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This thesis was supported by Boğaziçi University Research Fund Grant Number

14420.



iv

ABSTRACT

Identification of Verbal Multiword Expressions

Using Deep Learning Architectures and Representation

Learning Methods

Understanding multiword expressions (MWEs) plays an instrumental role in

Natural Language Processing applications such as parsing and machine translation.

MWE identification is a task that automatically detects and classifies MWEs in run-

ning text. As with the natural characteristics of MWEs, significant challenges exist in

MWE identification. The challenges are discontinuity, overlaps, ambiguity, and vari-

ability. Considering the recent attempts of the PARSEME (PARSing and Multi-word

Expressions) network on verbal multiword expressions (VMWEs), we focus on the iden-

tification of VMWEs. To contribute to MWE research, we present a Turkish corpus

containing annotated VMWEs. In addition to this, we develop a multilingual VMWE

identification system based on bidirectional long short term memory with conditional

random fields networks accompanied with the gappy 1-level tagging scheme to respond

to the discontinuity challenge. To push forward our study, we examine the impact of

data representation format on the VMWE identification task. Our results show that

data representation format is important to identify discontinuous VMWEs. We intro-

duce the bigappy-unicrossy tagging scheme in order to recognize overlaps in sequence

labelling tasks. Moreover, we enhance our neural VMWE identification model with au-

tomatically learned embeddings by neural networks to rise to the variability challenge

in VMWE identification. To this purpose, we compare character-level convolutional

neural networks and character-level bidirectional long short-term (BiLSTM) networks.

We analyze two different schemes to represent morphological information using BiL-

STM networks. Our results demonstrate that character embeddings and morphologi-

cal embeddings improve performance in general. The choice of representation learning

method depends on language.
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ÖZET

Çok Sözcüklü Fill İfadelerinin Derin Öğrenme Mimarilari ve

Gösterim Öğrenme Metotları Kullanılarak Saptanması

Çok sözcüklü ifadelerini (ÇSİ) anlamak Doğal Dil İşleme’de ayrıştırma, makine

çevirisi uygulamaları için önemlidir. ÇSİ’leri saptama metinde otomatik olarak çok

sözcüklü ifadeleri tanımlamak ve sınıflandırma işlemidir. ÇSİ’ler doğal karakterlerinden

dolayı süreksizlik, çakışma, belirsizlik ve değişkenlik açısından zorlayıcıdır. PARSEME

(PARSing and Multi-word Expressions) oluşumunun güncel çok sözcüklü fiil ifadeleri

(ÇSFİ) üzerine yaptığı çalışmaları takip ederek, ÇSFİ saptanması üzerine odaklanıyoruz.

ÇSFİ’ler araştırmasına katkı sağlamak için ÇSFİ’ler içeren bir Türkçe derlem sunuy-

oruz. Ayrıca, çift yönlü uzun kısa-vadeli bellek ve koşullu rastgele alanlar ağını ve

birinci seviye boşluklu etiketleme şeması ile kullanan çok dilli ÇSFİ’leri saptayan bir

sistem geliştirdik. Çalışmamızı ilerletmek için, farklı veri gösterim formatlarının etk-

isini ÇSFİ saptama işlemi üzerinde inceledik. Süreksiz örnekleri göstermek sistemimizin

ÇSFİ dizilerini tam olarak daha iyi tahmin etmesini sağladı. Ayrıca, iki boşluk-

bir çarpışma etiketleme formatını dizi etiketleme işlemlerinde çakışmaları tanımlamak

için geliştirdik. Ek olarak, değişkenlik problemi için sinir ağları ile otomatik olarak

öğrenilmiş gömmeleri kullanarak sistemimizi zenginleştirdik. Bu amaçla, karakter se-

viyesinde evrişimli sinir ağlarını ve karakter seviyesinde çift yönlü uzun kısa-vadeli

sinir ağlarını karşılaştırdık. Ek olarak, iki farklı ek bilgisi gösterim şeklini çift yönlü

uzun kısa-vadeli sinir ağları kullanarak inceledik. Sonuçlarımız karakter ve ek bilgisi

gömmelerinin performansı geliştirdiğini gösteriyor. Gösterim öğrenme metotu seçimi

dile bağlıdır.
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1. INTRODUCTION

Language is often accepted as one of the important components of human intelli-

gence. In the context of Artificial Intelligence (AI), it is therefore required to properly

mimic the understanding of human language to build intelligent systems. With the

increasing demand for such intelligent systems, Natural Language Processing (NLP)

has received special attention in recent years. Today, NLP researchers study a number

of difficult problems to contribute to the development of AI. Multiword expressions

(MWEs), described as ”a pain in the neck for NLP” [1], are one of the significant chal-

lenges in NLP research that needs to be analyzed with a special and comprehensive

methodology.

MWEs can be defined as lexical items that made up of multiple lexemes and have

the idiomatic character at lexical, syntactic, semantic, pragmatic, and/or statistical

levels [2]. In more detail, the term idiomaticity used to describe MWEs refers to a

situation in which the linguistic properties of MWEs cannot be derived from that of

component items. For example, the expression of kick the bucket means to die. Each

component word of the expression does not make an individual contribution to the

semantics of the whole. As another example, traffic light, it is possible to figure out

the semantics of the expression from its parts; however, the expression also produces

a new compositional semantics which refers to an object.

Interpreting MWEs plays a key role in NLP applications such as parsing and

machine translation. The incorporation of the MWE processing methods into pars-

ing helps resolve the problem of ambiguity and reduce complexity. In the context of

machine translation, this may improve the translation of phrases and the word align-

ment. MWE identification is one of the ways to handle MWEs in NLP tasks. To be

more precise, MWE identification is a process that automatically annotates MWEs

in running text. The issue of MWE identification can be addressed by following nu-

merous approaches such as rule-based methods, supervised and unsupervised learning

algorithms, and sequence labelling methods. It is also worth noting that the basic
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characteristics of MWEs present considerable challenges in MWE identification. The

challenges can be summarized under four headings: discontinuity, overlaps, ambiguity,

and variability [3].

In the last few years, significant attempts have been made to tackle the spe-

cific problems in MWE research. A scientific organization of PARSEME (PARSing

and Multi-word Expressions) [4] has managed regular events related to the treatment

of MWEs. The recent events have been dedicated to verbal multiword expressions

(VMWEs) whose syntactic head is a verb such as to make a mistake. In edition 1.1 of

the PARSEME Shared Task on automatic identification of VMWEs, the organization

has released the gold standard corpora including annotated VMWEs on 20 languages

in collaboration with NLP researchers. The shared task has provided an opportunity

for NLP researchers to develop cross-lingual VMWE identification systems.

On the question of VMWE identification, first, we need to explore the sequence

labelling literature. Sequence labelling is a type of pattern recognition task that assigns

sequences of categorical labels to sequences of input data [5]. Several downstream NLP

tasks, including Part-of-Speech (POS) tagging, Named Entity Recognition (NER) and

chunking, can be treated using sequence labelling models. The prominent models em-

ployed supervised algorithms like Support Vector Machine (SVM), and generative and

discriminative algorithms based on Hidden Markov Models and Conditional Random

Fields (CRFs) in the decades of 2000s and 2010s [6–9]. Nevertheless, these approaches

heavily relied on the handcrafted features and external resources. With the recent

advances in deep learning, Convolutional Neural Network (CNN) and Long Short-term

Memory (LSTM) architectures have been shown to be effective for numerous NLP

tasks [10–12]. In addition, recent studies based on bidirectional LSTM with CRF

(BiLSTM-CRF) networks that combine a statistical approach and a neural network

approach have achieved remarkable results on sequence labelling tasks without using

the hand-crafted features [13–15].

In addition to the promising deep learning architectures, it is also necessary to re-

view the representation learning methods that have been broadly utilized for sequence
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labelling models. In the 2010s, distributed word representations or word embeddings

have become an essential part of NLP models to capture semantic and syntactic in-

formation [16, 17]. Accordingly, word embeddings have been widely used for neural

network based sequence labelling models. Besides word embeddings, many neural se-

quence labelling models have exploited character-level representations of words in or-

der to extract morphological and syntactic information without using the hand-crafted

features [14, 15, 18–20]. To obtain character-level representations, most of the pro-

posed models have employed a CNN or a bidirectional LSTM (BiLSTM) network.

Some studies comparing these two approaches used in sequence labelling models have

demonstrated that the choice of neural network architecture to learn character-level

representations depends on the type of sequence labelling task and the corresponding

dataset [21, 22]. Additionally, a recent study focusing on morphological analysis has

discovered the importance of morphological embeddings computed over morphological

tags on the NER task [23].

Turning now to VMWE identification, a huge body of the literature has paid

attention to statistical and machine learning approaches [24–27]. Neural network based

approaches have gained an interest in recent years [28–31]. However, a more conceptual

analysis is required to properly build neural networks for VMWE identification. To this

purpose, it is important to consider the major challenges that result from the nature of

MWEs. In the context of the discontinuity and overlapping challenge, feasible solutions

have been put forward to recognize discontinuous and nested MWEs in supervised

algorithms [32], but the overlapping challenge remains limited. Moreover, even though

it is beneficial to take into morphological analysis account for the variability challenge

[3], previous studies have exclusively focused on the handcrafted features to capture

morphological information [24–26,33]. To date, there are only a few works that examine

character-level neural models for VMWE identification. [31].

In this Thesis, we aim to develop a multilingual VMWE identification system

by responding to the challenges that stem from the nature of MWEs. As a starting

point, we create a Turkish corpus containing annotated VMWEs. To the main pur-

pose, we propose a VMWE identification system based BiLSTM-CRF networks with
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regarding the discontinuity challenge. To extend our study, we analyze the importance

of data representation format on the VMWE identification task. We introduce a novel

tagging scheme called bigappy-unicrossy in order to represent overlaps in sequence la-

belling tasks. Last, we explore different representation learning methods to rise to the

variability challenge in VMWE identification.
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2. LITERATURE REVIEW

2.1. Surveys on Multiword Expressions

In a preliminary study related to MWE research [1], MWEs are divided into two

main categories: lexicalized phrases and institutionalized phrases. First, lexicalized

phrases show the syntactic or semantic idiomaticity to some extent. They contain

words which cannot be separately used. Furthermore, lexicalized phrases have three

sub-groups: fixed expressions, semi-fixed expressions, and syntactically flexible expres-

sions. Fixed expressions do not undergo morphosyntactic variation and internal modi-

fication, namely, they are immutable expressions e.g. in short. Semi-fixed expressions

allow some degree of lexical variation like the variation in reflexive form, or determiner

selection e.g. car park. Syntactically flexible MWEs (e.g. look up) display a wide

range of syntactical behaviour with respect to the word order, internal modification,

syntactic variation. Second, institutionalized phrases are the expressions that have a

higher frequency than any alternative word combinations e.g. fresh air.

A great deal of previous research into MWEs describes five different types of

idiomaticity [2]. First, lexical idiomaticity occurs when one or more components of an

MWE do not exist in the lexicon of the language such as ad hoc, ad hominem. Second,

syntactic idiomaticity means that the syntactical properties of an MWE cannot be

derived from the syntax of its components. For instance, although the expression of

by and large is an adverb, it consists of a preposition (by) and an adjective (large).

Third, in terms of semantic idiomaticity, the meaning of an MWE cannot be predicted

from its components. Idioms illustrate this point clearly, for example, spill the beans.

Also, the expressions like bus driver, traffic light have idiomaticity at the semantic

level. Fourth, pragmatic idiomaticity covers MWEs describing a fixed set of situations

or used in a particular context such as good morning. Last, a particular combination

of words tends to occur more frequently compared to alternative phrasings of the same

concept, therefore these kinds of MWEs show statistical idiomaticity, including black

and white, salt and pepper.
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A recent survey about MWEs [3] determines the main challenges encountered in

MWE identification as follows:

• Discontiguity: MWEs can be continuous or discontinuous. Consider the example

I made some big mistakes ; the expression make mistake includes other tokens

as some, big between its components. Additionally, the tokens of the same ex-

pression can appear in a different order because of its flexibility like in another

example This is the biggest mistake that you have made at work. This problem

can vary according to language.

• Overlaps: Overlaps occur in two ways: nesting and sharing. Discontinuous

MWEs can potentially overlap with other nested MWEs. To illustrate, in the

sentence I took her decision to move on seriously, there is a nested MWE move

on between the components of take seriously. Furthermore, such MWEs can

share tokens in some cases. A given sentence Pay close attention who don’t clap

when you win includes two MWEs that shares a token such as pay attention and

close attention.

• Ambiguous: It is needed to distinguish the non-compositional usage of a MWE

from the literal usage of a word combination in the text to solve ambiguity in

MWE identification. For example, spill the beans can occur in both usage: He

spilled the beans about the surprise vs. I spilled the beans on the floor.

• Variability: Flexible MWEs show variation in the form. To detect the variants of

MWEs can be challenging for MWE identification. For example, make mistake

can undergo syntactic variations like make/made/making mistake. Morphological

and syntactic analysis can be useful for this problem.

2.2. PARSEME

The PARSEME initiative has organized two shared tasks with the aim of iden-

tifying VMWEs in text for the last two years. The first shared task has been held in

2017, referred as edition 1.0 of the PARSEME Shared Task on automatic identification

of VMWEs [34]. The second one has been held in 2018, referred as edition 1.1 of the

PARSEME Shared Task on automatic identification of VMWEs [4]. Edition 1.1 of the
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PARSEME Shared Task has taken place in two phases. In the first phase, the organi-

zation has released a new annotation guideline that describes the types of VMWEs to

the language teams. For languages covered by edition 1.0 of the PARSEME corpora,

the language teams have updated the existing training and development corpora and

developed new test corpora according to the guideline. Also, new language teams have

involved in edition 1.1 of the PARSEME corpora. They have developed new train-

ing, development and test corpora. In the second phase, the organization has publicly

released the PARSEME training, development and test corpora, and several systems

have participated in the shared task. The competition has been divided into two tracks

as closed track and open track. The systems using only the provided data have com-

peted in the closed track. The systems using external resources as well as the provided

data have competed in the open track. Additionally, the organization has introduced

new evaluation metrics focusing on MWE-specific challenges to compare the systems

in the shared task in a systematic way.

The PARSEME organization assessed the quality of a VMWE identification sys-

tem with two general metrics: MWE-based score and token-based score. The MWE-

based score represents the percentage of VMWE sequences that are fully predicted.

However, the token-based score considers also the partial matches, namely the per-

centage of the predicted tokens in VMWE sequences. Besides the general metrics, the

MWE-specific evaluation metrics were defined as follows:

• Continuity metric is calculated for two cases: continuous VMWEs (e.g. take off

your coat) and discontinuous VMWEs (e.g. take your coat off ).

• Length metric is calculated for two cases: single-token VMWEs (e.g. aufmachen

(to open)) and multi-token VMWEs (e.g. macht es auf (to open it up)).

• Novelty metric is calculated for two cases: seen VMWEs and unseen VMWEs. If

a VMWE in the test corpus is previously annotated with the same set of lemmas

in the training corpus, it is regarded as seen; otherwise, it is regarded as unseen.

For instance, the VMWE made certain decision in the test corpus has the same

set of lemmas with the VMWE make a good decision in the training corpus, so

it is accepted as seen.
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• Variability metric is calculated for only the variants of the seen VMWEs. For

example, the occurence of decision we made in the test corpus is different from

the order of surface-form tokens in make a decision in the training corpus, so it

is accepted as a variant of a seen VMWE.

2.3. Machine Learning Methods

Liebeskind and HaCohen-Kerner [24] target to automatically identify verb-noun

MWEs which consist of a verb and a noun on Hebrew language. They implement nine

supervised classification algorithms using three feature sets. Although the previous

studies investigate statistical approaches and linguistic approaches, they additionally

consider semantical features. The semantic, linguistic and statistical features (206

features in total) are extracted from available resources. In the evaluation, the semantic

features outperform the linguistic ones and the statistical ones. Also, they test different

combinations of feature sets. The combination of all features results in the highest

accuracy of 80.47%. On the other side, the semantic and statistic features result in

80.29% accuracy.

Maldonado et al. [25] explore a sequence labelling approach for the identification

of VMWEs on 12 languages. They build a prediction model having two sequential

blocks: a CRF model and a semantic re-ranking model. In the first step, the CRF

model labels VMWE sequences in a sentence with a confidence score. The feature

set consists of the surface form, the lemma and the POS tag of a token. If syntactic

dependency information is available in language corpus, the surface form, the lemma,

and the POS tag of the token’s head and the dependency relation tag are added to the

feature set to describe the relationships between different morpho-syntactic types. In

the second step, the re-ranking model receives the 10 most likely candidate VMWEs

in the sentence from the CRF model. Also, the context vectors computed using an

external resource is given to the model as input. This model assigns a new score to

every candidate VMWE. Then, it labels the one with the highest score as a VMWE. In

the experiments, they observe that the features based on syntactic dependency relation

improve the performance. Additionally, after applying the re-ranking method to the
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outputs of the CRF model, the averaged MWE-based score over all languages increases

by 12%.

Boros et al. [26] develop a CRF sequence labelling model on 12 languages for the

identification of VMWEs. They aim to predict transitions between labels instead of

the labels. The prediction model is carried out in two stages. First, the model predicts

the head words, namely verb in this case, which is called head labelling. The feature

set includes the lemma and POS tag of current and previous tokens. In other words,

they use a feature window size of two. Second, the model predicts the remaining parts

of VMWEs, which is called tail labelling. The predicted head labels in the first stage

are added to the feature set in the second one. However, they prefer to use a feature

window size of four in the tail labelling. They obtain a remarkable result for only the

Romanian dataset.

Waszczuk [27] designs a VMWE identification system based on tree-structured

CRF that makes use of two sequential algorithms. The study assumes that CRF is

successful at identifying continuous entities, but if the algorithm processes a sequence in

the form of a dependency tree, it can also handle discontinuity. Accordingly, the system

constructs a dependency tree with two possible tags (MWE and not-MWE). Then,

it employs a multiclass logistic regression algorithm to find the optimal hyperpath

encoded in the hypergraph for the dependency tree. The feature set includes the

surface form, lemma and POS tag information provided in the corpora. The system

ranked first with respect to the general ranking in the closed track of edition 1.1 of the

PARSEME Shared Task.

2.4. Deep Learning Methods

Huang et al. [13] introduce a bidirectional LSTM-CRF network architecture, that

uses both statistical and non-linear approaches for sequence labelling tasks. This study

proposes that the BiLSTM-CRF network is capable of considering past and future in-

put features via a BiLSTM layer as well as sentence-level tag information via a CRF

layer. They conduct a number of experiments using five different architectures which
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are LSTM, BiLSTM, CRF, LSTM-CRF, and BiLSTM-CRF on three NLP sequence

labelling tasks which are POS tagging, chunking, and NER. They construct the same

feature set for each experiment. The feature set consists of pre-trained word em-

beddings with the dimension of 50, spelling and context features extracted from the

datasets. The spelling features generated for each token are the followings: whether

a token starts with a capital letter, whether it is in all uppercase, whether it is in all

lowercase, whether it contains both letters and digits, whether it contains punctuation,

etc.

As a result, the BiLSTM-CRF model slightly outperforms the other models on

three datasets. Also, the accuracy of the model is comparable to the state-of-the-

art result for each dataset. Nevertheless, when they remove the spelling and context

features from the feature set, the performances of all models decrease. The removal

of some features significantly affects the performance of the CRF model compared to

the BiLSTM-CRF model. This demonstrates that the BiLSTM-CRF model is less

dependent on the engineered features than the CRF model.

Legrand and Collobert [28] present a neural network model that uses the IOBES

tagging scheme in order to perform MWE identification. They test their approach on a

French corpus that includes 22600 annotated MWEs. First, a neural network computes

fixed-size word and phrase representations over variable length chunks in a sentence.

Then, a linear classifier takes as input the representations so that it calculates tag

scores for each token in the sentence. Last, the Viterbi algorithm decodes the best

tag sequence for the sentence. The model delivers similar performance to the previous

studies on this dataset.

Klyueva et al. [29] follow a deep learning approach based on Recurrent Neural

Network (RNN) to identify VMWEs on 18 languages. They use randomly initialized

form, lemma and POS tag embeddings with a size of 100 as input. The model is trained

using Adam optimizer. Also, the batch size of 64 is chosen for all languages. Even

though they succeed in predicting partial VMWE sequences (the token-based score)

for a few languages, they fail to predict full VMWE sequences (the MWE-based score)
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when compared to the other results in the literature.

Stodden et al. [30] implement an arc-standard transition algorithm using neural

network architecture for the identification of VMWEs in edition 1.1 of the PARSEME

Shared Task. The system takes as input the surface form, lemma, POS tag, and length

of each token. First, the system employs a transition-based dependency parser to find

relationships between words. Then, it determines the best transition sequence for a

sentence using a CNN based classifier. They prefer to use a kernel SVM layer after

the CNN layer instead of a softmax layer. Whereas the system achieves better results

for eight of 19 languages than the other systems in the shared task, it delivers 0%

accuracy on the Turkish dataset. After removing some rows that include additional

information in the dataset, the accuracy of the system increases from 0% to 39.34%.

This contradictory result may be due to that the system is sensitive to the noise in the

dataset.

In edition 1.1 of the PARSEME Shared Task, Taslimipoor and Rohanian [31]

design a neural network model that combines CNN and BiLSTM-CRF architectures

in order to identify VMWEs. Also, they use IOB tagging scheme. The first part of

model computes bigram and trigram character embeddings on a CNN layer. Then,

it concatenates the character embeddings to pre-trained word embeddings so that it

constructs the input representation vector. Moreover, the model exploits word shape

features and POS tag information for each token as input. The word shape features

include the following binary information: whether a word starts with a capital letter, it

starts with #, it starts with @, it is an URL, and it contains a digit or not. The second

part of the model predicts the sequence of tags for the sentences using BiLSTM-CRF

classifier. Additionally, when converting the predicted tags in IOB tagging format to

the annotation format, they apply a filtering technique for the predicted ones. If the

tag I does not have any predecessor B tag, they mark these cases as non-VMWE. The

proposed system takes first place in terms of general ranking in the open and closed

track of shared task.
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2.5. Tagging Schemes

Schneider et al. [32] offer a new tagging scheme called gappy 1-level to encode

discontinuous and nested MWEs in the text. The gappy 1-level tagging scheme is a

variant of the IOB tagging scheme. It augments the IOB tagging scheme including B,

I, O tags with additional tags b, i, o to cover gappy tokens and/or a nested MWE

between the components of a MWE sequence. They compare the gappy 1-level tagging

scheme with the IOB tagging scheme on an English corpus containing 3483 annotated

MWEs. They choose a structured perceptron learning algorithm as a model. The base

model using IOB tagging has an F1-score of 63.20%. The other model using gappy

1-level has an F1-score of 63.50%. As a result, the models perform similarly. The

small difference between the two models could be associated that only one-quarter of

all MWEs constitutes the discontinuous cases in the corpus.

Zampieri et al. [35] examine two different tagging schemes using a deep learning

approach based on an RNN for VMWE identification on 19 languages. The first tagging

scheme contains the same tags as the original IOB tagging scheme. It is also enlarged

with a new tag g in order to represent gappy tokens within a VMWE sequence. How-

ever, this tagging scheme does not make use of the VMWE category labels provided

in the corpora, thereby only labelling the position of VMWE sequences in a sentence.

In contrast, the second tagging scheme also concatenates the VMWE category labels

to the tags. For the first tagging scheme, they add a heuristics layer to the RNN to

determine the VMWE categories. For the second one, the model predicts the tags

with the category labels. Although the first tagging scheme performs worse than the

second one based on MWE-based score, it delivers higher performance than the second

tagging scheme based on token-based score.

2.6. Representation Learning Methods

Lample et al. [15] present a neural network architecture that incorporates

character-level representations using a BiLSTM network into a sequence tagger based

on a BiLSTM-CRF network for NER task. The character-level BiLSTM network allows
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the tagger to learn the prefix of a word via its forward layer as well as the suffix of the

word via its backward layer. To evaluate the effectiveness of the character model, they

compare the proposed architecture with the base BiLSTM-CRF architecture not using

character-level representations on four languages. In addition to this, they analyse the

impact of dropout on the output of the embedding layer. The findings of this study

indicate that the overall F1 score on four languages increases by 0.74% and 1.79% when

using the character-level representations and dropout, respectively.

Ma and End [14] propose an end-to-end model known as BiLSTM-CNN-CRF

without depending on the hand-crafted features and task-specific resources except pre-

trained embeddings for sequence labelling tasks. They test the methodology on two

sequence labelling tasks which are POS tagging and NER . The model comprises dif-

ferent architectures such as CNN and BiLSTM-CRF. First, the CNN layer takes as

input the characters of words and generates character-level embeddings. They choose

a window size of 3 and a filter size of 30, thus the CNN learns character trigrams, and

produces the character vectors with the dimension of 30. Second, the concatenation

of character-level embeddings with word embeddings is given to the BiLSTM-CRF

layer. In this model, dropout with the rate of 0.5 is applied to the input of CNN layer

and BiLSTM layer as well as the output of BiLSTM layer. In the experiments on

the effect of dropout, they observe that applying dropout on such layers improves the

performance of the model on the development set. They state that the proposed model

slightly improves the accuracy of state-of-the-art models by 0.05% and 0.01% for POS

tagging and NER tasks, respectively.

Gungor et al. [23] seek to address the problem of NER on morphologically rich

languages. They investigate four different configurations to construct morphological

embeddings over morphological tags obtained by morphological analysis. The first

configuration called WITH ROOT learns the morphological representations over the

lemma and the morphological tags of a word. The second one called WITHOUT ROOT

does not make use of the lemma of the word, thus just relying on the morphological

tags. The third one is developed for only Turkish. The fourth one called CHAR

treats the concatenation of lemma and morphological tags character by character. A
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BiLSTM network is trained for all types of embeddings. Then, the combination of these

embeddings with the word and character embeddings is fed to a BiLSTM-CRF network

to predict named entity tags. The experimental setup suggests that the configurations

WITH ROOT and CHAR yield better performance than the other two configurations.

Additionally, the usage of morphological embeddings with the word and character

embeddings delivers state-of-the-art results in comparison to the other studies in the

literature.
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3. DATASET

The availability of high-quality datasets is a vital factor in the success of deep

learning approaches for NLP. It is important to evaluate the deep learning approaches

on such datasets constructed with gold standard techniques, thus achieving high stan-

dards. Furthermore, the generalization of these approaches to several languages helps

push NLP research forward, but this condition requires multilingual datasets containing

diverse examples.

A survey on MWE language resources conducted in 2016 demonstrated that the

MWE languages resources encompass MWE lists, MWE lexicons, treebanks and cor-

pora with annotated MWEs, yet each resource comes in certain kinds of MWEs for

one language or a few languages [36]. In 2017, a major step has been taken by the

PARSEME network to meet the need for a common dataset including MWEs. Edition

1.0 of the PARSEME Shared Task has provided the annotated corpora prioritizing

VMWEs for 18 languages [34]. For edition 1.1 of the PARSEME Shared Task in 2018,

the corpora have been revised with the enhanced annotation methodology and enlarged

with additional annotated data [4].

3.1. The PARSEME Corpora Edition 1.1

This section explains the details of the annotation methodology presented in

the PARSEME Shared Task edition 1.1 and the PARSEME corpora edition 1.1 [4].

According to the annotation guideline edition 1.1, a VMWE comprises a head word

which is a verb and at least one syntactically related word. VMWEs are divided into

four main categories as follows:

• Universal categories exist in all languages participated in the shared task. Light-

verb Constructions (LVCs) and Verbal Idioms (VIDs) belong to universal cat-

egories. LVCs formed by a verb and a noun has two subtypes: LVC.full and

LVC.cause. LVC.full refers to LVCs in which the verb only affects morphological
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features of the whole expression e.g. give a lecture. LVC.cause refers to LVCs in

which the subject of the verb indicates the cause of the noun e.g. give a headache.

VIDs are semantically noncompositional expressions e.g. to go bananas.

• Quasi-universal categories exist in some languages. Inherently Reflexive Verbs

(IRVs), Verb-particle Constructions (VPCs), and Multi-verb Constructions

(MVCs) constitute the quasi-universal categories. IRVs (e.g. wet oneself ) are

formed by a reflexive verb and a clitic pronoun. IRVs are annotated when the

reflexive verb always occurs with the clitic or the clitic affects the meaning or

subcategorization frame of the reflexive verb. VPCs formed by a verb and a

particle has two subtypes: VPC.full and VPC.semi. VPC.full refers to fully

non-compositional VPCs e.g. do in. VPC.semi refers to semi-non-compositional

VPCs e.g. wake up. MVCs are formed by two adjacent verbs that act as a single

predicate e.g. let go.

• Language-specific categories include VMWE types that are specific to one lan-

guage. Inherently Clitic Verbs (LS.ICVs) constitute language-specific categories.

LS.ICVs are observed in only Italian. LS.ICVs are formed by a verb and at least

one non-reflexive clitic e.g. IT: prenderle (EN: get beaten up).

• Optional experimental category is introduced after the annotation process. In-

herently adpositional verbs (IAVs) constitute this category. IAVs are formed by

a verb or VMWE and a preposition or a postposition e.g. put up with.

The PARSEME corpora edition 1.1 are constructed for 20 languages as follows:

Arabic (AR), Bulgarian (BG), German (DE), Greek (EL), English (EN), Spanish (ES),

Basque (EU), Farsi (FA), French (FR), Hebrew (HE), Hindu (HI), Croatian (HR), Hun-

garian (HU), Italian (IT), Lithuanian (LT), Polish (PL), Portuguese (PT), Romanian

(RO), Slovenian (SL), and Turkish (TR). The corpora are publicly available for 19

languages [37]. Only the Arabic corpus is not publicly available, because it does not

have an open licence. Therefore, we consider 19 languages in this Thesis. Each lan-

guage corpus is split into three sets: training set, development set and test set. But

the English corpus does not have the test set.

The participating languages are grouped into four language families as followings:
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• Germanic languages: DE, EN

• Romance languages: ES, FR, IT, PT, RO

• Balto-Slavic languages: BG, HR, LT, PL, SL

• Other languages: EL, EU, FA, HE, HI, HU, TR

The corpora are provided in cupt format [4] which is an extension of CoNLL-U

format [38]. The cupt format includes three types of lines as the CoNLL-U format.

First, each token in a sentence appears in a line and is represented with 11 fields.

The first 10 fields are the same as the CoNLL-U format. The fields contain the word

index (ID), the form (FORM), the lemma (LEMMA), the universal POS tag (UPOS),

the language-specific POS tag (XPOS), the morphological features (FEATS), the syn-

tactic dependencies (HEAD, DEPREL, DEPS), and any other annotation (MISC) of

the token, respectively. The eleventh field (PARSEME:MWE) introduces the VMWE

annotation. Second, comment lines start with #. Third, blank lines represent sen-

tence boundaries. If an underscore occurs in a field, it means that the corresponding

annotation is underspecified. If a star * occurs in a field, it means that the correspond-

ing annotation is empty. Figure 3.1 illustrates an example sentence from the English

training corpus in the cupt format.

Figure 3.1. An example sentence from the English training corpus in the cupt format.
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3.2. Turkish Verbal Multiword Expressions Corpus

In 2018, I participated in the annotation phase of the PARSEME Shared Task

edition 1.1 [4] as a member of the Turkish language team. The Turkish language

team consisted of a language leader and two annotators. The team members were

native speakers of Turkish. I was one of the annotators. The annotation process

proceeded in two stages. First, we updated the Turkish training and test corpora

edition 1.0 [34] according to the annotation guideline edition 1.1. Second, we created

a new Turkish test corpus for edition 1.1. The process took four months. The updated

version of the PARSEME Turkish training and test corpora edition 1.0 was renamed to

the PARSEME Turkish training and development corpora edition 1.1. The new Turkish

test corpus was named the PARSEME Turkish test corpus edition 1.1. This section

explains the updates in the PARSEME Turkish training and development corpora

edition 1.1, and the construction and annotation of the PARSEME Turkish test corpus

edition 1.1 [4, 39].

3.2.1. Categories of Turkish Verbal Multiword Expressions

To gain a better understanding of Turkish VMWEs, we examined a key study

categorising Turkish MWEs in the literature [40]. In the light of this study, we focused

on the following definitions to classify Turkish VMWEs:

• Verbal Compound MWEs: A verbal compound MWE is composed of a verb and

a noun TR: karar vermek (EN: to decide). The component words do not undergo

a significant change in their meanings.

• Light Verb Construction MWEs: Light verbs in Turkish are composed of six

auxiliary verbs: TR: olmak (EN: to be), TR: etmek (EN: to do), TR: yapmak

(EN: to make), TR: kılmak (EN: to render), TR: eylemek (EN: to make), and TR:

buyurmak (EN: to order). The light verbs with a proceeding nominal constitute

light verb construction MWEs e.g. TR: ifade etmek (EN: to state).

• Idiomatic Expression MWEs: Idiomatic expressions occur when the semantics of

expression is different from the semantics of its components e.g. TR: piyasaya
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sürmek (EN: to launch to the market).

• Formulaic Expression MWEs: Formulaic expressions are MWEs that have the

meaning of well-wishing or gratitude e.g. TR: Hoşça kal (EN: Good bye).

• Proverb MWEs: Idiomatic and fixed sentences constitute proverb MWEs e.g.

TR: Damlaya damlaya göl olur (EN: Many a little makes a mickle).

According to the PARSEME annotation guideline edition 1.0 [34], VMWEs were

divided into five categories, including LVCs, Idioms (ID), Inherently Reflexive Verbs

(IReflV), Verb-particle Combinations (VPC), and Other Verbal MWEs (OTH). The

previous edition of the Turkish corpus had three categories which are ID, LVC and

OTH.

Considering the key study about MWEs [40] and the annotation guideline edition

1.0 and 1.1, we decided to use three categories to annotate Turkish VMWEs: LVC.full,

VID and MVC. It is worth mentioning that the LVC.cause category does not exist in

Turkish.

3.2.2. Annotation Phase of Turkish Verbal Multiword Expressions Corpus

In the first stage, we updated the PARSEME Turkish training and test corpora

edition 1.0 based on the changes in the annotation guideline edition 1.1. There were

several differences between the annotation guideline edition 1.0 and the annotation

guideline edition 1.1. The ID and IReflV categories were renamed to VID and IRV,

respectively. The OTH category was removed, the new VMWE categories which are

MVC and IAV were introduced. Additionally, the LVC category was split into two

subcategories which are LVC.full and LVC.cause. Similarly, the VPC category was

split into two subcategories which are VPC.full and VPC.semi. The previous edition

of the Turkish corpus had three categories which are ID, LVC and OTH. Therefore,

we changed the categories of VMWEs annotated as ID and LVC to VID and LVC.full,

respectively. Then, we reviewed the VMWEs annotated as OTH. To determine the

new categories of VMWEs annotated as OTH, we followed the annotation decision

tree constructed by the PARSEME network [4] that is shown in Figure 3.2. However,
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we encountered some issues while categorizing verbal compound constructions. After

we discussed the issues that we came across, we drew up three specifications for the

categorization of Turkish VMWEs. During the annotation process, we made use of the

Turkish Language Institution dictionary [41] to check the meaning of a word.

Figure 3.2. The annotation decision tree constructed by the PARSEME network.

In the second stage, we constructed the new Turkish test corpus for edition 1.1 of

the PARSEME Shared Task. We gathered the data from newspaper articles in several

genres such as politics, world, life, and art and columns. Then, we used ITU Turkish

NLP Web Service [42] to parse and tokenize the data. ITU Turkish NLP Web Service

returned the output in the CoNLL-U format with the POS tags, the morphological

features, and the syntactic dependency tags for each token. The universal dependency

relation tags which occur in the DEPREL field also contained the MWE annotations,
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therefore we used this information to identify candidate VMWEs in the test corpus.

After we annotated the VMWEs in the test corpus, we converted it to the cupt format

by adding the VMWE annotations.

The annotation process starts with identifying a candidate in the text. If the

candidate is formed by a verb and a noun, we initially use the LVC-specific tests in the

decision tree to check whether it is a VMWE or not. If the candidate VMWE passes all

the LVC-specific tests, it is categorized as an LVC. The categorization of an example

expression TR: karar vermek (EN: to decide) is shown as follows:

• LVC.0 - [N-ABS]: The noun should be abstract. TR: karar (EN: decision) is an

abstract noun, so the example passes this test.

• LVC.1 - [N-PRED]: The noun should be predicative. In other words, it should

have a semantic argument. The example TR: karar vermek (EN: to decide) refers

to an event. There is one semantic argument TR: karar veren (EN: the decider).

So, the example passes this test.

• LVC.2 - [N-SUBJ-N-ARG]: The subject of the verb should be a semantic argument

of the noun. In a given sentence TR: Ali ders çalışmaya karar verdi (EN: Ali

decided to study), Ali is the subject of the verb TR: vermek (EN: to give) and

linked to the noun TR: karar (EN: decision). So, the example passes this test.

• LVC.3 - [V-LIGHT]: The verb should be semantically light. That is to say, the

verb changes only morphological features of the noun, it does not add any meaning

to the noun. The verb TR: vermek (EN: to give) adds no meaning to the noun

TR: karar (EN: decision), it just makes the event happen. So, the example passes

this test.

• LVC.4 - [V-REDUC]: When a phrase is constructed using the noun and the

subject without the verb, the phrase should refer to the same event or state. The

constructed phrase TR: Ali’nin kararı (EN: Ali’s decision) refers to the same

event in the example TR: karar vermek (EN: to decide). So, the example passes

the last test, it is categorized as an LVC.
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If the candidate formed by a verb and a noun fails at the LVC-specific tests or

there is a candidate VMWE formed by a verb and at least one other word, we apply

the VID-specific tests in the decision tree for such candidate. If the candidate passes

one of the VID-specific tests, it is categorized as a VID. Otherwise, we accept that it is

not a VMWE. This case is shown by the categorization of an example expression TR:

ifade vermek (EN: to testify) as follows:

• VID.1 - [CRAN]: If the candidate includes a cranberry word, it is marked as

a VID. The components of the example TR: ifade vermek (EN: to testify) are

standalone Turkish words. So, the example does not pass this test.

• VID.2 - [LEX]: VIDs can be lexically inflexible. Considering the example, when

the component TR: ifade (EN: statement) is replaced with its synonym TR:

açıklama (EN: explanation), TR: açıklama vermek (EN: to give an explanation)

does not exist in Turkish. This shows that the example is inflexible. So, it is

categorized as a VID.

• VID.3 - [MORPH]: VIDs can be morphologically inflexible. If the component

TR: ifade (EN: statement) is inflected in the plural form, TR: ifadeler vermek

(EN: to give statements) breaks general grammar rules of Turkish. This means

that the candidate is inflexible. So, it is categorized as a VID.

• VID.4 - [MORPHSYNT]: VIDs can be morpho-syntactically inflexible. In the ex-

ample sentence TR: Karakolda ifade verdim (EN: I testified at the police station),

if the component TR: ifade (EN: statement) takes a possessive suffix, the new

sentence TR: Karakolda ifadeni verdim (EN: I gave your statement at the police

station) is not grammatically correct in Turkish. This shows that the example is

inflexible. So, it is categorized as a VID.

• VID.5 - [SYNT]: VIDs can be syntactically inflexible. Considering the previous

example sentence, it is possible to change the order of the components like TR:

Karakolda verdiğim ifade tekrar kontrol edildi (EN: My statement that I gave at

the police station was checked again). This means that the example is syntacti-

cally flexible. So, it fails at this test.
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As a result, the example passes the VID.2 test, therefore it is categorized as a

VID. There is no need to apply the remaining VID-specific tests for this example.

If there is a candidate formed by a sequence of two adjacent verbs, we apply the

MVC-specific tests for it. For example, in the sentence TR: İki karar arasında gidip

geliyorum (EN: I go and come between two decisions), there is an example expression

TR: gidip gelmek (EN: to go and come). The details of the MVC-specific tests for this

example are given below:

• The verbs usually have the same subject. TR: gitmek (EN: to go) and TR: gelmek

(EN: to come) have the same subject which is ”I” here.

• The verbs usually belong to the connected actions or the same event. TR: gitmek

(EN: to go) and TR: gelmek (EN: to come) refer to the same event.

• The verbs act together as a single predicate. The sequence TR: gidip gelmek (EN:

to go and come) functions together as the verb of the sentence.

In addition to the tests provided in the annotation guideline edition 1.1, there

are three specifications for the annotation of Turkish VMWEs. First, as mentioned

before, the light verbs cover six auxiliary verbs in Turkish. However, LVCs are not

limited to be formed by only these verbs. There are also some supportive verbs that

behave like the semantically light verbs in some cases. For instance, the combination

of the noun TR: oy (EN: vote) and the verb TR: vermek (EN: to give) forms an

LVC TR: oy vermek (EN: to vote). The verb does not add any meaning to the noun,

it just performs an activity of voting. Second, if a noun and the verb TR: vermek

(EN:to give) constitute an LVC, the same noun and the verb TR: almak (EN: to take)

may constitute a VID. For instance, the noun TR: oy (EN: vote) and the verb TR:

almak (EN: to take) form the VID TR: oy almak (EN: to receive vote). This decision

stems from the fact that the verb adds a new meaning to the noun. Also, the noun

cannot be replaced with its synonym TR: rey (EN:vote) in this case, the expression is

lexically inflexible as well. Third, the constructions including the verbs that are TR:

sağlamak (EN: to provide), TR: duymak (EN: to get), TR: ulaşmak (EN: to reach),
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TR: karşılamak (EN: to meet), TR: kullanmak (EN: to use), TR: uygulamak (TR: to

perform) are usually not VMWEs.

3.2.3. Turkish Verbal Multiword Expressions Corpus Results

In this section, we present the results of the PARSEME Turkish corpus edition

1.1. The revised version of the PARSEME Turkish training corpus edition 1.0 was

named the PARSEME Turkish training corpus edition 1.1. The revised version of the

PARSEME Turkish test corpus edition 1.0 was named the PARSEME Turkish develop-

ment corpus edition 1.1. The new Turkish test corpus was released under the name the

PARSEME Turkish test corpus edition 1.1. Additionally, the LVC and ID categories

in the previous corpus were converted to the LVC.full and VID categories, respectively.

The tables in this section show number of sentences, number of annotations per cate-

gory, and a total of VMWE annotations for each subset of the corpus edition 1.0 and

1.1.

As seen in Table 3.1, the PARSEME Turkish training corpus 1.1 contains 6120

VMWEs in total. As seen in Table 3.2, the PARSEME Turkish development corpus

1.1 contains 500 VMWEs in total. Out of a total of 687 OTHs in the previous training

and development sets, 354 were categorized as LVC.fulls, 282 were categorized as VIDs,

1 was categorized as MVC and 50 were categorized as non-MWEs.

The statistics about the PARSEME Turkish test corpus edition 1.1 is given in

Table 3.3. The new corpus consists of 577 sentences with a total of 509 annotated

VMWEs. The test corpus contains 273 LVC.fulls, 235 VIDs and 1 MVC. The MVC

category is the least annotated category among Turkish VMWEs.
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Table 3.1. Statistics about the Turkish training corpus.

Sentences LVC.full VID OTH MVC VMWE

PARSEME 1.0 16715 2624 2911 634 0 6169

PARSEME 1.1 16715 2950 3169 0 1 6120

Table 3.2. Statistics about the Turkish development corpus.

Sentences LVC.full VID OTH MVC VMWE

PARSEME 1.0 1320 199 249 53 0 501

PARSEME 1.1 1320 227 273 0 0 500

Table 3.3. Statistics about the Turkish test corpus.

Sentences LVC.full VID OTH MVC VMWE

PARSEME 1.1 577 273 235 0 1 509
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4. METHODOLOGY

In this Thesis, we model VMWE identification as a sequence labelling task. Fol-

lowing the state-of-the-art models proposed for sequence labelling tasks, we develop

a VMWE identification system based on a BiLSTM-CRF network. We accompany

the BiLSTM-CRF network with the gappy 1-level tagging scheme to recognize dis-

continuous VMWEs. In addition to this, we introduce a new tagging scheme called

bigappy-unicrossy to recognize nested and crossing VMWEs as well as discontinuous

VMWEs. Last, we enhance the proposed neural network architecture with different

feature representations to capture morphological information, thereby handling the

variability challenge.

4.1. Deep Learning Architectures

In this section, we provide a brief description of LSTM, BiLSTM and BiLSTM-

CRF networks and the dropout technique.

4.1.1. Long Short-term Memory

RNNs are a type of neural networks that was designed to process sequential

data. They have been broadly utilized in various tasks ranging from sequence labelling

to sequence prediction. A standard RNN consists of three layers: an input layer, a

hidden layer and an output layer. For a given vector xt at time t, the RNN computes

the hidden state vector ht and the output vector ot as follows:

ht = tanh(Uxt +Wht−1 + bh)

ot = softmax(V ht + b0)

where U , W , and V are the weight matrices, bh and bh are the bias vectors.
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In theory, RNNs take as input the current input and the previous hidden state

vectors, thereby connecting the previous information to the current information. In

practice, RNNs, however, fail at learning long time dependencies, which results in the

vanishing gradient problem [43].

LSTM networks were introduced to overcome the vanishing gradient problem of

RNNs [44]. LSTM networks are an extension of RNNs, however they differ from RNNs

in that they make use of special units to compute the hidden state and the output

vectors. An LSTM architecture consists of a memory cell, an input gate, a forget gate

and an output gate. The implementation of the LSTM architecture is formulated as

follows:

it = σ(Wixt +Riht−1 + bi)

ft = σ(Wfxt +Rfht−1 + bf )

c̃t = tanh(Wcxt +Rcht−1 + bc)

ct = ft � ct−1 + it � c̃t

ot = σ(Woxt +Roht−1 + bo)

ht = ot � tanh(ct)

where σ is the sigmoid function and � is the element-wise product. Wi, Wf , Wc, Wo

denote the input weight matrices. Ri, Rf , Rc, Ro denote the recurrent weight matrices.

bi, bf , bc, bo denote the bias vectors. The input gate vector it, the forget gate vector

ft, and the output gate vector ot are computed using the current input vector xt and

the previous hidden state vector ht. The current cell state vector ct is computed using

the previous cell state vector ct−1, the candidate cell vector c̃t, the input gate it and

the forget gate ft. The hidden state vector ht is computed based on the output gate

ot and the current cell state ct.
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4.1.2. Bidirectional Long Short-term Memory

BiLSTM networks is a type of neural networks that combines an LSTM network

processing sequence in forward order with another LSTM network processing the se-

quence in backward order [45]. In this way, they become capable of capturing past and

future information. A BiLSTM network computes the forward hidden state vector ~ht

and the backward hidden state vector ~ht. The concatenation of the two vectors forms

the output of the BiLSTM network, ht = [~ht; ~ht].

4.1.3. Bidirectional Long Short-term Memory with Conditional Random

Fields

BiLSTM-CRF networks is a hybrid architecture that is composed of a BiLSTM

component and a CRF component [13]. They can learn past and future information

in a sentence via the BiLSTM component as well as the dependencies between the

consecutive tags in the sentence via the CRF component [45,46].

Formally, X = (x1, x2, ..., xn) represents an input sentence consisting of n words.

Each xi is a d-dimensional vector that represents the ith word (e.g. embedding). y =

(y1, y2, ..., yn) represents a sequence of predictions for the input sentence X. Each yi

is a k-dimensional vector where k is the number of unique tags. The BiLSTM layer of

a BiLSTM-CRF network takes as input a sentence X. Then, it computes the output

vector hi = [~hi; ~hi] for each word. The output vectors are fed to the fully connected

layer of the network. The fully connected layer computes the tag score matrix P of

size n× k. Pi,j denotes the score of the jth tag for the ith word. The CRF layer of the

network computes the most likely tag sequence y∗ for the input sentence X as follows:

s(X, y) =
∑
i

Ayi,yi+1
+
∑
i

Pi,yi

y∗ = arg max
ỹ
s(X, y′)

where s(X, y) is the score of a sentence X along with a tag sequence y, and A is a
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transition score matrix of size k × k. Ai,j is the transition score from the tag i to the

tag j.

In this Thesis, we propose several VMWE identification models based on the

described architecture. We change only the input representation of a word xi and IOB

encoding format for each model. More details on this will be discussed in the followings

sections.

4.1.4. Dropout

Dropout is a regularization technique that is commonly used to reduce overfitting

for neural networks. The dropout technique randomly deactivates some neurons in a

neural network with a probability p during training [47].

4.2. Deep-BGT at PARSEME Shared Task 2018

In this section, we present the Deep-BGT system developed for edition 1.1 of the

PARSEME Shared Task on automatic identification of VMWEs [48]. The proposed

system employs a BiLSTM-CRF neural network using the gappy 1-level tagging scheme.

To address the discontinuity problem in MWE identification, we exploit the gappy 1-

level tagging scheme instead of the IOB tagging scheme which is commonly used for

sequence labelling tasks.

The tag set of the gappy 1-level tagging scheme is composed of six types of tags

which are B, I, O, b, i, o. The term chunk used here refers to a MWE sequence. The

term gappy chunk refers to a discontinuous MWE sequence. The term gap refers to

a token that is in between a gappy chunk but does not belong to that chunk. The

uppercase tags are similar to the tags in the IOB tagging schemes. B labels the first

token of a chunk. I labels the other tokens belonging to the chunk. O labels tokens

outside of the chunk. The lowercase tags are used to represent continuous nested chunks

within gappy chunks. b labels the first token of a continuous nested chunk. i labels

the other tokens belonging to the continuous nested chunk. o labels tokens outside of
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any chunk within a gappy chunk. This tagging scheme ignores discontinuous nested

chunks, so it labels these cases as o.

To properly use the gappy 1-level tagging scheme for VMWE identification, we

modify some rules of this tagging scheme. We append the VMWE category tags to the

tags B, I, b, i. For practical reasons, we consider only discontinuous cases made up

of two tokens. If a discontinuous VMWE consists of more than two tokens, we label

the tokens between the first token and the last token of the discontinuous VMWE as

o. Also, we label nested VMWEs within such discontinuous VMWEs as o. For the

VMWEs that share tokens, we remove the tags of the second VMWE that follows

the first VMWE. Moreover, we label single-token VMWEs despite of that the gappy 1-

level tagging scheme considers only multi-token VMWEs. Figure 4.1 shows an example

sentence labelled with the gappy 1-level tagging scheme. The example sentence contains

two VMWEs: took seriously as a VID and move on as a VPC.full.

We develop a VMWE identification model based on the architecture that we

described in Subsection 4.1.3. In this study, we use the pre-trained word embeddings

released by fastText. The fastText embeddings were trained on Common Crawl and

Wikipedia. The vocabulary size of the embeddings is 2M words and the embedding

vector dimension is 300. Additionally, we use POS and DEPREL tags provided in

the dataset to extract dependencies at sentence level. The model takes as input the

concatenation of the pre-trained word embeddings, the one-hot encoding representation

of the POS tags, and the one-hot encoding representation of the DEPREL tags. Figure

4.1 shows the BiLSTM-CRF model developed for the PARSEME Shared Task Edition

1.1.

4.3. Representing Overlaps in Sequence Labeling Tasks with a Novel

Tagging Scheme: bigappy-unicrossy

In this section, we introduce a novel tagging scheme called bigappy-unicrossy in

order to resolve the challenge of overlaps in MWE identification [49]. To evaluate the

bigappy-unicrossy tagging scheme, we compare it with the IOB2 tagging scheme and
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Figure 4.1. BiLSTM-CRF model for VMWE identification.

the gappy 1-level tagging scheme using the BiLSTM-CRF model that we proposed in

Section 4.2 on the VMWE identification task. The bigappy-unicrossy tagging scheme

can be applied to various sequence labelling tasks in which overlapping sequences are

frequently observed.

We approach the VMWE identification task as a sequence labelling problem using

IOB encoding. Over time, several data representation formats have been developed for

sequence labelling tasks. However, the popular formats which are the IOB1 and IOB2

tagging schemes [50,51] are not suitable for the VMWE identification task with regard

to the MWE-specific challenges which are discontinuity and overlaps. Although the

gappy 1-level tagging scheme proposes a solution to represent discontinuous MWEs

and continuous nested MWEs, the other types of overlaps such as crossing and shared

tokens remains to be addressed. To illustrate this, we examine the IOB1 tagging

scheme, the IOB2 tagging scheme and the gappy 1-level tagging scheme in detail.

The IOB1 tagging scheme was proposed to treat chunking as a tagging problem

[50]. The tag set of this tagging scheme consists of three uppercase letters: I, O, B. I

stands for a token inside a chunk. O stands for tokens outside of any chunk. However,

B stands for only the first token of a chunk that immediately follows another chunk of

the same type. In this way, B is only used to separate two neighbouring chunks of the

same type.
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The IOB2 tagging scheme was introduced to treat initial tokens of chunks inde-

pendently [51, 52]. Although the tag set of the IOB2 tagging scheme is exactly the

same as that of the IOB1 tagging scheme, the IOB2 tagging scheme assigns a different

meaning to the tags. B stands for the first token of a chunk. I stands for the other

tokens belonging the chunk. O stands for tokens outside of any chunk. In this way,

every chunk starts with the B tag. If a chunk contains more than one token, I is used

for the remaining tokens of the chunk. Hence, a single-token chunk receives the B tag.

In addition to these schemes, the gappy 1-level tagging scheme was proposed to

treat discontinuous MWEs and continuous nested MWEs in the text. To this purpose,

it enlarges the tag set of the IOB tagging scheme with the new tags b, i, o as we

mentioned in Section 4.2.

In the context of MWEs, the IOB1 and IOB2 tagging schemes cannot represent

discontinuos MWEs in the text. However, the IOB2 tagging schemes can label single-

token MWEs. As regarding the gappy 1-level tagging scheme, it accepts continuous

nested MWEs, but it ignores discontinuous nested MWEs. Also, it is not specifically

designed to recognize the other types of overlaps such as crossing and shared tokens.

In order to properly address the challenges in MWE identification, we propose the

bigappy-unicrossy tagging scheme that can represent both nested and crossing MWEs

besides discontinuous MWEs.

The tag set of the bigappy-unicrossy tagging scheme consists of the following

tags: B, I, O, b, i, o. B labels the first token of a chunk. It is also used for single-token

chunks. I labels the other tokens belonging to the chunk if the chunk contains more

than one token. O labels tokens outside of the chunk. We use the lowercase tags to

represent discontinuous chunks, nested chunks, and crossy chunks. The crossy chunk

term refers to chunks with crosswise positioned tokens. b labels the first token of a

nested or crossy chunk. It is also used for single-token ones. i labels the other tokens

belonging to the nested or crossy chunk. o labels tokens outside of any chunk within

a gappy chunk. It is also used for gaps within the nested chunk.
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The identification of crossing cases is similar to that of nesting cases, therefore this

tagging scheme treats crossing cases and nesting cases in a similar way. For example,

there is a sentence including two chunks X and Y. X is the first chunk seen in the

sentence. Y is the second chunk that follows the chunk X in the sentence. If the index

of the last token of the chunk Y is smaller than the index of the last token of the

chunk X, this case is called nesting. But if the middle tokens of them are positioned

crosswise, this is called crossing. Also, if the index of the last token of the chunk Y is

bigger than the index of the last token of the chunk X, this case is called crossing.

To explain the tagging of nested cases, an example sentence including a discon-

tinuous nested MWE is illustrated in Table 4.1. The sentence contains two MWEs:

take seriously and make changes. While take seriously is a discontinuous MWE, make

changes is a discontinuous nested MWE. The bigappy-unicrossy tagging scheme labels

the gappy token some inside make changes as well as the gappy tokens her, decision,

to inside take seriously.

Table 4.1. An example sentence including a discontinuous nested MWE.

I take her decision to make some changes seriously

O B o o o b o i I

To explain the tagging of crossy cases, an example sentence including crossing

MWEs is illustrated in Table 4.1. The sentence contains three MWEs: made changes,

not only but also, and made additions. The index of the last token of make changes

is smaller than the index of the last token of not only but also. The two MWEs

are positioned crosswise. According to the the bigappy-unicrossy tagging scheme, the

tokens of made changes are labelled with the uppercase tags, the tokens of not only but

also are labelled with the lowercase tags. However, made additions is ignored because

the bigappy-unicrossy tagging scheme does not consider the chunks sharing tokes.

As a result, the bigappy-unicrossy tagging scheme allows two levels of disconti-

nuity, one level of nesting, and one level of crossing.
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Table 4.2. An example sentence including crossing MWEs.

I made not only changes but also additions

O B b i I i i O

To validate our approach, we compare the bigappy-unicrossy tagging scheme with

the IOB2 tagging scheme and the gappy 1-level tagging scheme using the BiLSTM-

CRF model that we described in Section 4.2 on the VMWE identification task. To

obtain baseline results, we choose the IOB2 tagging scheme instead of the IOB1 tagging

scheme, because it can handle single-token VMWEs that are observed in the text. For

the gappy 1-level tagging scheme, we follow the same rules that we mentioned in Section

4.2. However, we label all tokens of the discontinuous VMWEs consisting of more than

two tokens and the nested VMWEs within these VMWEs as the gappy 1-level tagging

suggests.

4.4. Representation Learning Methods

In recent years, the advances in representation learning methods have enabled

NLP models to automatically discover useful information from data instead of rely-

ing on traditional feature engineering methods. In this section, we examine different

representation learning methods to respond to the variability challenge in VMWE

identification. Considering the state-of-the-art sequence labelling models [14, 15, 23],

we focus on character embeddings extracting morphological information from charac-

ter sequences, morphological embeddings extracting morphological information from

morphological features, and the handcrafted features extracting spelling patterns. To

encode character sequences into character embeddings, we exploit two different neural

networks: CNN and BiLSTM. To encode morphological features into morphological

embeddings, we exploit two different input configurations using a BiLSTM network.

Moreover, we examine the effect of dropout training on embeddings.
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4.4.1. Word Embeddings

We build a baseline model based on the BiLSTM-CRF architecture that we de-

scribed in Subsection 4.1.3 to show the level of performance that we can obtain without

using additional information. This model is called Base. The BiLSTM-CRF architec-

ture takes as input only word embeddings. Figure 4.2 shows the architecture of the

Base model. The sentence Seçimi salı günü yapacağız means that We will make the

election on tuesday.

Figure 4.2. Architecture of the Base model using word embeddings.

4.4.2. Spelling Features

Despite of the advances in representation learning, some sequence labelling models

have utilized the handcrafted features [13,31]. We build a model to evaluate the effect

of the handcrafted features on VMWE identification. This model is called Spelling.

The following binary features are extracted for each word in a sentence:

• Whether it starts with an uppercase letter

• Whether all letters of it are in uppercase
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• Whether all letters of it are in lowercase

• Whether it is numeric

• Whether it includes any digit

• Whether it includes any punctuation

• Whether it includes @

• Whether it is an URL

The binary feature vector is concatenated to the word embedding for each word.

The result vector is then given to the BiLSTM-CRF network. Figure 4.3 shows the

architecture of the Spelling model.

Figure 4.3. Architecture of the Spelling model using word embeddings and spelling

features.

4.4.3. Character Embeddings

It has been shown that the use of word embeddings with character embeddings

have improved the performance of sequence labelling models. Some studies have used

CNNs to learn character-level embeddings for sequence labelling tasks [14], others

have used BiLSTM networks for the same purpose [15]. Reimers and Gurevych [21]

and Yang et al. [22] have reported that the difference between the two approaches is

statistically insignificant in general, but the two approaches can give different results for
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different tasks. Also, it is worth noticing that while character-level BiLSTM networks

are designed to extract the prefix and the suffix of a word, character-level CNNs are

designed to extract n-gram features of characters. Regarding the findings, we aim to

evaluate the impact of network choice on learning character-level representations for

VMWE identification. We incorporate two different architectures into the BiLSTM-

CRF architecture that we described in Section 4.1.3. Also, we test the effect of the

dropout layer on the embeddings.

First, we integrate a character-level CNN into the BiLSTM-CRF architecture.

The character-level CNN consists of three layers: an input layer, a convolutional layer

and a max pooling layer. Each character in a word is transformed into a character

embedding. The input layer takes as input the character embeddings of the word.

The second layer performs convolution operation on the character embeddings. The

output of the convolutional layer is fed to the max pooling layer. The max pooling

layer generates the character-level representation of the word. Then, the concatenation

of character-level representations and word embeddings is given to the BiLSTM-CRF

architecture. This model is called CharCNN. Figure 4.4 shows the character-level CNN.

The word yapacağız means that we will do. Figure 4.5 shows the architecture of the

CharCNN model using the character-level CNN.
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Figure 4.4. Character-level CNN.

Figure 4.5. Architecture of the CharCNN model using word embeddings and

character embeddings.
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Second, we apply a dropout mask to the input layer of the BiLSTM-CRF ar-

chitecture using the character-level CNN. This model is called CharCNND. Figure 4.6

shows the architecture of the CharCNND model using the character-level CNN with

the dropout layer. Dashed arrows represent the dropout layer of the model.

Figure 4.6. Architecture of the CharCNND model using word embeddings and

character embeddings with dropout layer.

Third, we integrate a character-level BiLSTM network into the BiLSTM-CRF ar-

chitecture. The character-level BiLSTM network takes as input the character sequences

of a word. The output vectors of the forward and backward LSTM units are concate-

nated to construct character-level representations. Then, the concatenation of word

embeddings and character-level representations is given as input to the BiLSTM-CRF

architecture. This model is called CharBiLSTM. Figure 4.7 shows the character-level

BiLSTM network. Figure 4.8 shows the architecture of the CharBiLSTM model using

the character-level BiLSTM network.
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Figure 4.7. Character-level BiLSTM network.

Figure 4.8. Architecture of the CharBiLSTM model using word embeddings and

character embeddings.

Fourth, we apply a dropout mask to the input vectors of the BiLSTM-CRF

architecture using the character-level BiLSTM network. This model is called Char-

BiLSTMD. Figure 4.9 shows the architecture of the CharBiLSTMD model using the

character-level BiLSTM network with the dropout layer.
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Figure 4.9. Architecture of the CharBiLSTMD model using word embeddings and

character embeddings with dropout layer.

4.4.4. Morphological Embeddings

Gungor et al. [23] have demonstrated that morphological embeddings computed

using morphological tags improve NER performance for morphologically rich languages.

The main idea beyond this study is that morphologically rich languages can carry

additional information in the morphology of the surface forms of words. For example,

the Turkish word yapacağız means we will do. Its morphological representation which

is ”Pos+Fut+A1pl” contains the tense and the number/person agreement information.

In the light of the study proposed by Gungor et al. [23], we compute morphological

embeddings in two ways using a BiLSTM network.

In general, the representation of the morphological analysis of a word is a string

that contains a list of morphological features with a list separator like vertical bar (|),

plus (+) etc. Accordingly, we form two different morphological embedding configura-

tions as follows:



42

• Mor : This configuration uses the morphological analysis of a word. The morpho-

logical analysis of the word is converted into a sequence of morphological features

by splitting a symbol.

• MorChar : This configuration uses both the lemma and the morphological analysis

of a word. It appends the morphological analysis of the word to the lemma of

the word. Then, the output string is decomposed into a sequence of characters.

Table 4.3 illustrates the Mor and MorChar embedding configurations. The

morhological analysis of the word yapacağız is Pos+Fut+A1pl. The lemma of the word

yapacağız is yap. In the Mor configuration, the morhological analysis Pos+Fut+A1pl is

transformed into the sequence of features (’Pos’, ’Fut’, ’A1pl’). In the MorChar config-

uration, the comination of the lemma yap and the morhological analysis ”Pos+Fut+A1pl”

is transformed into the sequence of characters ( ’y’, ’a’, ’p’, ’+’, ’P’, ’o’, ’s’, ’|’, ’F’,

’u’, ’t’, ’|’, ’A’, ’1’, ’p’, ’l’ ).

Table 4.3. Morphological Embedding Configurations.

Morphological Embedding Configuration

Mor (’Pos’, ’Fut’, ’A1pl’)

MorChar ( ’y’, ’a’, ’p’, ’+’, ’P’, ’o’, ’s’, ’|’, ’F’, ’u’, ’t’, ’|’, ’A’, ’1’, ’p’, ’l’ )

Based on the two configurations, we develop two different models using mor-

phological embeddings as well as word embeddings. For each model, we integrate a

BiLSTM network into the BiLSTM-CRF architecture to generate morphological em-

beddings. The BiLSTM network takes as input the corresponding embedding configu-

ration. Then, it outputs morphological embeddings. The concatenation of morpholog-

ical embeddings and word embeddings is fed to the BiLSTM-CRF architecture.

The first model called MorBiLSTM uses the Mor configuration. The second

model called MorBiLSTMD uses the Mor configuration and includes a dropout layer

on the input vectors of the BiLSTM-CRF architecture. The third model called Mor-

CharBiLSTM uses the MorChar configuration. The fourth model called MorCharBiL-
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STMD uses the Mor configuration and includes a dropout layer on the input vectors

of the BiLSTM-CRF architecture.

Figure 4.10 illustrates the BiLSTM network using the Mor embedding configu-

rations to generate morphological embeddings.

Figure 4.10. BiLSTM network using the Mor configuration.

Figure 4.11 illustrates the BiLSTM network using the MorChar embedding con-

figurations to generate morphological embeddings. The network treats the combination

of the lemma and the morphological analysis of a word as a sequence of characters.

This configuration enables the network to learn the relationship between lemmas with

the same prefix. Additionally, it allows the network to extract the common parts in

relevant morphological features. For example, the morphological feature A2sg stands

for second person singular, the morphological feature A2pl stands for second person

plural in Turkish. The common part A2 means second person agreement. When

the morphological features are decomposed into characters, the network can learn this

information.
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Figure 4.11. BiLSTM network using the MorChar configuration.

Figure 4.12 shows the architecture of the MorBiLSTM model. Figure 4.13 shows

the architecture of the MorBiLSTMD model. Figure 4.14 shows the architecture of the

MorCharBiLSTM model. Figure 4.15 shows the architecture of the MorCharBiLSTMD

model.

Figure 4.12. Architecture of the MorBiLSTM model using word embeddings and

morhological embeddings.
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Figure 4.13. Architecture of the MorBiLSTMD model using word embeddings and

morhological embeddings with dropout layer.

Figure 4.14. Architecture of the MorCharBiLSTM model using word embeddings and

morhological embeddings.
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Figure 4.15. Architecture of the MorCharBiLSTMD model using word embeddings

and morhological embeddings with dropout layer.

.
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5. EXPERIMENTS AND RESULTS

5.1. Statistics About The PARSEME Corpora Edition 1.1

In this Thesis, we use the PARSEME Corpora edition 1.1 in all experiments.

Therefore, we first present the statistical results of the PARSEME Corpora edition 1.1

for 19 languages. Each language corpus consists of three sets: the training set, the

development set and the test set. If the development set of a language is available,

we append its development set to its training set to have more training data. So, the

training set refers to the combination of the training set and development set for each

language.

Table 5.1 illustrates the number of sentences (Sentences), the number of tokens

(Tokens), the total number of the annotated VMWEs (VMWEs) in each language

corpus for each set. With respect to the number of sentences, the Romanian training

corpus consisting of 49769 sentences is the largest dataset among 19 languages. With

respect to the total number of VMWEs, the largest training corpus is Hungarian with

6984 VMWEs, the smallest training corpus is English with 331 VMWEs. For all

languages, the size of the training corpus is larger than the size of the test corpus except

the English and Lithuanian languages. While the English test corpus contains 331

VMWEs, the English training corpus contains 501 VMWEs. Similarly, the Lithuanian

test corpus contains 312 VMWEs, but the Lithuanian training corpus contains 500

VMWEs.
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Table 5.1. Statistics about The Parseme Corpora Edition 1.1.

Training Set Test Set

Lang Sentences Tokens VMWEs Sentences Tokens VMWEs

BG 19767 441193 6034 1832 39220 670

DE 7918 152734 3323 1078 20559 500

EL 6989 188889 1904 1261 35873 501

EN 3471 53201 331 3965 71002 501

ES 3469 122741 2239 2046 59623 500

EU 9754 138769 3323 1404 19038 500

FA 3258 54076 2952 359 7492 501

FR 19461 488643 5179 1606 39489 498

HE 15491 303315 1737 3209 65698 502

HI 856 17850 534 828 17580 500

HR 3129 73107 1950 708 16429 501

HU 5404 135577 6984 755 20759 776

IT 14472 393496 3754 1256 37293 503

LT 4895 90110 312 6209 118402 500

PL 14821 246495 4637 1300 27823 515

PT 25134 575354 4983 2770 62648 553

RO 49769 900626 5302 6934 114997 589

SL 11517 239999 2878 1994 40523 500

TR 18035 362076 6635 577 14388 506
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5.2. Deep-BGT at PARSEME Shared Task 2018

In this section, we present the results of the Deep-BGT system in the PARSEME

Shared Task edition 1.1. In the shared task, we covered the Romance languages, which

are ES, FR, IT, PT, and RO and the languages with higher frequency of VMWEs

which are BG, DE, HU, PL, SL. We did not cover TR not to introduce a bias to

system evaluation, because we were in the Turkish annotation team. The Deep-BGT

system was ranked the second in terms of the general ranking metric in the open track

of the PARSEME Shared Task edition 1.1. This work was our initial step towards

building a multilingual VMWE identification system.

In this work, we follow the evaluated network configurations for many sequence

labelling tasks by Reimers and Gurevych [21], because hyperparameter optimization

is time intensive. We apply a dropout rate of 0.1 to the input and recurrent units of

the BiLSTM layer for each language. We use the Nadam optimizer without exceeding

batch size 32 for each language. We set the node size of the network to 20 for each

language. Table 5.2 shows the hyperparameters of the BiLSTM-CRF model for each

language.

Table 5.2. Hyperparameters of the BiLSTM-CRF model proposed for the PARSEME

Shared Task 1.1.

Languages Batch Size Epochs

BG, FR, PT, RO 32 12

DE, ES, HU 16 15

IT, PL, SL 16 12

Table 5.3 illustrates the cross-lingual macro average results of the Deep-BGT

system over 19 languages and 10 languages in terms of MWE-based F-measure (F1).

The second column shows the official shared task results obtained by averaging the

success rates for 19 languages. The third column shows the unofficial shared task

results obtained by averaging the success rates for 10 languages that we covered. Each

row in the table represents a metric, including the general metrics and metrics focusing
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on specific phenomena that we explained in Section 2.2. The system identifies multi-

tokens VMWEs better than single-token VMWEs. It is difficult to detect unseen-

in-train VMWEs compared to seen-in-train ones, accordingly, the performance of the

system for VMWEs unseen in the training data is lower compared to those that occur in

both train and test data. With respect to the variability of the expressions, the success

rate for the identical-to-train VMWEs is higher than the variant-of-train VMWEs.

Finally, the performance of discontinuous VMWEs is lower than that of continuous

VMWEs, as expected.

Table 5.3. Cross-lingual macro average results of Deep-BGT

Official Results on Unofficial Results on

Metrics 19 Languages 10 Languages

General ranking 28.79 54.70

Continuous VMWEs 31.23 59.34

Discontinuous VMWEs 23.19 44.06

Multi-token VMWEs 29.24 55.56

Single-token VMWEs 25.87 43.12

Seen-in-train VMWEs 36.66 69.65

Unseen-in-train VMWEs 12.99 24.68

Variant-of-train VMWEs 29.94 56.89

Identical-to-train VMWEs 41.01 77.92

Table 5.4 illustrates the results of Deep-BGT for each language in terms of MWE-

based and Token-based precision (P), recall (R), F-measure (F1), and rankings in the

open track. According to the shared task results, Deep-BGT was ranked first in BG in

terms of both MWE-based and Token-based F-measure, and was ranked first in DE in

terms of MWE-based F-measure. Deep-BGT was ranked first in FR and PL in terms

of Token-based F-measure.
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Table 5.4. Language-specific results of Deep-BGT.

MWE-based Token-based

Languages P R F1 Rank P R F1 Rank

BG 85.96 52.99 65.56 1 91.00 52.82 66.85 1

DE 60.94 36.35 45.53 1 77.92 37.64 50.76 3

ES 24.50 34.20 28.55 2 33.13 38.61 35.66 2

FR 57.81 49.80 53.51 2 78.88 56.45 65.80 1

HU 78.00 71.26 74.48 2 80.71 73.11 76.72 2

IT 45.52 25.60 32.77 2 70.00 27.63 39.62 2

PL 70.87 56.70 63.00 2 80.23 57.85 67.23 1

PT 72.44 46.11 56.35 2 79.40 44.83 57.30 2

RO 79.80 69.10 74.07 2 92.11 73.66 81.86 2

SL 58.90 38.40 46.49 2 72.19 40.34 51.76 2

5.3. Representing Overlaps in Sequence Labeling Tasks with a Novel

Tagging Scheme: bigappy-unicrossy

In this study, we extended the initial work that we tested on 10 languages to

19 languages. We use the same hyperparameters as the previous work. Similarly, we

apply a dropout rate of 0.1 to the input and recurrent units of the BiLSTM layer for

each language. We use the Nadam optimizer and the node size of 20 for each language.

The parameters of the BiLSTM-CRF model for each language are given Table 5.5. We

run our experiments five times in order to maintain reproducible and reliable results

and take the average.
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Table 5.5. Hyperparameters of the BiLSTM-CRF model using different IOB encoding

formats.

Languages Batch Size Epochs

BG, FR, HE, LT, PT, RO, TR 32 12

DE, EL, ES, EU, HI, HU 16 15

FA, IT, PL, SL 16 12

EN, HR 8 15

Table 5.6 displays the language-specific results for the IOB2, the gappy 1-level

and the bigappy-unicrossy tagging schemes. MWE-based and token-based F-measure

(F1) are presented for all tagging schemes. The results cover 19 languages. The shared

task column indicates the F1 score of the system which delivers the best result for each

language in the open track of PARSEME Shared Task edition 1.1. The last row in the

table shows the cross-lingual macro-averages which is calculated by averaging the F1

scores for 19 languages.

In terms of the MWE-based F-measure, both the bigappy-unicrossy and the gappy

1-level tagging schemes outperform the IOB2 tagging scheme. This shows that repre-

senting discontinuous cases with different tags enables a supervised algorithm to cap-

ture discontinuous VMWEs. In terms of the token-based results, all the three tagging

schemes deliver similar performances.

In addition, while the bigappy-unicrossy tagging scheme is the best in 8 languages,

the gappy 1-level tagging scheme is the best in 11 languages. There is a slight difference

of 0.38 between gappy 1-level and bigappy-unicrossy. This could be associated with

that the frequency of overlapping cases is low in the dataset. We claim that if the

dataset includes all other types of MWEs as well as VMWEs, the overlap frequency

will be higher and the bigappy-unicrossy tagging scheme will show better performance.

The bigappy-unicrossy tagging scheme can be also used for other sequence labeling

tasks including overlapping cases.
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The experiments demonstrate that the systems using the gappy 1-level and bigappy-

unicrossy tagging schemes deliver comparable results with best shared task systems.

The gappy 1-level tagging scheme outperforms the best shared task results in four

languages consisting of BG, DE, FR, HI. The bigappy-unicrossy tagging scheme out-

performs the best shared task results in five languages consisting of EL, FA, HR, LT,

SL. In the case of token-based results, gappy 1-level is the best in BG, DE, EL and

bigappy-unicrossy is the best in FA.
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Table 5.6. Language-specific results for the IOB2, the gappy 1-level, the

bigappy-unicrossy tagging schemes and the best PARSEME shared task results in the

open track.

MWE-based Token-based

gappy bigappy- shared gappy bigappy- shared

Lang. IOB2 1-level unicrossy task IOB2 1-level unicrossy task

BG 64.60 67.03 66.89 65.56 67.21 67.72 67.24 66.85

DE 42.62 50.75 49.73 45.53 54.28 55.10 53.31 54.65

EL 52.10 60.54 61.11 58.00 63.73 66.97 65.61 66.79

EN 26.97 31.60 31.73 33.27 30.15 31.19 30.86 34.36

ES 31.07 33.59 35.00 38.39 37.54 38.64 39.76 44.69

EU 69.91 72.62 73.07 77.04 75.38 75.03 76.06 80.21

FA 75.07 79.31 81.37 78.35 82.01 81.33 84.48 82.95

FR 53.92 61.96 58.55 60.88 65.05 64.78 61.57 65.80

HE 24.93 27.45 26.74 38.91 28.56 29.30 28.74 44.02

HI 71.28 73.35 72.54 72.71 74.06 74.78 74.35 75.62

HR 44.62 51.85 52.83 47.84 53.68 54.58 56.18 58.19

HU 70.53 74.83 73.84 85.83 73.90 76.48 76.13 86.73

IT 31.52 38.17 37.58 45.40 40.28 42.73 43.61 55.13

LT 19.15 22.85 24.04 22.86 25.31 22.89 24.49 28.13

PL 58.54 65.87 64.65 63.60 64.78 67.70 66.41 67.23

PT 54.62 61.32 60.21 68.17 62.29 62.91 62.39 73.51

RO 82.34 85.89 84.60 87.18 85.31 86.33 85.19 88.69

SL 45.30 54.06 54.22 52.27 56.30 56.46 57.50 61.55

TR 52.26 55.95 52.93 58.66 58.12 57.52 54.30 61.63

AVG 51.12 56.26 55.88 57.92 57.79 58.55 58.33 62.99
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5.4. Represention Learning Methods

In this section, we present the results of the following models:

• The Base model using the word embeddings.

• The Spelling model using the handcrafted spelling features.

• The CharCNN model using the word embeddings and the character embeddings

obtained by the character-level CNN.

• The CharCNND model using the word embeddings and the character embeddings

obtained by the character-level CNN with the dropout layer.

• The CharBiLSTM model using the word embeddings and the character embed-

dings obtained by the character-level BiLSTM.

• The CharBiLSTMD model using the word embeddings and the character embed-

dings obtained by the character-level BiLSTM with the dropout layer.

• The MorBiLSTM model using the word embeddings and the morphological em-

beddings obtained by the BiLSTM network using Mor embedding configuration.

• The MorBiLSTMD model using the word embeddings and the morphological em-

beddings obtained by the BiLSTM network using Mor embedding configuration

with the dropout layer.

• The MorCharBiLSTM model using the word embeddings and the morpholog-

ical embeddings obtained by the BiLSTM network using MorChar embedding

configuration.

• The MorCharBiLSTMD model using the word embeddings and the morpholog-

ical embeddings obtained by the BiLSTM network using MorChar embedding

configuration with the dropout layer.

We conducted all the experiments for 19 languages using the PARSEME Corpora

edition 1.1. Table 5.7 displays the chosen network configurations of the BiLSTM-CRF

architecture for each language. Batch size (Batch Size), number of epochs (Epochs),

number of units (Units), and number of epochs for early stopping (Early Stopping) are

presented. Additionally, we use the Nadam optimizer, the node size of 20 and apply the

dropout rate of 0.1 to the input units and the recurrent units of the BiLSTM layer in
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the BiLSTM-CRF architecture as in our previous works because optimizing parameters

for 19 languages is time intensive. We use the same parameters for all models except

that we use the batch size of 32 in the MorCharBiLSTM and the MorCharBiLSTMD

models for the RO language due to the limitations of memory to train the RO corpus.

For CharCNND, BiLSTMCNND, MorBiLSTMD, MorBiLSTMD, MorCharBiL-

STMD, we apply a dropout rate of 0.2 to the final embedding layer just before inputting

to the BiLSTM-CRF architecture. It should be noted that the dropout technique that

we applied to the BiLSTM units in the BiLSTM-CRF architecture is different from

this dropout technique. The first one masks the inputs of each gate of an LSTM unit

separately.

For the character-level CNN, we use the filter size of 30 and the window size of 3,

which outputs 30-dimensional character embeddings for each word. For the character-

level BiLSTM network, we set the number of units to 25, which outputs 50-dimensional

character embeddings for each word. For the BiLSTM network learning morpholog-

ical embeddings, we set the number of units to 25, which outputs 50-dimensional

morphological embeddings for each word. Each type of embedding is initialized as

a random vector of size 30 with values sampled from a uniform distribution within

[−
√

3
30
,+

√
3
30

] [14, 15].

We use the bigappy-unicrossy tagging scheme, the pre-trained fastText word em-

beddings. We obtain the morphological features of words from the FEATS field pro-

vided in the dataset which is in the cupt format. However, the FA corpus does not

contain the morphological features, we could not run the MorBiLSTM, MorBiLSTMD,

MorCharBiLSTM, and MorCharBiLSTM models for the FA language.
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Table 5.7. Hyperparameters of the BiLSTM-CRF component of the models using

different feature representations for each language.

Lang Batch Size Epochs Units Early Stopping

BG 32 15 20 5

DE 16 20 20 5

EL 16 20 20 5

EN 8 20 20 5

ES 16 20 20 5

EU 16 15 20 5

FA 16 15 20 5

FR 32 15 20 5

HE 32 15 20 5

HI 16 20 20 5

HR 8 20 20 5

HU 16 20 20 5

IT 16 15 20 5

LT 32 15 20 5

PL 16 15 20 5

PT 32 15 20 5

RO 64 15 20 5

SL 16 15 20 5

TR 64 15 20 5



58

We run the experiments three times and take the average. Table 5.8 and Table

5.9 illustrate the language-specific MWE-based F-measure (F1) score for each model.

The bold ones show the best model result for each language. For ES, PT, HE, and

LT, CharCNN gives the best results. For DE and FA, CharCNND gives the best re-

sults. For IT and FR, CharBiLSTM gives the best results. For TR, EU, and BG,

CharBiLSTMD gives the best results. For HI and HR, MorBiLSTM gives the best

results. For EL, MorBiLSTMD gives the best results. For SL, RO, and HU, MorChar-

BiLSTM gives the best results. For EN, MorCharBiLSTMD gives the best results.

For PL, MorBiLSTMD and MorCharBiLSTMD give the same results. The Base and

the Spelling models cannot be the best model for any language. This proves that ad-

ditional information obtained by a neural network improves the performance of the

VMWE identification system.

Table 5.10 provides the MWE-based F-measure (F1) score per language-family

for each model. The bold ones show the best model result for each language-family.

While morhological information is important for Balto-Slavic and Germanic language

families, character-level information is valuable for Romance and Other language fam-

ilies. But, additional information about characters or morhological features usually

boosts performance for Balto-Slavic languages.
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Table 5.8. Language-specific MWE-based F-measure scores of the Base, Spelling,

CharCNN, CharCNND, CharBiLSTM, CharBiLSTMD.

Lang Base Spelling
Char

CNN

Char

CNND

Char

BiLSTM

Char

BiLSTMD

BG 67.11 65.07 65.42 66.59 65.81 68.2

DE 47.95 49.48 52.57 54.59 54.05 53.47

EL 58.64 55.74 59.38 59.33 59.67 59.22

EN 27.51 24.97 28.66 29.22 29.2 25.98

ES 34.86 35.0 36.97 36.8 33.82 34.44

EU 69.72 70.16 72.94 73.0 72.86 74.11

FA 77.82 79.24 77.65 79.63 79.16 78.98

FR 60.36 59.22 60.45 61.13 62.24 59.51

HE 27.2 29.19 32.13 22.31 25.56 25.28

HI 66.71 66.01 68.82 70.45 66.91 67.27

HR 48.43 49.96 52.59 52.31 51.44 50.94

HU 78.15 75.89 88.84 89.49 89.82 89.51

IT 38.83 38.26 39.84 37.17 40.63 33.28

LT 25.84 22.56 33.94 24.33 28.13 26.67

PL 65.01 64.99 68.45 67.75 68.36 68.27

PT 60.31 59.78 63.95 63.29 60.51 63.38

RO 85.32 85.06 85.8 84.54 85.28 85.15

SL 53.05 53.04 55.42 55.71 56.65 56.52

TR 49.95 49.0 55.3 53.94 53.89 56.12
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Table 5.9. Language-specific MWE-based F-measure scores of the MorBiLSTM,

MorBiLSTMD, MorCharBiLSTM, MorCharBiLSTMD models.

Lang
Mor

BiLSTM

Mor

BiLSTMD

MorChar

BiLSTM

MorChar

BiLSTMD

BG 66.45 66.96 67.88 67.24

DE 48.61 48.38 51.33 52.64

EL 57.04 61.2 60.19 61.02

EN 27.78 24.4 27.23 31.68

ES 36.7 36.12 34.19 32.96

EU 71.55 71.38 71.66 72.63

FA - - - -

FR 53.61 53.02 53.47 53.9

HE 27.06 22.5 29.33 24.14

HI 72.49 72.09 68.98 68.97

HR 53.85 52.15 52.78 51.43

HU 74.54 72.1 90.05 89.45

IT 35.58 35.88 39.48 39.17

LT 30.78 24.16 28.43 18.6

PL 66.52 68.47 68.37 68.47

PT 61.38 60.12 62.64 62.03

RO 84.66 83.36 86.38 85.95

SL 53.91 53.46 58.71 58.66

TR 53.66 52.66 49.6 54.7
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Table 5.10. MWE-based F-measure score per language-family for each model.

Model Balto-Slavic Germanic Other Romance

Base 51.89 37.73 61.17 55.94

Spelling 51.13 37.22 60.75 55.47

CharCNN 55.16 40.62 65.01 57.4

CharCNND 53.34 41.9 64.02 56.58

CharBiLSTM 54.08 41.62 63.98 56.5

CharBiLSTMD 54.12 39.73 64.36 55.15

MorBiLSTM 54.3 38.2 59.39 54.39

MorBiLSTMD 53.04 36.39 58.66 53.7

MorCharBiLSTM 55.23 39.28 61.64 55.23

MorCharBiLSTMD 52.88 42.16 61.82 54.8

For Base, Spelling, CharCNN, CharCNND, CharBiLSTM, CharBiLSTM, the

cross-lingual macro-averages are calculated by averaging the F-measure (F1) scores

for 19 languages. For MorBiLSTM, MorBiLSTMD, MorCharBiLSTM, MorCharBiL-

STMD, the cross-lingual macro-averages are calculated by averaging the F-measure

scores for 18 languages, because the morhological features are not available in the FA

corpus and it is excluded. Table 5.11 shows the cross-lingual macro-averages for each

model. CharCNN delivers the best performance among 10 models in terms of the

MWE-based and Token-based F-measure score. Even though Spelling performs better

than MorBiLSTM and MorBiLSTMD in terms of the cross-lingual macro-averages, it

is not the best model for any language.

In general, applying the dropout mask on the input layer of the BiLSTM-CRF

network does not improve the performance for any model. In particular, we observe

a sharp decrease in model performance after using the dropout technique for HE and

LT, which affects the overall result of the models using the dropout mask. This could

be linked that the LT training corpus contains the least number of annotated VMWEs

among 19 languages, and the HE training corpus contains 1737 VMWEs which is less
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than average.

Table 5.11. Cross-lingual macro-average result of each model.

Model MWE-Based Token-Based

Base 54.88 57.62

Spelling 54.35 57.03

CharCNN 57.85 60.52

CharCNND 56.92 58.93

CharBiLSTM 57.05 59.78

CharBiLSTMD 56.65 58.64

MorBiLSTM 54.23 56.8

MorBiLSTMD 53.24 55.27

MorCharBiLSTM 55.59 58.04

MorCharBiLSTMD 55.2 57.14

Table 5.12 and Table 5.13 provide the cross-lingual MWE-based F-measure (F1)

scores per VMWE category for each model. The bold ones represent the best model for

each category. For the IAV, VPC.full and VPC.semi categories, the models treating

the morhological features as character sequences outperform the other models. The

models using the character level CNN are better at identifying the IRV, LVC.cause,

LVC.full and VID categories. But, the models using the character level BiLSTM

network are better at identifying only the MVC category.
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Table 5.12. Cross-lingual MWE-based F-measure scores per VMWE category for each

models-1

Model IAV IRV
LS

ICV

LVC

cause

LVC

full

Base 31.03 64.97 0.0 18.16 47.54

Spelling 32.55 64.93 0.0 18.52 46.1

CharCNN 34.28 67.14 0.0 20.23 49.72

CharCNND 31.87 66.33 0.0 20.99 49.13

CharBiLSTM 33.51 66.14 0.0 20.18 49.66

CharBiLSTMD 31.98 63.86 0.0 18.79 48.59

MorBiLSTM 32.37 64.56 0.0 17.04 45.88

MorBiLSTMD 32.35 63.85 0.0 16.27 45.14

MorCharBiLSTM 34.4 64.73 0.0 18.33 47.82

MorCharBiLSTMD 34.25 64.89 0.0 17.5 47.38

Table 5.13. Cross-lingual MWE-based F-measure scores per VMWE category for each

models-2

Model MVC VID
VPC

full

VPC

semi

Base 29.67 31.17 35.08 31.59

Spelling 25.96 31.5 36.91 32.65

CharCNN 30.35 34.82 40.11 34.39

CharCNND 32.76 32.32 40.14 34.03

CharBiLSTM 34.42 33.82 39.43 34.35

CharBiLSTMD 34.75 32.1 40.82 33.11

MorBiLSTM 32.83 32.66 38.04 30.42

MorBiLSTMD 31.87 29.66 37.69 33.11

MorCharBiLSTM 30.88 31.92 39.37 36.02

MorCharBiLSTMD 27.65 30.92 41.82 33.0
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The phenomenon-specific MWE-based F-measure (F1) scores are given in Table

5.14, Table 5.15, Table 5.16, and Table 5.17. CharCNN is better at predicting continu-

ous and discontinuous VMWEs than the other models. In terms of the variant-of-train

metric, integrating the character-level CNN to the Base model which refers to the

CharCNN model improves the performance by 6.5%, which demonstrates that learn-

ing n-gram features of characters can help to solve the variability challenge. All models

identify seen-in-train VMWEs better than unseen-in-train VMWEs, as expected. How-

ever, the models using character embeddings predict unseen-in-train VMWEs better

than the other models. For all models, the recognition of single-token VMWEs is more

difficult than that of multi-token VMWEs. Regarding each phenomenon-specific met-

ric, it could be concluded that using character-level information obtained by CNNs

yield a better improvement on performance compared to character-level information

obtained by BiLSTM networks and morphological information obtained by BiLSTM

networks.
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Table 5.14. MWE-based F-measure scores for continuous and discontinuous VMWEs

for each model

Model Continuous Discontinuous

Base 59.06 40.26

Spelling 58.75 38.95

CharCNN 62.34 43.19

CharCNND 61.94 41.25

CharBiLSTM 61.67 41.89

CharBiLSTMD 61.47 40.91

MorBiLSTM 58.58 40.53

MorBiLSTMD 57.36 40.0

MorCharBiLSTM 59.93 41.98

MorCharBiLSTMD 59.77 40.35

Table 5.15. MWE-based F-measure scores for identical-to-train and variant-of-train

VMWEs for each model

Model Identical-to-train Variant-of-train

Base 81.34 60.13

Spelling 81.29 58.71

CharCNN 85.17 64.06

CharCNND 82.25 61.73

CharBiLSTM 83.55 63.27

CharBiLSTMD 81.67 61.23

MorBiLSTM 81.41 60.17

MorBiLSTMD 78.97 57.62

MorCharBiLSTM 81.95 62.48

MorCharBiLSTMD 80.27 61.13
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Table 5.16. MWE-based F-measure scores for seen-in-train and unseen-in-train

VMWEs for each model

Model Seen-in-train Unseen-in-train

Base 71.32 27.23

Spelling 70.54 26.88

CharCNN 74.96 29.08

CharCNND 72.32 29.27

CharBiLSTM 73.73 29.58

CharBiLSTMD 71.81 29.67

MorBiLSTM 71.33 26.3

MorBiLSTMD 68.9 26.11

MorCharBiLSTM 72.48 27.01

MorCharBiLSTMD 71.17 27.13

Table 5.17. MWE-based F-measure scores for multi-token and single-token VMWEs

for each model

Model Multi-token Single-token

Base 55.25 7.14

Spelling 54.8 6.96

CharCNN 57.86 8.31

CharCNND 56.58 8.66

CharBiLSTM 57.14 8.54

CharBiLSTMD 56.26 8.51

MorBiLSTM 54.83 7.39

MorBiLSTMD 53.83 6.81

MorCharBiLSTM 55.63 8.81

MorCharBiLSTMD 55.0 8.87
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Table 5.18 shows our best result and the best system result in the open and

closed track of the PARSEME Shared Task Edition 1.1 for each language in terms of

MWE-based F-measure (F1) score. Our results outperform the best system results for

seven languages which are BG, DE, EL, FA, FR, LT, and PL among 19 languages.

However, for HE, IT and SL, our results are much lower than the best system results.

Table 5.18. Comparison of our best results with shared task best results for each

language

Lang Our Best Results Shared Task Best Results

BG 68.2 65.56

DE 54.59 45.53

EL 61.2 58

EN 31.68 33.27

ES 36.97 38.39

EU 74.11 77.04

FA 79.63 78.35

FR 62.24 60.88

HE 32.13 38.91

HI 72.49 72.98

HR 53.85 55.3

HU 90.05 90.31

IT 40.63 49.2

LT 33.94 32.17

PL 68.47 66.96

PT 63.95 68.17

RO 86.38 87.18

SL 58.71 64.29

TR 56.12 58.66
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6. CONCLUSION

In this Thesis, we first created a Turkish corpus containing annotated VMWEs

to facilitate MWE research. Then, we developed a multilingual VMWE identification

system based on BiLSTM-CRF networks and examined different approaches for re-

sponding to the main challenges in VMWE identification. We evaluated different data

representation formats to address the discontinuity challenge. We proposed a new tag-

ging scheme called bigappy-unicrossy to resolve overlaps in sequence labelling tasks.

Moreover, we analyzed different representation learning methods to address the vari-

ability challenge. We concluded that data representation format is important to detect

discontinuous cases. Additionally, we observed that character-level information and

morphological information improve performance for VMWE identification. The choice

of representation learning method depends on language. We validated our approaches

on 19 languages which are BG, DE, EL, EN, ES, EU, FA, FR, HE, HI, HR, HU, IT,

LT, PL, PT, RO, SL, TR. In future research, we plan to combine character-level in-

formation and morphological information to boost the performance of our system. In

addition, we plan to integrate contextualized language models into our system such as

ELMo [53] and BERT [54].
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23. Güngör, O., T. Güngör and S. Üsküdarli, “The effect of morphology in named

entity recognition with sequence tagging”, Natural Language Engineering , Vol. 25,

No. 1, pp. 147–169, 2019.

24. Liebeskind, C. and Y. HaCohen-Kerner, “Semantically motivated Hebrew verb-

noun multi-word expressions identification”, Proceedings of COLING 2016, the

26th International Conference on Computational Linguistics: Technical Papers ,

pp. 1242–1253, 2016.



72

25. Maldonado, A., L. Han, E. Moreau, A. Alsulaimani, K. Chowdhury, C. Vogel and

Q. Liu, “Detection of verbal multi-word expressions via conditional random fields

with syntactic dependency features and semantic re-ranking”, Proceedings of the

13th Workshop on Multiword Expressions (MWE 2017), pp. 114–120, Association

for Computational Linguistics, 2017.
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J. Kovalevskaitė, S. Krek, T. Lichte, C. Liebeskind, J. Monti, C. Parra Escart́ın,

B. QasemiZadeh, R. Ramisch, N. Schneider, I. Stoyanova, A. Vaidya, A. Walsh,
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APPENDIX A: APPLICATION

The appendices start here. After references section.


