep-BGT system, a subset of hyperparame-

ters is chosen to be fine tuned. The subset consists of tagging scheme, number of

units, number of BiLSTM layers, and classifier. As a consequence of the evaluation

of the hyperparameters, a comprehensive analysis of BiLSTM based architectures for

multilingual identification of VMWEs is presented.

The 3 layer stacked BiLSTM network with 100 number of units, the bigappy-

unicrossy tagging scheme, and the CRF classifier gives the best performance in terms

of MWE-based F1 scores. The 3 layer stacked BiLSTM network with 100 number of

units, the bigappy-unicrossy tagging scheme, and the Softmax classifier gives the best

performance according to token-based F1 scores.

Different kind of hyperparameters can be evaluated as future work. In addition,

the number of BiLSTM layers can be increased since there is a rise in the performance

of the system with more BiLSTM layers.

Novel methodologies can be explored to address the challenges of MWEs iden-

tification. These solutions can be related to the preprocessing, postprocessing, or the

deep learning architecture. Finally, this study can be expanded to the other sequence

labeling tasks as future work.

64

REFERENCES

1. Sag, I. A., T. Baldwin, F. Bond, A. Copestake and D. Flickinger, “Multiword

Expressions: A Pain in the Neck for NLP”, A. Gelbukh (Editor), Computational

Linguistics and Intelligent Text Processing , pp. 1–15, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2002.

2. Constant, M., G. Eryiğit, J. Monti, L. Van Der Plas, C. Ramisch, M. Rosner

and A. Todirascu, “Multiword expression processing: a survey”, Computational

Linguistics , Vol. 43, No. 4, pp. 837–892, 2017.

3. Baldwin, T. and S. N. Kim, “Multiword expressions.”, Handbook of natural lan-

guage processing , Vol. 2, pp. 267–292, 2010.

4. Ramisch, C., S. R. Cordeiro, A. Savary, V. Vincze, V. Barbu Mititelu, A. Bhatia,

M. Buljan, M. Candito, P. Gantar, V. Giouli, T. Güngör, A. Hawwari, U. Iñurrieta,

J. Kovalevskaitė, S. Krek, T. Lichte, C. Liebeskind, J. Monti, C. Parra Escart́ın,

B. QasemiZadeh, R. Ramisch, N. Schneider, I. Stoyanova, A. Vaidya and A. Walsh,

“Edition 1.1 of the PARSEME Shared Task on Automatic Identification of Verbal

Multiword Expressions”, Proceedings of the Joint Workshop on Linguistic Anno-

tation, Multiword Expressions and Constructions (LAW-MWE-CxG 2018), Asso-

ciation for Computational Linguistics, Santa Fe, New Mexico, USA, August 2018.

5. Savary, A., C. Ramisch, S. Cordeiro, F. Sangati, V. Vincze, B. QasemiZadeh,

M. Candito, F. Cap, V. Giouli, I. Stoyanova and A. Doucet, “The PARSEME

Shared Task on Automatic Identification of Verbal Multiword Expressions”, Pro-

ceedings of the 13th Workshop on Multiword Expressions (MWE 2017), pp.

31–47, Association for Computational Linguistics, Valencia, Spain, Apr. 2017,

https://www.aclweb.org/anthology/W17-1704.

6. Berk, G., B. Erden and T. Güngör, “Turkish verbal multiword expressions corpus”,

2018 26th Signal Processing and Communications Applications Conference (SIU),

65

pp. 1–4, May 2018.

7. Ramisch, C., S. R. Cordeiro, A. Savary, V. Vincze, V. Barbu Mititelu, A. Bhatia,

M. Buljan, M. Candito, P. Gantar, V. Giouli, T. Güngör, A. Hawwari, U. Iñurrieta,

J. Kovalevskaitė, S. Krek, T. Lichte, C. Liebeskind, J. Monti, C. Parra Escart́ın,

B. QasemiZadeh, R. Ramisch, N. Schneider, I. Stoyanova, A. Vaidya, A. Walsh,

C. Aceta, I. Aduriz, J.-Y. Antoine, Š. Arhar Holdt, G. Berk, A. Bielinskienė,

G. Blagus, L. Boizou, C. Bonial, V. Caruso, J. Čibej, M. Constant, P. Cook,

M. Diab, T. Dimitrova, R. Ehren, M. Elbadrashiny, H. Elyovich, B. Erden, A. Es-

tarrona, A. Fotopoulou, V. Foufi, K. Geeraert, M. van Gompel, I. Gonzalez,

A. Gurrutxaga, Y. Ha-Cohen Kerner, R. Ibrahim, M. Ionescu, K. Jain, I.-P.

Jazbec, T. Kavčič, N. Klyueva, K. Kocijan, V. Kovács, T. Kuzman, S. Leseva,

N. Ljubešić, R. Malka, S. Markantonatou, H. Mart́ınez Alonso, I. Matas, J. Mc-

Crae, H. de Medeiros Caseli, M. Onofrei, E. Palka-Binkiewicz, S. Papadelli, Y. Par-

mentier, A. Pascucci, C. Pasquer, M. Pia di Buono, V. Puri, A. Raffone, S. Ratori,

A. Riccio, F. Sangati, V. Shukla, K. Simkó, J. Šnajder, C. Somers, S. Srivastava,

V. Stefanova, S. Taslimipoor, N. Theoxari, M. Todorova, R. Urizar, A. Villavicen-

cio and L. Zilio, “Annotated corpora and tools of the PARSEME Shared Task on

Automatic Identification of Verbal Multiword Expressions (edition 1.1)”, , 2018,

http://hdl.handle.net/11372/LRT-2842, LINDAT/CLARIN digital library at

the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics

and Physics, Charles University.

8. Berk, G., B. Erden and T. Güngör, “Deep-BGT at PARSEME Shared Task

2018: Bidirectional LSTM-CRF Model for Verbal Multiword Expression Iden-

tification”, Proceedings of the Joint Workshop on Linguistic Annotation, Multi-

word Expressions and Constructions (LAW-MWE-CxG-2018), pp. 248–253, Asso-

ciation for Computational Linguistics, Santa Fe, New Mexico, USA, Aug. 2018,

https://www.aclweb.org/anthology/W18-4927.

9. Berk, G., B. Erden and T. Güngör, “Representing Overlaps in Sequence Labeling

Tasks with a Novel Tagging Scheme: bigappy-unicrossy”, A. Gelbukh (Editor),

66

Computational Linguistics and Intelligent Text Processing , Springer International

Publishing, 2019 (to appear).

10. Rosén, V., K. De Smedt, G. S. Smørdal Losnegaard, E. Bejček, A. Savary and

S. Osenova, “MWEs in Treebanks: From Survey to Guidelines”, Tenth Interna-

tional Conference on Language Resources and Evaluation (LREC 2016), Portorož,

Slovenia, May 2016, https://hal.archives-ouvertes.fr/hal-01505051.

11. Adalı, K., T. Dinç, M. Gokirmak and G. Eryigit, “Comprehensive annotation of

multiword expressions for Turkish”, Proceedings of TurCLing , pp. 60–66, 2016.

12. Savary, A., M. Sailer, Y. Parmentier, M. Rosner, V. Rosén, A. Przepiórkowski,

C. Krstev, V. Vincze, B. Wójtowicz, G. S. Losnegaard, C. Parra Escart́ın,

J. Waszczuk, M. Constant, P. Osenova and F. Sangati, “PARSEME – PARSing

and Multiword Expressions within a European multilingual network”, 7th Lan-

guage & Technology Conference: Human Language Technologies as a Challenge

for Computer Science and Linguistics (LTC 2015), Poznań, Poland, Nov. 2015,

https://hal.archives-ouvertes.fr/hal-01223349.

13. Ramshaw, L. and M. Marcus, “Text Chunking using Transformation-

Based Learning”, Third Workshop on Very Large Corpora, 1995,

http://aclweb.org/anthology/W95-0107.

14. Ratnaparkhi, A., Maximum Entropy Models for Natural Language Ambiguity Res-

olution, Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, 1998,

aAI9840230.

15. Schneider, N., E. Danchik, C. Dyer and N. A. Smith, “Discriminative lexical se-

mantic segmentation with gaps: running the MWE gamut”, Transactions of the

Association for Computational Linguistics , Vol. 2, pp. 193–206, 2014.

16. Graves, A., A.-r. Mohamed and G. Hinton, “Speech recognition with deep recur-

rent neural networks”, Acoustics, speech and signal processing (icassp), 2013 ieee

67

international conference on, pp. 6645–6649, IEEE, 2013.

17. Lample, G., M. Ballesteros, S. Subramanian, K. Kawakami and C. Dyer, “Neu-

ral architectures for named entity recognition”, arXiv preprint arXiv:1603.01360 ,

2016.

18. Legrand, J. and R. Collobert, “Phrase Representations for Multiword

Expressions”, Proceedings of the 12th Workshop on Multiword Expres-

sions , pp. 67–71, Association for Computational Linguistics, 2016,

http://aclweb.org/anthology/W16-1810.

19. Huang, Z., W. Xu and K. Yu, “Bidirectional LSTM-CRF models for sequence

tagging”, arXiv preprint arXiv:1508.01991 , 2015.

20. Ehren, R., T. Lichte and Y. Samih, “Mumpitz at PARSEME Shared Task

2018: A Bidirectional LSTM for the Identification of Verbal Multiword Expres-

sions”, Proceedings of the Joint Workshop on Linguistic Annotation, Multiword

Expressions and Constructions (LAW-MWE-CxG-2018), pp. 261–267, Associa-

tion for Computational Linguistics, Santa Fe, New Mexico, USA, Aug. 2018,

https://www.aclweb.org/anthology/W18-4929.

21. Boros, T. and R. Burtica, “GBD-NER at PARSEME Shared Task 2018: Multi-

Word Expression Detection Using Bidirectional Long-Short-Term Memory Net-

works and Graph-Based Decoding”, Proceedings of the Joint Workshop on Lin-

guistic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-

2018), pp. 254–260, Association for Computational Linguistics, Santa Fe, New

Mexico, USA, Aug. 2018, https://www.aclweb.org/anthology/W18-4928.

22. Zampieri, N., M. Scholivet, C. Ramisch and B. Favre, “Veyn at PARSEME

Shared Task 2018: Recurrent Neural Networks for VMWE Identification”,

Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Ex-

pressions and Constructions (LAW-MWE-CxG-2018), pp. 290–296, Associa-

tion for Computational Linguistics, Santa Fe, New Mexico, USA, Aug. 2018,

68

https://www.aclweb.org/anthology/W18-4933.

23. Elman, J. L., “Finding structure in time”, Cogni-

tive Science, Vol. 14, No. 2, pp. 179 – 211, 1990,

http://www.sciencedirect.com/science/article/pii/036402139090002E.

24. Graves, A. and J. Schmidhuber, “Framewise phoneme classifica-

tion with bidirectional LSTM and other neural network architec-

tures”, Neural Networks , Vol. 18, No. 5, pp. 602 – 610, 2005,

http://www.sciencedirect.com/science/article/pii/S0893608005001206,

iJCNN 2005.

25. Hochreiter, S. and J. Schmidhuber, “Long Short-Term Mem-

ory”, Neural Comput., Vol. 9, No. 8, pp. 1735–1780, Nov. 1997,

http://dx.doi.org/10.1162/neco.1997.9.8.1735.

26. Lafferty, J. D., A. McCallum and F. C. N. Pereira, “Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data”, Proceedings

of the Eighteenth International Conference on Machine Learning , ICML ’01, pp.

282–289, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001,

http://dl.acm.org/citation.cfm?id=645530.655813.

27. Reimers, N. and I. Gurevych, “Optimal Hyperparameters for Deep LSTM-

Networks for Sequence Labeling Tasks”, CoRR, Vol. abs/1707.06799, 2017,

http://arxiv.org/abs/1707.06799.

28. “CoNLL-U Format”, http://universaldependencies.org/format.html, ac-

cessed: 2019-05-30.

29. Eryiğit, G., “ITU Turkish NLP Web Service”, Proceedings of the Demonstrations at

the 14th Conference of the European Chapter of the Association for Computational

Linguistics (EACL), Association for Computational Linguistics, Gothenburg, Swe-

den, April 2014.

69

30. “TDK”, http://www.tdk.gov.tr/, accessed: 2019-05-30.

31. Grave, E., P. Bojanowski, P. Gupta, A. Joulin and T. Mikolov, “Learning Word

Vectors for 157 Languages”, Proceedings of the International Conference on Lan-

guage Resources and Evaluation (LREC 2018), 2018.

32. Chollet, F. et al., “Keras”, https://keras.io, 2015.

33. Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-

rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,

G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,

D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,

B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,

F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu and X. Zheng,

“TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems”, , 2015,

https://www.tensorflow.org/, software available from tensorflow.org.

34. Reimers, N. and I. Gurevych, “Reporting score distributions makes a differ-

ence: Performance study of lstm-networks for sequence tagging”, arXiv preprint

arXiv:1707.09861 , 2017.

35. Sang, E. F. T. K. and J. Veenstra, “Representing Text Chunks”, Proceedings of

the Ninth Conference on European Chapter of the Association for Computational

Linguistics , EACL ’99, pp. 173–179, Association for Computational Linguistics,

Stroudsburg, PA, USA, 1999, https://doi.org/10.3115/977035.977059.

