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Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering
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ABSTRACT

FEATURE ANALYSIS FOR RECOMMENDER SYSTEMS

USING TRANSFORMER-BASED ARCHITECTURES

Recommender systems are technology-based solutions that assist users by sug-

gesting relevant items among millions of items. It could be anything like a movie, a

meal, a vacation spot, shoes, or a piece of music. Unlike traditional recommender sys-

tems, sequential and session-based recommender systems make recommendations by

paying attention to the order of items that users interact with. The advantage of such

systems is that they take into account varying tastes. Additionally, due to some legal

requirements, the users’ data cannot be collected from some platforms, and the recom-

mender system has to suggest the session’s information without having any previous

knowledge. It may only have to recommend products according to a few interactions

in that session. These reasons constitute the importance of sequential and session-

based recommender systems. In this thesis, we have experimented with sequential and

session-based recommender systems using the Transformers4rec framework, which al-

lows us to use transformer architectures in recommender systems. We observed that

transformer architectures work better in short interaction sequences than long ones.

We showed that additional features enhance the model’s performance, particularly

time-based features. Additionally, we examined and interpreted that the importance

of features changes according to the size, shape, and type of data.



v

ÖZET

TRANSFORMATÖR TABANLI MİMARİLER KULLANAN

TAVSİYE SİSTEMLERİ İÇİN ÖZNİTELİK ANALİZİ

Tavsiye sistemleri; milyarlarca öge arasından, onlar ile ilgili ögeleri kullanıcılara

önermeye yardımcı olan teknoloji temelli çözümlerdir. Bu; bir film, yemek, tatil yeri,

ayakkabı veya bir müzik parçası gibi herhangi bir şey olabilir. Sıralı ve oturum tabanlı

tavsiye sistemleri, geleneksel tavsiye sistemlerinden farklı olarak kullanıcıların öğelerle

etkileşim sırasına dikkat ederek öneriler yaparlar. Bu tür sistemlerin avantajı değişen

zevkleri dikkate almalarıdır. Ayrıca, bazı yasal gereklilikler nedeniyle zaman zaman

kullanıcıların verileri toplanamamaktadır ve tavsiye sistemi o oturumda elde edilen

bilgilerle öneri yapmak zorunda kalmaktadır. Bu gibi nedenler, sıralı ve oturum ta-

banlı tavsiye sistemlerinin önemini oluşturur. Bu tezde, Transformers4rec framework

kullanarak sıralı ve oturum tabanlı tavsiye sistemleriyle deneyler yapılmıştır. Trans-

formatör mimarilerinin kısa etkileşim serilerinde daha iyi çalıştığı gözlemlenmiştir.

Özellikle zaman tabanlı öznitelikler olmak üzere, ek özniteliklerin sonuçları iyileştirdiği

gösterilmiştir. Ayrıca, sonuçların veri boyutu, şekli ve türüne göre değiştiği incelenmiş

ve yorumlanmıştır.
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1. INTRODUCTION

The Internet is ubiquitous nowadays. We feel as if it always exists throughout

history. We read the news on the Internet, are informed about the world, order food

using the Internet, and socialize on it. That is, we meet almost all our human needs

with it. As a result of the penetration of the Internet into all areas of our lives, there

is too much information, products, or services on the Internet. When looking for

something, we may need help choosing the information being serviced. For example,

suppose we are writing a paper on a subject; we searched and clicked on a few of the

10-20 related results, but we still need to find what we are looking for. In another

case, suppose we listened to some music that we always listen to repeatedly, and we

wanted to hear something new and similar. However, we do not know how to find

it. Alternatively, we went on a vacation last year and want to go somewhere similar.

At this point, a solution could be to evaluate all possible options and choose the one

that suits us. However, this is a challenging goal. Because there are so many options

available for every field that might interest us, this is where recommender systems

come into play. It can allow us to find what we are looking for in too many options.

It recommends to us suitable paper, movie, music or holiday. A user can save time

significantly by the chance of getting a good recommendation.

Also, since a user cannot evaluate every option, he/she would probably have

decided on an option that is not the best. However, the recommender system can offer

the best possible options if it works well. Alternatively, the system can introduce users

to something new. In this way, it accelerates and improves the decision-making process.

For example, there are millions of videos on Youtube. Sometimes people come to spend

time, not because they are looking for something specific. If the videos randomly fall

on the screen, users cannot find their favorite videos and leave the application, which

may lead to less use of Youtube.

Making good recommender systems is not just beneficial for users. Moreover, the

people making the recommender system also benefit from this. Better recommenda-
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tions will directly affect companies’ income since they make users happy to use their

service. For example, a company can increase sales by making it easy for customers

to find and purchase the products they need. If it is a news provider, their usage will

increase because people spend more time on the news website if they find more suit-

able content for their preferences. If we give an example from another business, 75%

of Netflix’s usage comes from a personalized recommender system [1]. It shows how

vital the recommender system is. In addition to the financial returns, Greg Linden,

who made the first recommender system on Amazon, also mentioned that he is happy

to help users find the books they are looking for [2]. It shows that providing a better

service to the customer also makes the people who make the recommender system both

financially and morally satisfied.

Recommender systems are software tools and techniques that provide users with

the correct items [3]. It makes life easier for users by providing items they will love. At

this point, the item keyword is used generically in this thesis. This item can be news,

a book, music, or a product. It represents the interacted things by the users.

Recommender systems are divided into three classical approaches. These are

collaborative, content-based, and hybrid models. These approaches generally aim to

recommend the correct item from user-item interactions. However, the current tastes

of users may change, and these types of approaches evaluate all historical interactions

at the same level. Therefore, the disadvantage of these models is that they cannot

sufficiently consider the current tastes of the users. In order to solve this issue, session-

based and sequential recommendation approaches have emerged. In these approaches,

the order of items that users interact with becomes essential. In this way, it is possible

to find up-to-date tastes. For example, consider a person in his twenties who likes

action movies but has been liking drama movies for the past few years. If we design

an engine with traditional recommendation methods, the model tends to recommend

action movies because it interacts much more with action movies. However, since the

sequential recommendation captures time-varying tastes, models based on it can also

capture current tastes and recommend drama-themed movies to the user.
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In this study, we have used three datasets. The first one is the G1 news dataset

published by G1 globo [4] [5], a news website in Brazil. This dataset contains user-

news interactions. In addition to user news interactions, it also includes information

such as when it happened, from which country, and from which operating system. The

other two datasets are from Movielens [6] published at different times and containing

the movie ratings data by users. Our rating data consists of three critical components:

movies, users who rate movies, and the value of ratings between 0.5 and 5. For example,

we can read a line in this rating data as a user gave a movie 4 points. In addition to

the user-item interactions, the datasets also include information about the movies such

as their title and genre, as well as the timestamp of the interactions. We utilized this

supplementary information to generate features in both datasets.

We will call the rating part of the Movielens dataset and user-news interactions in

the G1 news dataset interactions of user-items. We will make models that recommend

items to the user based on the user’s interaction sequence. For example, we take a

sequence of five movies that the user rates, and we will try to find the sixth movie that

the user will rate. While doing this, we will make many recommendations. Then, for

instance, one of the metrics we use will check if one of them hits it. We experimented

with and interpreted how our models perform with their different features.

Our contribution to this thesis is to observe how transformers-based sequential

recommender systems work with different features and then interpret them in a mean-

ingful and consistent way. Our first contribution is to show that transformer models

work best with short sequences. When we took long sequences, the model also learned

that items that had been used in user-item interactions but interest got lost at one

point, which is why prolonged sequence usage is causing worse results. Another is that

time-based features contribute best to performance among the many features. We at-

tribute both of these to user interactions changing over time. We show that the dataset

confirms this change, and time-based features allow capturing tastes that change over

time. We will illustrate these results in detail.

This thesis is structured as follows: section two reviews the literature on rec-
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ommender systems. In section three, we provide an in-depth examination of the

datasets, including a general overview, a detailed analysis, the features generated from

the datasets, and the evaluation metrics used. Section four explains the model architec-

ture, data preparation, and training methodologies. The results of our experiments and

the corresponding discussion are outlined in section five. Finally, section six includes

a summary and our recommendations for future research.
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2. RELATED WORK

Recommender systems are tools and techniques that automatically suggest the

right products to people. These systems not only simplify users’ lives by saving them

time but also increase profitability for service providers. This chapter will provide

information from past work on how these systems work.

Recommender systems typically have three primary inputs: users, items, and the

interactions between them. Users search for various items such as food, movies, music,

vacations, and products. They possess distinct personalities and have varying prefer-

ences. Items, on the other hand, are the music, movies, food, or products suggested

to users, and the type of items varies depending on the domain. These items can be

characterized by attributes such as subject, type, color, or location, which make up the

features of the items.

Interaction is the third input for recommender systems. It contains the relation-

ship between the user and items. Again, this can be defined in different ways according

to the domain. For example, a click, purchase, or reading are forms of user-item in-

teraction. The interactions data type can be divided into two implicit and explicit.

The implicit one is the feedback in which the users interact with items in actions such

as clicks or purchases. For example, whether the user clicks on a product on an e-

commerce website can be considered a binary relation. Explicit feedback is the explicit

declaration of the user’s likes or dislikes. For example, they were leaving a good re-

view for a movie or a place, giving a good rating. It is a form of feedback that gives

information on whether it likes it much more clearly.

The recommender systems should work well because if the user sees an item in the

recommendation that he/she does not want to see, he/she can stop using that website

or app. For this reason, those who designed the system may provide less benefit or even

harm with the recommender system. That is why it is essential to do recommender

systems well.
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We will discuss general approaches to how recommender systems work. After

doing this, we can grasp the problem the sequential & session-based recommender

systems are solving, which is our focus. For a general summary, we can divide the

general approaches into three. These are content-based, collaborative filtering, and

hybrid methods.

2.1. General Recommender Systems

2.1.1. Content-based methods

Content-based methods assume that similar items will be rated similarly. In this

model, considering the items that users give reasonable rates, the items closest to them

in terms of features are recommended. We can explain this with an example. If a user

reads sports news, the user may be offered sports news instead of political news because

sports news features are similar to sports news rather than political news.

Content-based models give the best results where the features of items are rich

such as web pages, publications, and news [7]. Based on the assumption that users

prefer similar items more, it is necessary to find similar items better to improve this

model. Therefore, finding which features and properties discriminators are in the items

will be used to improve performance [1]. Whether an item is similar to another item in

terms of its features can be determined through various techniques, such as machine-

learning or deep-learning methods.

2.1.2. Collaborative Filtering Methods

Collaborative filtering methods assume people having similar tastes will rate sim-

ilarly for the same items [1]. Therefore, items liked by similar users are enough to make

recommendations that are recommended to a user. Therefore, it is optional to know

the items’ features in this recommender system because it is enough to find similar

users without checking the features of items. It can be defined as people similar to you

who choose these items so that you might like them too.
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A simple example of similar users is as follows. Suppose we want to make a

recommendation to a user using the collaborative filtering method. First of all, we

have an user-item matrix using all the data. Then other users close to a user’s vector

are found by a method such as a cosine similarity. We can also call them neighbors

in the user space. Using similar users, we can suggest items to a user that did not

interact with an item but similar users interacted with this item. As seen in this

scenario, there is no need to know the features of the items. Similar users were enough

to find appropriate items to recommend.

2.1.3. Hybrid Methods

It combines collaborative and content-based filtering methods. The dilemma is

that one outperforms the other in some situations. In order to benefit from both,

hybrid methods have been produced which would combine the good features of both.

So using them together handles the low-performing cases.

2.2. Session Based & Sequential Recommender Engines

Recently, session-based and sequential recommendations have become popular.

There are some reasons for this. One of them is that people change their tastes as

time goes on. For example, a user used to like books on science fiction, but now the

user may like history books. Alternatively, the user may have entered an e-commerce

website to look for toothbrushes, and the same user may have logged in to look at

trousers in another session. The motivation in these two sessions is very different from

each other. Recent tastes should be more dominant than the past. Using all previous

history in equal importance may lead to recommendations from the old taste.

The other is that user data may not be logged because of some legal requirements.

In this situation, when a user comes to a website or an app, there is no previous in-

formation about him/her. Suppose there are only some click sequences in the given

session. The recommender systems should work based on the session data and recom-

mend items to the users.
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In this section, we will mention some existing research about recommender sys-

tems that try to predict a sequence based on the previous sequence to solve the problems

we discussed.

Using sequential data, which consists of previous events of the users, Markov

chains are used in recommender systems (RecSys) to predict the following action based

on previous action [8]. The transition matrix in MC gives the probability of buying

an item considering the last purchases of the user. The problem with using MC is to

consider only the last action of the users (or the last few).

If we can think of user-item interactions as sequences over time, the recommen-

dations are the following possible sequence that the users may like, which resembles

language modeling. There are many recommender systems implemented inspired by

language modeling. For example, there are works in the recommendation systems do-

main that use word2vec [9] and doc2vec [10] embedding methods. In the well-known

model named word2vec, the authors have developed new methods to produce con-

tinuous word representation. The meanings of the words are distributed into these

representations in this model. Words that are close to each other are also close to each

other in space, such as king and queen.

In doc2vec [10], a feature called paragraph vector has been developed, which

eventually represents each document as a paragraph vector. Paragraph vector training

differs from word vector training by feeding paragraph vectors to the training process.

Also, in a Grbovic et al. [11] model, user2vec models are trained such that the items

purchased by users are considered a word, and the users are considered a paragraph.

While learning the vectors of the products, the vectors of the users were also learned.

Inspired by the word2vec, one model of Grbovic et al. [11] was trained as if the

receipts were a sentence and the products written in receipts were a word. With this,

representations of products in the same vector space are obtained. They can be used

for product-to-product recommendations. The model will ensure that the products

that are sold together with each other are close to each other.
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In Gru4Rec [12], GRU-based RNN is used for session-based recommendations.

The reason to use a gated recurrent unit (GRU) is that GRU solves the vanishing

gradient problem in RNN. Because RecSys is not the main area to use RNNs, it is

modified for this task considering the live production environment. The network’s

input is the actual state of the session, and the output is the next event for that

session. In short, it tries to predict the next event of the users in a session.

In Moreira et al [13], a deep learning meta-architecture has been developed for

news, called CHAMELEON. This model consists of two modules, the first is to learn

the represetation of news. The second is to make a session-based recommendation

using the Recurrent Neural Network. The problem it wants to solve is to suggest the

most appropriate next article according to the interactions in the session of the user.

A sequential model named transformers is good at natural language processing

tasks. The self-attention mechanism, the basis of transformers, can reveal syntactic

and semantic patterns between words in a sentence [14]. This method has been applied

to the sequential recommendation task and developed the model SASRec [14]. While

training this model, it tries to generate the following item by using the previous steps

at each step. For example, while at the nth step, it predicts the next using the previous

n step. Another work is the use of transformers in Sun et al (2019) [15]. Moreover, in

the 2022 ACM RecSys challenge [16], Lu, Y et al. [17] uses transformers ranked second

in the competition.

In addition, Transformers4rec [18] is an end-to-end framework developed using

Python and PyTorch. It encompasses data processing, model training, and evalua-

tion pipelines. It is built upon the HuggingFace Transformers library. The purpose

of Transformers4rec is to use Natural Language Processing (NLP) advancements to

sequential / session-based RecSys immediately and to bridge the gap between them.

As a result, It makes available the latest transformers to RecSys at the production

usage level, which is the environment where the end-user uses them.
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3. DATASET

In this thesis, we used three datasets. These are called Movielens20, Movie-

lens25m, and G1 news. The Movielens datasets [19] were published by the research

lab, GroupLens. Users can vote for the movies they want on the website [6] by giv-

ing a score between 0.5-5. Then they can get a personalized movie recommendation

based on the points they give. So they can both feed the dataset and get a movie rec-

ommendation as output from the recommender system. The other one, G1 news [5],

was published by G1 globo, one of Brazil’s most popular news websites. It includes

user-news interactions within 16 days.

3.1. The Movielens Datasets

We want to provide more transparent information about how the Movielens

datasets [19] are created. An essential piece of information contained in this dataset is

these ratings. Users have the opportunity to give points to each movie on the Movielens

website. They can give more points if they like the movies, and less if they don’t. Each

voting process is called an interaction in this thesis. These interactions consist of user

id, movie id, rating, and timestamp as the date of this event. Additionally, our data

includes the ratings of users who have given at least twenty votes.

We have used two Movielens datasets in this thesis. Both have the same structure,

with 20m and 25m movie ratings released at different times. The 25m dataset is in

the same format but contains slightly more than the 20m dataset. The information we

give for datasets will be valid for both.

There is a general summary of our datasets in Table 3.1. As the names suggest,

there are twenty million ratings in the Movielens20m whereas twenty-five million in

the Movielens25m dataset. The table contains information about which intervals these

datasets contain, how many different movies they contain, how many people have rated

and how many tags the datasets contain.
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Table 3.1. Movielens Dataset Statistics

Movielens20m Movielens25m

range March 1995 - October 2016 March 1995 - November 2019

movie 27278 62423

user 138493 162541

rating 20000263 25000095

tag 465564 1093360

Users can give tags as they want in addition to giving the movies a rate. These

tags consist of words or phrases they think to describe the movie. For example, one

movie got ”dark hero”, and another got ”1940s” as tags. Users can add new tags or

vote for existing tags.

In addition to the rating dataset, the Movielens dataset contains information

about the tag genome [20]. The process of applying tag genomes to the dataset is as

follows. First of all, the tags that were given very few were eliminated. These may be

misspelled tags, such as ”sadfasda”, or things that are very relevant to the user but not

related to the movie, for example, the tag ”I like it a lot”. Such kind of tags does not

indicate a property of the movie but rather a personal comment from the user. Also,

tags containing actors and directors were eliminated. After that, 1128 tags remained.

These tags are seen as valid. A similarity score is calculated between these tags and all

movies based on a machine-learning technique. These similarity scores represent how

much a tag is relevant to a movie.

We also have the genres of the movies. For example, the movie title is Toy Story

(1995), and the genres are the adventure, animation, children, comedy, and fantasy.

Also, for example, the genre of The Wild Pear Tree movie seen in Figure ?? is drama.

Also, a movie can have one genre or more. We also use this information while doing

our experiments.

We said that we are using the rating dataset as the interaction dataset. When
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building a model, we also consider the side information, such as genres and tags. We

combine them around interactions. In the end, the following data has been obtained

in the combined dataset: user id, movie id, rating, timestamp, genres, tag, genome

relevance, and genome tag. In the next section, we will focus on features after getting

to know the dataset.

3.1.1. Detailed Information About the Movielens Datasets

In the previous section, we introduced the Movielens data. This section will give

detailed information and look at what the data we are working on looks like. We

will give general information to get to know it and emphasize the parts affecting our

results. While doing this, we used the Movielens25m dataset. We can consider the

same observations to be valid for the other.

First, we can look at the rating counts over the years. The y-axis in Figure 3.1

represents the years, while the x-axis represents the number of ratings for that year.

Since we train according to time, we wanted to check if we have enough data every

year. As can be seen from the graph, we have enough data every year. Also note that

we excluded 1995 from our data, as the dataset only includes three ratings.

Moreover, except for January 1996 and February 1996, we have at least 10k data

every month. The reason for stating this is that we do incremental training based on

months, as we will mention in the methodology section. It means that the data is

enough for a monthly bases to work with it.

Looking at the statistics based on movies will be helpful in terms of understanding

the data. Table 3.2 shows the statistics about how many ratings movies got. As can

be seen, although the average is 423.4, the standard deviation of our data is relatively

high, 2477.9. In addition to these, the median is 6. In other words, half of the movies

have a rating lower than 6. It shows that the rating counts are not balanced among

the movies. Some popular and relatively old movies have received high ratings. For

example, a movie named Forrest Gump received a maximum rating of 81,491. Movies
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with much interaction made the rating counts distribution unbalanced. In Table 3.3,

we see the 15 movies with the most interaction.

Table 3.2. Movies Interaction Statistics

avg 423.4

stdev 2477.9

min 1

percentile 25 2

median 6

percentile 75 37

max 81491

Table 3.3. Most Interacted 15 Movies

Forrest Gump (1994) 81491

The Shawshank Redemption (1994) 81482

Pulp Fiction (1994) 79672

The Silence of the Lambs (1991) 74127

The Matrix (1999) 72674

Star Wars: Episode IV - A New Hope (1977) 68717

Jurassic Park (1993) 64144

Schindler’s List (1993) 60411

Braveheart (1995) 59184

Fight Club (1999) 58773

Terminator 2: Judgment Day (1991) 57379

Star Wars: Episode V - The Empire Strikes Back (1980) 57361

Toy Story (1995) 57309

The Lord of the Rings: The Fellowship of the Ring (2001) 55736

The Usual Suspects (1995) 55366

In order to get a better understanding of user behavior on rating movies, we can

look at some statistics about the rating scores. We have listed the movies with the best

score that received at least 100 interactions in Table 3.4. On average, movies got 3.53

points. However, this, of course, varies according to the movies. Planet Earth movies

were well-liked by the audience.
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Table 3.4. Top Rated 15 Movies

Planet Earth II (2016) 4,483

Planet Earth (2006) 4,464

Shawshank Redemption, The (1994) 4,413

Band of Brothers (2001) 4,398

Cosmos 4,326

Godfather, The (1972) 4,324

Blue Planet II (2017) 4,289

Usual Suspects, The (1995) 4,284

Twin Peaks (1989) 4,267

The Godfather: Part II (1974) 4,261

Over the Garden Wall (2013) 4,258

Black Mirror 4,256

Seven Samurai (Shichinin no samurai) (1954) 4,254

The Adventures of Sherlock Holmes and Doctor Wats 4,251

The Blue Planet (2001) 4,248

As we will explain in more detail in the methodology section, we train and eval-

uate the model in an incremental method. Therefore, the distribution of the release

dates of the movies is essential. In the dataset, the titles of most movies have the year

they were released (61828 out of 62433 movies). For example, the title of the Forrest

Gump movie is Forrest Gump (1994) in the dataset. We extracted this information

from there. Table 3.5 contains information about how many movies were released in

which years and the percentage of the total number of movies. As can be seen from

here, the Movies are not concentrated in specific years and are spread out evenly over

all years.

3.1.2. Fashion Effects on Ratings

We said that the advantage of sequence recommendations over classic recom-

mendations is that they recognize and learn from changing tastes. We have given an

example of books before. People’s tastes in book genres may vary over the years, and

the model may not be able to learn about current book tastes if the model cares equally
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Table 3.5. Movies Release Dates Distributions

Year Range Movie Count % of Total

1870-1964 1529 %16.3

1965-1969 2049 %3.3

1970-1974 2601 %4.2

1975-1979 2347 %3.8

1980-1984 2319 %3.7

1985–1989 2851 %4.6

1990-1994 2836 %4.6

1995-1999 3805 %6.1

2000-2004 5118 %8.3

2005-2009 7530 %12.1

2010-2014 10020 %16.2

2015-2019 10403 %16.8

about the entire past. On the other hand, sequential recommender systems catch up

with current tastes. However, such a change of taste must also be present in the data

for the model to learn this. Considering this, we want to see on the data whether the

movies received more interaction in specific periods, that is, whether there has been a

fashion over the years about interacted movies.

We have developed a method to check whether the dataset has a fashion over

the years. Intuitively, movies usually get more interaction in the first period they are

released. If interactions concentrate on certain movies in specific periods, i.e., fashion,

this concentration may be the first period of their publication. We want to check this

intuitive assumption by choosing two different years to test this hypothesis. These are

1997 and 2002. We compare the interaction counts of the movies released in these years

according to the ages of those movies. We want to see if they get more interactions in

their first year.

Table 3.6 shows our analysis’s results according to the hypothesis. In the % part

of the” total” column, there is the interaction ratio of the movie at the relevant age to
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Table 3.6. Interaction Distrubition over Age of Movies

1997 2002

Age % of cumulative % of total Age % of cumulative % of total

0 %2.6 %2.6 0 %4 %4

1 %6.9 %4.3 1 %14.3 %10.3

2 %16 %9.1 2 %21.9 %7.6

3 %28.1 %12.1 3 %32.4 %10.3

4 %34.4 %6.3 4 %38.8 %6.4

5 %38.5 %4.1 5 %44.2 %5.4

6 %43 %4.5 6 %49.6 %5.4

the total number of interactions. In the % part of the” cumulative” column, there is

the ratio of the cumulative sum according to age to the total number of interactions

the movie takes. This table shows us that movies take about one-third of their total

interactions in the first three years, and almost half are in the first six years. This

finding confirms the hypothesis that movies interact more in the early periods. From

this point of view, we can say that in every period, the newly released movies of

that period have more interaction. Therefore, we can claim that fashion affects the

Movielens dataset.

3.1.3. Feature Definitions

While introducing the dataset, we said that the dataset we finally received con-

tains the following information: userid, movieid, rating, timestamp, genres, tag, genome

relevance, and genome tag. Of these, movie id is defined as the item in user-item inter-

actions of recommender systems. We will also use the user id to divide into sequences.

We will explain the details of it in the methodology section. We get many features from

other information such as the genre of the movie. We divide the features into three

groups according to their types. These are categorical, continuous, and time-based

features.

A movie can have more than one genre, which means a movie can become about
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comedy and drama. We had to choose one of the genres due to the limitation of our

framework, Transformers4rec. So, we have chosen the first one from the genre list of

movies. We use this genre as a categorical feature.

In the previous section, we talked about tags and genome tags. We had to choose

one tag and one genome tag for a user-item interaction for the same reason as the genre.

While making this selection, we took the most given tags. We got the highest relevance

score for the movie among the genome tags. These became our other two categorical

variables. We have three categorical features, tags, genome tags, and genres.

We have two continuous features. One of them is the rating score that a user

gives a movie. The other one is genome relevance which is the relevance score of the

genome tag.

We know the timestamp that represents when users give these ratings. Time

information is essential because we have generated many features using this timestamp.

We call this type of feature a time-based features.

The first time-based feature is the day of the date. It says on which day of the

month the rating is given. It ranges from 1 to 31. Another one is the week of the year

as a feature. It ranges from 1 to 52, and the second feature is the year, which starts

from 1995 and goes up to the end of the dataset used. We similarly used weekday, the

day of the week, and defined it as a feature that changes from 1 to 7.

Moreover, the day is a cyclical feature, which means that the first day of a month

is near the last day of the previous month’s event. With this feature engineering, the

day is mapped as a feature to a float ranging from -1 to 1. If they are only labeled 1

and 31, the numbers are far from each other. So, to get information on cyclicality, we

have defined day sin features [21].

Finally, for Movielens datasets, we got the following features: day, weekday,

year, and day sin in time-based features; genres, genome tags, and tags in categorical



19

features; genome relevancy and rating in continuous features.

3.2. G1 news Dataset

G1 globo , a popular website in Brazil, published the G1 news dataset [5]. This

website is so popular that there are more than 80m unique users per month, and more

than 100k new content is uploaded monthly [13].

This dataset has user-news interactions from October 1 to October 16, 2017.

More than 3 million interactions were made in 1.2 million sessions in this period. 330k

users made these interactions, and there are 50k news articles [13]. This was the

overall picture of the dataset. We use the preprocessed version of this dataset [22]

shared on Transformers4rec [18]. In the preprocessing process, sessions having only

one interaction were eliminated, and longer user-news sequences than 20 were cast to

20.

In this dataset, we have been provided with session-level information. Specifically,

in addition to providing information about which users clicked on which news articles,

it also includes information about the session to which these interactions belong.

Table 3.7. Session Length Statistics of G1 News

avg 2.7

stdev 1.3

min 2

percentile 25 2

median 2

percentile 75 3

max 13

Also, it would be beneficial to present statistics about the number of news clicks

within each session for further analysis in this study. Table 3.7 illustrates that the

G1 news dataset consists of short sequences. Even at Percentile 75, it is 3, and the
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standard deviation of the session lengths is relatively low.

We used this dataset in our experiments in two ways. The first takes 16 days,

and the second uses the first 2 days. We will describe the results for both of them in

experiments and results section.

3.2.1. Feature Definitions

Items in user-item interactions in this dataset are articles that users click. The

goal is to recommend articles to users based on the sequence of articles that they have

clicked on.

Similar to the MovieLens dataset, a wide range of additional information is avail-

able about the interactions, including categorical variables such as environment, device

group, operating system, country, region, and referrer type. The platform [23] in which

the dataset was released [5] does not provide specific definitions for these fields, but

their meaning can be inferred from their names.

Additionally, time-based features have been generated for the dataset using the

timestamp of the beginning of a session. The cyclicality effect has been incorporated

using the method [21] used in the MovieLens dataset. Hour in, hour cos, weekday sin,

and weekday cos have been created from the timestamp of the beginning of a session

and the cyclical feature generation method.

In addition, the moment news receives interaction for the first time, we accept

its birth date and calculate the age of that article while other interactions are taking

place. We take the normalization of these and use it as a feature called item age hours

norm.

Finally, for the G1 news dataset, we got the following features: hour sin, hour

cos, weekday sin, weekday cos, item age hours norm in the time-based features; click

environment, click device group, click os, click country, click region, click referrer type
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in categorical features.

3.3. Evaluation Metrics

Recommender systems help users find what they are looka¡ing for or discover

new products through software. Monitoring the recommender system’s performance

is crucial to ensure that the software works effectively. In this thesis, we use several

evaluation metrics to monitor the performance of the models we use.

In this thesis, we aim to predict the next item in a session based on the previous

items. We treat the last item in the sequence as if it were the next item and attempt to

predict it using the previous items as a reference. Consider a sequence of seven movies

in the Movielens dataset. We aim to predict the last movie in the sequence by using

the previous six movies as a reference.

We recommend the top K items out of all possible items and then evaluate

whether the target item is included in our top K recommendations. Since we are

only predicting the last item, it serves as our singular, definitive target. If we only con-

sider whether the target is included in the top K recommendations, this measurement

is called recall@k. For example, if we successfully predict the target item 20 times out

of 100 attempts, our recall rate would be 0.20 (or 20%).

This thesis also uses the Normalized Discounted Cumulative Gain (NDCG) method

as a metric. This method considers the order of the target item among the top K rec-

ommendations.

To understand how NDCG considers orders in items, first, it is crucial to define

discounted cumulative gain (DCG). DCG is a metric that rewards when the target is

on the first lines; in other words, it punishes when the target is behind in the lines [24].
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It is calculated by the formula

DCG =
K∑
i=1

gaini

logb i
(3.1)

where the term ”gain” represents the rewards of hitting the recommended item, and

the variable ”b” can be chosen between 2 and 10 [25] in the equation. As seen, it is

punished when the model hits on the higher i values by a logarithmic function, which

ensures smooth punishing. Finally, we can define NDCG as DCG normalized between

0 and 1. It is a score between 0 and 1, similar to recall, and the closer the score is to

1, the better the metric performance.

In the experiments and results section of this study, we will utilize suffixes of

”K” as ”@10” and ”@20” in conjunction with the metrics NDCG@10, NDCG@20,

recall@10, and recall@20, which implies that we will be using ”10” and ”20” as our K

values.
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4. METHODOLOGY

The HuggingFace (HF) Transformers library [26] was built to open up develop-

ments in NLP to the broader machine-learning audience. It has an open-source repos-

itory and many contributors. This library contains many machine-learning models,

especially transformers. In this thesis, we used Transformers4rec [18], an open-source

library extended from the HF Transformers library. This library allows the implemen-

tation of sequential and session-based models at the production level. Transformers4rec

takes transformers architecture from HF Transformers and writes a specialized head

for the recommendation problems. Transformers4rec library has been used in two

recommendation competitions, SIGIR eCommerce Workshop Data Challenge 2021, or-

ganized by Coveo [27] and WSDM WebTour Workshop Challenge 2021, organized by

Booking.com [28] and got the best grades in both.

Sequential and session-based user interactions are similar to word sequences in

language modeling. However, unlike language models, sequential and session-based

recommendation models can receive side information. For example, we use genres of

movies, time of interaction, and many other features. Ranking metrics are also different

from language modeling. They require incremental training and evaluation. Sequence

types in RecSys are much more time sensitive. Language changes over time, but it

takes several years. Because of these differences, Transformers4rec has also modified

the transformers library to make it suitable for RecSys.

4.1. Problem Definition

We can describe the recommendation problem we want to solve using ”Rate

More” section on the Movielens website [6]. Movielens website have a section similar

to Figure 4.1. In this section, new movie suggestions have been made for users to rate

based on movies that have been interacted with before. The task we want to solve

here is similar to it. We have implemented this model to fine-tune it from month to

month for Movielens datasets, and we recommend the movies that are most suitable for
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users by looking at the past interactions among many movies. When it shows movies

that may be closer to the user instead of random movies, the user can easily find the

movies they want to rate. In this way, Users are provided to spend more productive

time on the website. Similarly, using the G1 news dataset, a sequence of news clicks

is used to suggest new news articles for the user to continue reading. In summary, we

are attempting to create a recommendation sequence based on the input sequence of

interactions.

Figure 4.1. Rate More

4.2. Transformers4rec Architecture

We provide information about the model’s architecture shown in Figure 4.2.

Transformers4rec’s architecture consists of multiple modules. First, input features

such as categorical and continuous prepared for models with Extract Transform Load

Module (ETL) are given to the feature processing module. We use a library called

NVTabular [29] to generate data suitable for sequential recommender systems from

tabular data. After the input features are normalized, they are aggregated, then inter-

action embeddings are created. These interaction embeddings are given to the sequence

masking module. Sequence masking module gives the embeddings to the sequence pro-

cessing module after masking them according to the training method (e.g., Causal LM,

Masked LM). The sequence processing module has transformer blocks (e.g., GPT-2,

Transformer-XL, XLNet, Electra). Sequence embedding is achieved using these blocks.

These transformer blocks feed the output layer, and the relevancy score is obtained for

all items using the softmax method.

In summary, it is a library that allows us to try transformers models on recom-

mender systems. It provides it with an easy way to implement. It also has configurable
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inputs, and its output formats have a readily observable quality.

Figure 4.2. Transformers4rec Architecture

4.3. Extract Transform Load

The Trasformers4rec framework requires data to be in a specific format, and this

requirement necessitates the use of an Extract, Transform, Load (ETL) process.

In this section, we will explain the process of dividing the datasets used in this
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thesis into sequences and preparing them for the recommendation model.

In this thesis, we call the movie rating data, and the user clicks on the news

as ”interactions”. Each row in this tabular dataset includes the user id, item id,

timestamp, and information about the interaction. Each row gives information about

when the user interacted with which item. In addition, we brought information about

the items, such as the movie’s subject, in Movielens datasets and clicked country in

G1 news, which is also available in the datasets. We need to adapt this raw data to

the recommender systems. While doing this, we use the NVTablular [29] library. Its

task is to prepare the preprocessed data required by the training pipeline.

The raw data with a few columns is similar to Table 4.1 in Movielens datasets.

One row contains the movie that a user interacts with and its features. We put one

continuous feature as an example. In the experiments using Movielens datasets, we

created sequences of user interactions to provide the data to the model on a per-user

basis. In other words, we grouped them according to the users and extract lists of data

from the other columns.

Table 4.1. Movielens Raw Data

User Id Item Id A Feature Timestamp

user 0 movie 0 1.5 1120105552000000000

user 0 movie 1 4.5 1183626018000000000

user 1 movie 2 3.0 1214626018000000000

user 1 movie 3 5.0 1259325028000000000

user 1 movie 4 1.5 1331925008000000000

user 2 movie 5 0.5 1528213801000000000

We grouped the data in Table 4.1 by user id and converted it to the format in

Table 4.2. There are different users in each row in the grouped one. Columns other

than user id include sequences. The length of these sequences is equal to the number of

items that users interact with. For us, a sequence means an item set with which a user

interacts. For example, if a user has interacted with 100 items, it results in 100 items
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in one cell of the sequence columns for that user. Other features we mentioned in the

dataset, not in this table, have been added here as sequences, such as genre sequence

and month of timestamp. Table 4.2 shows the shape of the data format we gave to the

model for the Movielens dataset.

Table 4.2. Movielens Preprocessed Data

User Id Item Id Sequence A Feature Sequence Timestamp Sequence

user 0 movie 0, movie 1 1.5, 4.5 1120..., 1183...

user 1 movie 2, movie 3, movie 4 3.0, 5.0, 1.5 1214..., 1259..., 1331...

user 2 movie 5 0.5 1528...

As previously mentioned, we create our sequences on a user basis in the Movielens

dataset. Our task will be to predict the next movie interaction of users based on their

previous movie interactions. In contrast, with the G1 news dataset, we work with

sessions, which is slightly different from the approach used in the Movielens data. The

raw version of G1 news data, as seen in Table 4.3, contains a log of each click event of

users. For example, in session 0, article 0 was clicked, and an example feature of this

interaction is 1. Additionally, this click event has a timestamp representing when the

event occurred.

Table 4.3. G1 News Raw Data

Session Id Item Id A Feature Timestamp

session 0 article 0 1 1219105440000000000

session 1 article 1 2 1232944001000000000

session 1 article 2 5 1113315018000000000

session 1 article 3 2 1115119018000000000

session 2 article 4 1 1212793008000000000

session 2 article 5 5 1819453902000000000

Using this raw data, we create sequences for the recommendation model similar

to how we did it with the Movielens dataset. The main difference is that while we

created user-based sequences in Movielens, we created session-based sequences here.
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By grouping this data similarly to how we did it with Movielens, we obtain Table 4.4.

We will give this preprocessed data to the recommendation models and recommend

articles for each session that may be suitable for that session.

Table 4.4. G1 News Preprocessed Data

Session Id Item Id Sequence A Feature Sequence Timestamp Sequence

session 0 article 0 1 1219...

session 1 article 1, article 2, article 3 2, 5, 2 1232...,1113...,1115...

session 2 article 4, article 5 1, 5 1212..., 1819...

4.4. Incremental Training and Evaluation

In the preceding section, we examined how we generate sequences from sessions

in the G1 news dataset and user interactions in the Movielens dataset. It would be

beneficial to clarify what we are training and what we aim to predict. Our objective is

to identify patterns within item sequences. Specifically, we aim to uncover the pattern

of news sequences within a session in the G1 news dataset, and the pattern of movie

sequences among the movies that users have rated in the Movielens dataset.

As the model learns these patterns, it attempts to predict the last item in the

sequence. For example, given a sequence of five items (item 1, item 2, item 3, item 4,

and item 5), the model attempts to predict the fifth item by analyzing the first four

items. In the case of the Movielens dataset, the model attempts to predict the nth

movie a user will interact with by using the information from the previous n-1 movies.

Similarly, for the G1 news dataset, the model attempts to predict the last news article

by learning the pattern of news sequences.

While identifying patterns in the item sequences, we provide the Transformers4rec

framework with additional features related to the interacted items, referred to as feature

sequences. These sequences are not necessary for the models to learn, but they often

improve the results. Similar to the item sequences provided, feature sequences are

added to the framework similarly. Moreover, we will delve into the feature importance
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topic in the experiments and results section.

Previously, we mentioned that sequential models capture changes in people’s

behavior over time. In daily life, recommendation models that work in production are

updated daily, hourly or monthly according to their domain. For example, if a website

offers up-to-date news with much traffic, it is reasonable to update it hourly. Or, if an

e-commerce application sells only a few particular products, it is appropriate to update

the model daily. In this section, we will talk about how we update the model over time

and how we evaluate it.

Suppose there is a recommendation model that is fine-tuned daily. In this case,

also assume that we use the data of n-1 days in the past to train the model and test

this model in production with end-users for today. If we say it mathematically, suppose

the current day is the Tn’th day. We obtained the model we use today using user-item

interactions on days T1, T2...Tn−1. We also did the test on the current day, Tn. When

we fine-tune the model again for the next day, we will have trained the model in the

sequence T1, T2...Tn. When we test it, we will have tested it on the day Tn+1.

At this point, we have to choose a time window while training the datasets by

time. We need to decide whether we should train and evaluate it day by day or weekly.

We chose the windows month-to-month for Movielens because when we look at the data

from month to month, we observe that we have enough data for each month, and there

is a pattern that can be learned from month to month. Therefore, we implemented the

model to be fine-tuned for each month. Our model starts to train as of the first month

of data. It is fine-tuned over and over again for each subsequent month.

As in the example about daily fine-tuning and evaluating the next day, in these

experiments, the model is evaluated with the test data of the i+1 month when it is

fine-tuned by using i’th month, and it is evaluated with the data of the i+2 month

when it is retrained for the i+1 month. For example, after being fine-tuned in April

2001, the model was evaluated in May 2001. In this way, we get an evaluation result

for each month.
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On the other hand, news is inherently more dynamic than movies. In particular,

the news presented on a website or application is highly current and up-to-date. We

used an hourly time window to effectively capture this dynamic nature in our G1 news

dataset, which includes news interactions. This approach enabled us to fine-tune and

evaluate the recommendation models for each hour. For example, when the model is

fine-tuned for the 6th hour of the day, it is evaluated with the 7th hour, and when it

is fine-tuned with the 7th, it is evaluated with the 8th hour. We call this type of task

incremental training and evaluation.

The overall success of the model is obtained by taking the average of the eval-

uation results of time windows. In other words, the results of each time window are

recorded, and then the average of the results of all time windows is taken. This av-

eraging method is employed because it closely mirrors how models are evaluated in

production environments. For instance, the success of a model at the production level

consists of the period of interest. Today’s success is vital if we are to evaluate the

model daily. When we look at the model’s success tomorrow, we will consider only

tomorrow again. Looking at the overall past, we take the average of all periods to see

how successful it was. We can closely mimic how models are evaluated in real-world

scenarios by designing such an evaluation process.
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5. EXPERIMENTS AND RESULTS

In this thesis, we utilized three distinct datasets. The first is from G1 globo

[5], a news website in Brazil. The other two datasets are from Movielens [6]. We

name themMovielens20m and Movielens25m. These Movielens datasets contain similar

information but were published at different times and contain approximately 20m and

25m interactions, respectively. We conducted our experiments on these three datasets

separately. In this section, we will present the results of our experiments.

As the methodology section explains, we use user-item interactions as a sequence

in this thesis. Interaction refers to a rating given to a movie for the Movielens datasets

or a click on a news article for the G1 news dataset. Therefore, a sequence size is the

number of movies the users have interacted with so far for Movielens datasets and the

number of interacted news for the G1 news dataset in a session.

In our experiments, the initial parameter we have to select was the length of the

sequences for each user. Our first inquiry is to determine the significance of sequence

length. To make this decision, we conduct experiments using the Movielens dataset.

However, for the G1 news dataset, we use fixed values of a minimum of 2 sessions

and a maximum of 20. As stated in the dataset section, the sessions in the G1 news

dataset are relatively brief, thus we deem it unnecessary to include this dataset in our

investigation of sequence length.

For the Movielens data, we chose the length by experimenting. The Movielens

data was published with a minimum sequence of 20. We also have some users with

approximately 10k sequences, meaning some users rated approximately 10k movies.

Due to the framework we use, it is not possible to use all interactions of users with long

sequences. We had to choose some of the latest interactions instead of all. For example,

in one experiment, we used the last ten movies. We trained the recommendation models

using the ten latest sequences. In other words, we predict the next film interaction

based on the ten latest interactions of users in the Movielens dataset.
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5.1. Length

In order to determine the importance of the sequence length of the features for

the Movielens datasets, we conducted experiments using various lengths. During these

experiments, we utilized all the features available to us. As the model, we used XLNet

for all of them. In all experiments, everything was the same, and only the sequence

length we used was different. To answer the question of how many latest interactions

we should obtain, we trained the model with different sequence lengths of 3, 5, 10, 25,

50, and 100.

Table 5.1. Length Results - Movielens20m

ndcg@10 ndcg@20 recall@10 recall@20

3 0.207 0.230 0.317 0.409

5 0.227 0.250 0.348 0.437

10 0.207 0.231 0.318 0.410

25 0.207 0.230 0.318 0.410

50 0.207 0.231 0.317 0.409

100 0.208 0.230 0.328 0.417

Table 5.2. Length Results - Movielens25m

ndcg@10 ndcg@20 recall@10 recall@20

3 0.157 0.182 0.279 0.380

5 0.197 0.224 0.334 0.444

10 0.182 0.206 0.303 0.399

25 0.179 0.201 0.297 0.383

50 0.158 0.184 0.290 0.393

100 0.144 0.168 0.248 0.344

Table 5.1 and Table 5.2 show that we got the best results from the sequence

having a length of 5 in both datasets, which may be due to transformers learning well

in short sequences.

The intuitive interpretation of the model results is that we predict the next movie
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based on the previous four movies. In other words, the model predicts the next movie

well using the previous four movies instead of long sequences. We used length 5 in

other experiments with Movielens datasets based on these results.

5.2. Different Model Results

In the next phase, we tried different models: Albert, Electra, and XLNet. After

finding the model that gives the best result according to the experiment results, we

have chosen the best. In these experiments, we have used all features we have, just as

we did when choosing the length.

Table 5.3. Different Model Results - Movielens20m

ndcg@10 ndcg@20 recall@10 recall@20

Albert 0.143 0.160 0.246 0.315

Electra 0.229 0.252 0.353 0.443

XLNet 0.228 0.252 0.347 0.439

Table 5.4. Different Model Results - Movielens25m

ndcg@10 ndcg@20 recall@10 recall@20

Albert 0.137 0.160 0.240 0.332

Electra 0.195 0.223 0.332 0.442

XLNet 0.192 0.219 0.329 0.438

Table 5.3 and Table 5.4 show that the Electra model gives the best results in

all metrics in both Movielens datasets. Therefore, we used the Electra model in our

subsequent experiments with Movielens datasets.

The results shown in Tables 5.5 and 5.6 show that the XLNet model performs

better on the G1 news dataset when used for 2 days and 16 days. As a result, it would

be a good idea to continue using the XLNet model for further experiments with the

G1 news dataset.
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Table 5.5. Different Model Results - G1 News - 2 Days

ndcg@10 ndcg@20 recall@10 recall@20

Albert 0.138 0.162 0.264 0.356

Electra 0.090 0.105 0.158 0.216

XLNet 0.201 0.229 0.356 0.468

Table 5.6. Different Model Results - G1 News - 16 Days

ndcg@10 ndcg@20 recall@10 recall@20

Albert 0.041 0.048 0.082 0.111

Electra 0.039 0.047 0.075 0.108

XLNet 0.095 0.113 0.176 0.247

Up to this point, we have decided on the size of the experiment and which models

we will try. We said length is the fix for G1 news with a minimum of 2 and a maximum

of 20. We said that for Movielens, the sequence length of 5 works well. Moreover, the

Electra model will be used for the Movielens dataset, and XLNet will be used for the

G1 news dataset.

5.3. Feature Grouping Experiment Results

We have chosen the model and length we will use. We used all features while

doing it. In this part, we investigate the importance of the features.

In our experiments, we utilize three groups of features for the Movielens dataset:

categorical, continuous, and time-based. For the G1 news dataset, we have two groups

of features: categorical and time-based.

We conducted a group-based feature analysis. We used features in groups and

observed their performance. When we selected a specific group of features, we used all

the features within that group. For instance, if we decide to include the continuous
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feature group for the Movielens dataset, we utilize all the continuous features, such as

ratings and genome scores.

Table 5.7. Feature Grouping Experiment Results - Movielens20m

ndcg @10 ndcg @20 recall @10 recall @20

- 0.138 0.164 0.246 0.349

Cat 0.134 0.160 0.246 0.350

Cont 0.201 0.222 0.307 0.391

Time 0.230 0.254 0.349 0.442

Cat-Cont 0.205 0.228 0.313 0.402

Cat-Time 0.230 0.254 0.350 0.441

Cont-Time 0.228 0.252 0.347 0.439

All 0.232 0.254 0.356 0.443

Table 5.8. Feature Grouping Experiment Results - Movielens25m

ndcg@10 ndcg@20 recall@10 recall@20

- 0.177 0.202 0.296 0.392

Cat 0.175 0.201 0.289 0.391

Cont 0.173 0.199 0.290 0.395

Time 0.195 0.221 0.332 0.437

Cat-Cont 0.172 0.198 0.289 0.393

Cat-Time 0.195 0.221 0.332 0.437

Cont-Time 0.198 0.225 0.336 0.445

All 0.197 0.224 0.337 0.443

The results are in Table 5.7 and Table 5.8 for the Movielens datasets. The

naming convention in this table is that the cat-cont model only includes categorical

and continuous features. Also, as we mentioned, if an experiment includes a feature

group, it means that all features in that feature group have been used. Considering

that we have two continuous and three categorical features, the cat-cont model has five

features.

We experiment with all possible combinations of using or not using feature groups
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for the Movielens dataset. Not using any feature at all is an option. The model that

does not use any features does not mean that it does not receive any input. It shows

that the model only learns depending on the item sequences while being trained. When

we use features, we provide additional information while learning the item sequence.

Furthermore, using each feature group individually creates three options, using

two feature groups creates three options (cat-cont, cat-time based, cont-time based),

and using all features together creates an option. In this experiment, there are 8 cases

for the feature grouping experiment. In Table 5.7 and 5.8, we have indicated the status

where no feature is used with a ”-” sign.

When we look at the Movielens20m datasets in Table 5.7, we can see that the

model using all features is the best. For Movielens25m in Table 5.8, the result of the

model with cont-time features is slightly better than the model having all features on

recall@20.

Additionally, our experiment results have revealed that time-based features con-

sistently achieve the highest performance among the experiments having only one fea-

ture group when used alone. For example, when evaluating the recall@20 metric for

Movielens25m, we observed a result of 0.437 when only time-based features were uti-

lized, compared to 0.391 when only categorical features were used and 0.395 when only

continuous features were used.

Our detailed analysis results of the Movielens dataset revealed that movies tend

to receive more engagement in their early years of release. For instance, movies released

in 2011 interacted significantly between 2012 and 2013. This suggests that as the model

is trained every month, it learns about a specific period and then forgets the past in its

memory. The model finds time-based information valuable as consecutive years tend

to be similar, such as the years 2011, 2012, and 2013, as well as 2015, 2016, and 2017.

We came to the same conclusion by analysis of the Movielens dataset and evaluating

the results of our experiments.
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Table 5.9. Feature Grouping Experiment Results - G1 News - 2 Days

ndcg@10 ndcg@20 recall@10 recall@20

- 0.190 0.215 0.354 0.454

Cat 0.192 0.215 0.361 0.452

Time 0.191 0.217 0.354 0.455

All 0.203 0.229 0.374 0.474

Table 5.10. Feature Grouping Experiment Results - G1 News - 16 Days

ndcg@10 ndcg@20 recall@10 recall@20

- 0.079 0.097 0.142 0.211

Cat 0.078 0.095 0.144 0.214

Time 0.096 0.114 0.182 0.256

All 0.087 0.105 0.164 0.234

Table 5.9 and Table 5.10 present the results of the experiments conducted on

the G1 news dataset. Our experiments involving a 16-day timeframe reveal that time-

based features are compelling, similar to the findings in the Movielens dataset. This

suggests that time-based features perform well when working with a long-term dataset

that encompasses different periods. However, when we consider a shorter timeframe

of 2 days, we observe that the best results are achieved when all features are utilized

together. Additionally, the categorical group features hurt the long-term experiments’

results. However, when used in conjunction with time-based features in short-term

experiments, they positively impact the results.

5.4. Impacts of Each Feature

In addition to evaluating the features as groups, we also examined which individ-

ual features were the most effective. For example, in the Movielens dataset, we have

nine features: four time-based, two continuous, and three categorical. We conducted

nine experiments to determine the essential feature, testing each feature individually.
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Table 5.11. Impacts of Each Feature - Movielens20m

ndcg @10 ndcg @20 recall @10 recall @20

day 0.202 0.223 0.315 0.398

sin 0.204 0.225 0.308 0.393

week 0.195 0.215 0.298 0.378

year 0.229 0.252 0.349 0.439

genome relevance 0.192 0.212 0.288 0.370

rating 0.195 0.218 0.305 0.396

genome 0.140 0.166 0.248 0.351

genre 0.182 0.206 0.329 0.424

tag 0.150 0.177 0.246 0.353

Table 5.12. Impacts of Each Feature - Movielens25m

ndcg@10 ndcg@20 recall@10 recall@20

day 0.164 0.189 0.297 0.399

sin 0.173 0.196 0.295 0.385

week 0.171 0.201 0.284 0.404

year 0.192 0.218 0.329 0.430

genome relevance 0.140 0.165 0.231 0.329

rating 0.158 0.185 0.254 0.362

genome 0.178 0.203 0.296 0.395

genre 0.162 0.189 0.296 0.402

tag 0.174 0.200 0.286 0.388
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Table 5.11 and Table 5.12 indicate that time-based features are the most effective

across both datasets. The ”year” feature is the most impactful among these time-

based features, which suggests that the model learns better based on the years of the

interactions and that the user-item sequences exhibit similarities within given years. As

previously discussed, our dataset analysis revealed that movies tend to receive more

engagement in their early years of their release. For example, interactions in 2013

primarily consisted of movies released a few years ago. It creates a pattern in the data

over the periods. The results of our experiment align with this, showing that the model

could learn the structure of the data by giving more importance to the year feature.

The ability to capture this temporally changing pattern of users is a critical factor in

the success of sequence-based models.

Another feature that stands out as being important in Table 5.11 and Table 5.12

is the ”genre” feature. This feature significantly impacts the models’ success, which

is not surprising as people tend to interact with movies that belong to genres they

enjoy. It can be intuitively understood because people have particular preferences for

movie genres. For example, a person who likes action movies is likely to rate action

movies highly. Because of the similarity in the type of movie sequences, a similarity

is obtained between the sequences in terms of genre. The models are learning these

sequences.

Table 5.13. Impacts of Each Feature - G1 News - 2 Days

ndcg@10 ndcg@20 recall@10 recall@20

country 0.197 0.224 0.352 0.458

device group 0.198 0.226 0.352 0.464

environment 0.185 0.214 0.337 0.449

os 0.197 0.224 0.352 0.459

referrer type 0.199 0.225 0.357 0.461

region 0.195 0.224 0.350 0.466

age hour norm 0.192 0.217 0.356 0.453

hour sin&cos 0.202 0.228 0.362 0.463

week sin&cos 0.199 0.225 0.362 0.467
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Table 5.14. Impacts of Each Feature - G1 News - 16 Days

ndcg@10 ndcg@20 recall@10 recall@20

country 0.088 0.103 0.168 0.230

device group 0.085 0.101 0.166 0.231

environment 0.086 0.103 0.164 0.234

os 0.089 0.105 0.171 0.234

referrer type 0.091 0.109 0.176 0.248

region 0.084 0.099 0.165 0.224

age hour norm 0.105 0.122 0.191 0.259

hour sin&cos 0.094 0.110 0.174 0.241

week sin&cos 0.098 0.116 0.184 0.254

Additionally, we made two experiments, 2 days and 16 days, in the G1 news

dataset, with each feature alone, and added the results to Table 5.13 and Table 5.14.

The results in Table 5.13, based on a 2-day data model, indicate that hour-based

features perform the best when used alone. It is likely due to the rapid changes in

news on an hourly basis, which is reflected in the effectiveness of hour-based features

in the model.

Table 5.14 shows the results of a 16-day model, and the impact of features differs

in this case. The table illustrates that when trained over a longer term of 16 days, the

results tend to converge, and the age hour norm feature proves to be more effective

when used alone compared to other features. This can be attributed to the fact that

as news ages, it loses its relevance and importance. Therefore, it makes sense for the

model to consider this feature necessary.

5.5. General Interpretation

First, we started by choosing the size of the interactions, then determined the

model, and then showed which features were more effective. At the end of these, we

observed that the model learned well in short sequences, and the most excellent point

was the importance of the time-based features that affect the sequential pattern.
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For the Movielens dataset, time features work well because movie ratings change

over time. Movies get more interaction in the early years after their release. For

example, the movie Corruptor, released in 1999, had the most interaction between

1999-2002. After 2002, the movie received little interaction. In addition, when the

model uses short sequences while training, it forgets what was learned at that time in

the following years. It starts to learn the new pattern for the following years. So it is

no coincidence that the model learns well in short sequences and time-based features.

Although the movie ratings change over time, users are slightly more conservative on

movie subjects. Because we observed that the genre feature is effective in our model

results, there must be a pattern in the genre among sequences, and the model tends to

make decisions based on its genre feature.

The results of the G1 news dataset show that when the model is trained with

a short interval, it performs better. Specifically, the recall@20 score is 0.468 when

trained for 2 days but drops to 0.247 when trained for 16 days. This suggests that

the model may not forget old data when it is trained for a more extended period of

time. Additionally, time-based features, such as those found in the Movielens dataset,

were influential in both 2-day and 16-day training intervals. This supports the idea

that time-based features are practical and that users’ preferences change over time.

Furthermore, while hour-based features perform well in the short term, the age feature

appears to be more beneficial for achieving good performance in the long term.

5.6. Baseline Methods

First, we will present the results of the baseline models we implemented to com-

pare against our Transformers4rec-based models.

In this thesis, we were inspired by the work of Grbovic et al. in NLP, and used

word2vec [9] as a model similar to the study in [11]. We attempted to learn vector

representations of products using word2vec in our baseline model.

We used the following approach: we trained a word2vec model using all items
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except the last one. Next, we determined the most similar item vectors for the next

item by calculating the weighted average of these remaining item vectors. These were

the predictions for the last item. Afterward, we evaluated the performance of our model

using various metrics. Additionally, we trained our model for Movielens datasets using

sequences of varying lengths to compare it with transformer-based models effectively.

The results of our experiments can be seen in Table 5.15 and 5.16 for the Movielens

dataset. The models trained with five different sequence lengths, as well as the full-size

model (all), performed well. The Movielens20m dataset showed slightly better results

with the full-size model, while the Movielens25m dataset had slightly better results

with the 5-length sequence models. However, the performance of baseline method was

significantly lower compared to transformer-based models.

Table 5.15. Results of the Baseline Model - Movielens20m

ndcg@10 ndcg@20 recall@10 recall@20

5 0.0296 0.0406 0.0613 0.105

25 0.0161 0.0227 0.0336 0.06

100 0.0217 0.0298 0.0444 0.0770

All 0.0297 0.0407 0.0617 0.1053

Table 5.16. Results of the Baseline Model - Movielens20m

ndcg@10 ndcg@20 recall@10 recall@20

5 0.0317 0.0427 0.0646 0.1084

25 0.0152 0.0212 0.0319 0.0557

100 0.0237 0.0327 0.0493 0.0852

All 0.0317 0.0426 0.0645 0.1080

We also applied the same methodology to the G1 news dataset. However, since

the sequence lengths in this dataset are relatively short, we did not train models with

different sequence lengths as we did for the transformer-based models. Instead, we

used the entire sequence, similar to the ”all” model in the experiments with the Movie-

lens dataset. We utilized the entire dataset (16 days) during the conduct of these
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experiments.

Table 5.17. Results of the Baseline Model - G1 News

ndcg@10 ndcg@20 recall@10 recall@20

All 0.076 0.092 0.144 0.208

The best score we obtained using transformer-based models in the G1 news

dataset was around 0.25 for recall@20. These results indicate that the transformer-

based models performed well when compared to our baseline model. As shown in Table

5.17, the baseline model achieved an approximate score of 0.21 for recall@20. Although

there is a significant difference in performance between the Movielens and G1 news

datasets, the word2vec model performed relatively well on the G1 news dataset. We

attribute this to the nature of the G1 news dataset, which consists of item ids that

frequently change hourly. In other words, new news articles are published every hour,

and older articles are not included in subsequent interactions. Therefore, article ids

in our data are often accompanied by articles published simultaneously, resulting in a

significant difference in article ids between time windows. The model also understands

that certain article ids are closely associated at specific periods, resulting in similar

vectors. However, in the Movielens dataset, a movie can be rated for 25 years, which

might cause the model to consider it similar to all other movies during training. This

difference between datasets leads to the observed discrepancy in performance between

the two models.

5.7. Comparisons with Other Research

This section will provide information about other studies that have conducted

experiments using our datasets or that have similar results to ours using different

datasets.

In the 2022 ACM RecSys challenge [16], one of the results in Lu, Y et al. [17],

ranked second in the competition, is that the experiment results get worse as session
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length increases. It is stated that the reason is that as the length increases, the model

learns old fashion and cannot keep the current situations in the memory well. Our

experiments with the Movielens datasets also support this claim because we get neg-

atively affected results when we increase length. Moreover, the session lengths of the

datasets used in the [18] Transformers4rec paper are also short.

With the G1 news dataset [5], Moreira et al. [13] developed a model called

CHAMELEON. In this study, one of the experiments was conducted by fine-tuning

and evaluating for every hour as we did. They did this experiment using the last day

of the data. In other words, it is the last 24 hours in the G1 news dataset. The Re-

call@5 technique has been used for evaluation. Although it varies from hour to hour,

the results between hours vary from 65% to 75%. Also, experiments with this dataset

in Transformers4rec’s paper [18] were made using 16 days. The results were around

67%. We couldn’t implement the same experiments since the code used while doing

experiments here is a bit old. We think that they get better results than us because of

hyperparameters they use.

Experiments were performed using the Movielens20m dataset in BERT4Rec [15].

In this study, unlike us, they took all their interactions instead of taking the last n

interactions of the users. This approach is very different from ours. Recall@10 results

are approximately 75% in their experiment.
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6. CONCLUSION AND FUTURE WORK

Recommender systems are computer programs that aid us in making important

decisions regarding the movies we watch, clothing, vacation destinations, and even food

choices. These systems play a crucial role in our daily lives, and it’s essential that they

function optimally for both the users and the businesses that utilize them.

In this study, we thoroughly investigated the effectiveness of various features in

sequential and session-based recommender systems. Through a series of comprehensive

experiments, we aimed to gain a deeper understanding of the behavior of these features

and to interpret the results in the context of the dataset’s patterns.

During our research, we utilized the cutting-edge library, Transformer4Rec, which

facilitates the effortless implementation and deployment of state-of-the-art transformer

models in recommendation tasks at the production level. This library is favored among

the community for its ease of use and versatility in recommender systems.

We have demonstrated that Transformer-based recommender systems improve

performance when the sequence length is kept short. Additionally, our data analysis

revealed that seasonal user preferences exhibit variability over time. Our models can

effectively learn and adapt to these periodically changing customer preferences, as

evidenced by the results. Furthermore, we observed that incorporating time-based

features outperforms other features in our models.

As this study utilizes experimental methods, it would be beneficial to offer recom-

mendations for implementation in production settings in future work. One approach

could be to develop an automated feature analysis process similar to the one used in

this thesis before deploying a model in production. This could be achieved by de-

signing a pipeline that utilizes a library for this purpose and allowing users to select

which features they would like to include or exclude. Additionally, it would be helpful

to provide users with a visual representation of the essential features, similar to the
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experiment where we tested individual features. This would enable users to quickly

understand the impact of feature engineering on the model’s performance.
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