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ABSTRACT

ANALYSIS OF WORD DEPENDENCY RELATIONS AND

SUBWORD MODELS IN ABSTRACTIVE TEXT

SUMMARIZATION

Abstractive text summarization is an important task in natural language pro-

cessing. As there are too many textual materials becoming available in the digital

world at an unprecedented speed, people begin to need automated text summarization

systems to summarize such bulk data in a condensed form that only holds the neces-

sary information. With recent advances in deep learning techniques, abstractive text

summarization has gained even more attention. Attention-based sequence-to-sequence

models are adapted for this task and achieved state-of-the-art results. On top of it,

several additional mechanisms like pointer/generator and coverage were proposed and

have become the standard mechanisms to be used for abstractive summarization mod-

els. Using these approaches, we integrated word dependency relations and analyzed

their effects on the models. We showed that integrating dependency relations increases

performance. Recent models for many natural language processing tasks use subwords

and achieve state-of-the-art results. We utilized three different subword models in our

models and analyze their effectiveness in the abstractive summarization task. We found

that subword usage is another viable option to be included for abstractive summariza-

tion models as well.
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ÖZET

SOYUTLAMALI METİN ÖZETLEMEDE KELİME

BAĞLILIK İLİŞKİLERİ VE ALT SÖZCÜK MODELLERİ

ANALİZİ

Soyutlamalı metin özetleme, doğal dil işlemede önemli bir alandır. Dijital dünya-

da daha önce eşi görülmemiş bir hızla çok fazla metin materyalleri oluşturulduğundan,

insanlar bu tür metinlerden yalnızca gerekli bilgileri içeren bir biçimde özet elde etmek

için otomatik metin özetleme sistemlerine ihtiyaç duymaya başladılar. Derin öğren-

me metotlarındaki son gelişmelerle birlikte, soyutlamalı metin özetleme araştırmacılar

tarafından daha da fazla ilgi görmeye başlamıştır. Dikkat temelli diziden diziye model-

ler bu alana uyarlanabilmekte ve bu tip modeller oldukça başarılı sonuçlar vermek-

tedir. Bunlarla beraber, işaretçi/üretici ve kapsam gibi birkaç ek mekanizma sıklıkla

kullanılmaktadır. Bu mekanizmalar, başarılarından dolayı soyutlamalı özetleme model-

leri için birer standart haline gelmiştir. Bu tezde söz konusu teknikler ile kelime

bağlılık ilişkileri kullanımı bütünleştirilmiş ve modellere olan etkileri analiz edilmiştir.

Bağlılık ilişkilerini entegre etmenin performansı artırdığı gösterilmiştir. Doğal dil işleme

görevleri için tasarlanmış birçok yeni model, alt sözcükler kullanmakta ve oldukça

başarılı sonuçlar elde etmektedir. Bu tezdeki modellerde üç farklı alt sözcük modeli kul-

lanılarak soyutlamalı özetleme alanındaki etkileri incelenmiştir. Alt sözcük kullanımı-

nın da bu tür soyutlamalı özetleme modellere dahil edilebilecek uygun bir seçenek

olduğu gösterilmiştir.
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1. INTRODUCTION

Summarization is the task of acquiring a condensed text considering the main

information of an original longer text. It is frequently done in many areas of our

everyday lives. It is an important subfield in Natural Language Processing (NLP). A

system that does summarization itself is expected to generate summaries as the output

by receiving the original text as the input. The input text can have one or more

sentences. It is frequently called a document or an article if the input contains several

sentences. The process can be called sentence summarization if the input contains only

one but a long sentence. On the other hand, the output is typically called summary.

There is no restriction about the length of it. It can be as short as one or two words,

or as long as two or three sentences. However, it should naturally be shorter than the

input. The process can also be called headline generation if the output contains two

or three words and is suitable for it to be used as a headline.

Summarization can be divided into many different types since the desired sum-

maries can have many different intentions or aspects. For example, it can be single-

document or multi-document summarization according to the number of documents

to be summarized. It can be generic summarization or query-focused summarization

in which the summary is specifically expected to involve the information regarding a

query. It can also be divided into different types according to a specific domain or

genre to which the articles or documents are related.

Summarization can typically be done with two different methods, namely ex-

tractive summarization and abstractive summarization. The approach can be called

extractive if the actual words, phrases or sentences are selected from the input and

used as the summary. This approach is relatively simple for automated systems. As

a result, there are many studies about this type of summarization technique. Prior to

the deep learning techniques, there were many different approaches mostly based on

rule-based techniques, graph-based approaches, statistical approaches, etc.
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1.1. Abstractive Summarization

Abstractive summarization is another method of summarization, which aims to

grasp the semantic information of a text and tries to construct a natural, reformed and

novel summary that might consist of new words, phrases or sentences. An abstractive

summarization system should understand and internalize the content of articles prop-

erly. The necessary concepts such as actions, actors, objects, locations, etc. should be

accurate, and the cause-effect relationship should be preserved in the understanding.

According to this understanding, the system should be able to generate acceptable

words, phrases or even sentences that contain these important concepts.

The research on abstractive summarization followed a similar path to extractive

summarization. Early extractive models include statistical approaches in which some

pre-determined statistics are obtained from articles, such as the frequency of words, the

similarity of sentences, the similarity of words with the title, the length of the sentences,

the existence of named entities or numbers, etc. There were also graph-based studies in

which the sentences or words were represented as nodes and the relation between them

as edges. With several pre-determined rules and suitable statistics, some associations

could be found and used to construct summaries. Machine learning approaches were

used as well, such as supervised approaches like support vector machines, naive Bayes

classifiers, decision trees; or unsupervised approaches like clustering, hidden Markov

models, genetic algorithms, etc. Early works about abstractive summarization used

these approaches along with external tools that helped to generate new words such as

dictionaries, thesauri, semantic relation databases, etc. Currently, like extractive sum-

marization, deep learning models are frequently used. Natural language generation

becomes relatively easier with deep learning, which helps abstractive summarization

a lot. Alongside generation, such models have more effective natural language under-

standing abilities too. Technical details of such abstractive models can be found in

Chapter 5.
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1.2. Motivation

With recent advances in technology, more and more information flow occurs on

the Internet. Too many materials are unprecedentedly shared, such as news articles,

blogs, scientific papers, reports, documentations, online books, and so on. In this

digital age of overloaded information, the need for automatic summarization systems

has naturally arisen. Inherently, people begin to need fast ways of retrieving and

reading the main ideas of any textual material. We need to find and learn the related

key information quickly when we desire. Retrieving and processing short summaries

that preserve the important information and meaning can be done easily, effectively

and efficiently compared to long texts.

Because it is relatively easier than abstractive summarization, researchers have

proposed many ways for automatic extractive summarization. They have even achieved

successful results over some widely-used metrics by preserving salient information and

constructing grammatically correct sentences. However, extractive summarization sys-

tems do not produce verbally innovative summaries. It is not a humane way of summa-

rizing, which means that people do not summarize in this way. Abstractive summariza-

tion, on the other hand, can produce novel sentences, which is how we all summarize.

The idea of generating something from scratch with some deep learning and machine

learning approaches can be exciting. Moreover, because of its innovative potential

and the use of external knowledge, abstractive summarization has the capability of

producing high-quality summaries.

The metrics for evaluating the effectiveness of summarization systems generally

consider some forms of n-gram matches between the predicted and reference summaries.

This helps extractive systems to achieve high results. Although this is the case, abstrac-

tive systems begin to achieve comparable results with the adaptations of deep learning

techniques. Recent successes in deep learning have made abstractive summarization

viable and attract many researchers’ attention. For example, sequence-to-sequence

models in which recurrent neural networks both read and generate novel text can be
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adapted for abstractive summarization and such models can achieve state-of-the-art

results.

Semantic information of words is very important in natural language understand-

ing. The better the semantic representations are, the more effective understanding

becomes. In order to make the representations better, researchers combine some ad-

ditional features to them. One possible addition can be the syntactic information of

words in a sentence. Using dependency parsing techniques to obtain and integrating

the resulting word dependency relations to the models can be used for this purpose.

We see that very few models were proposed that integrates word dependency relations

in abstractive summarization. Their effectiveness on such models is not particularly

analyzed. In this thesis, we integrated word dependency relations and analyze their

effects on abstractive summarization models as a contribution. We have found that us-

ing dependency features indeed increases the performance of abstractive summarization

tasks.

Recent deep learning models about language modeling use subword entities as

tokens instead of whole words. These models have achieved state-of-the-art results and

have quickly begun to be used widely. The popular subword tokenization algorithms

separate words into meaningful subwords. They can successfully capture the morpho-

logical structures of words such as their base forms, prefixes, suffixes, etc. As a result,

using subwords helps natural language understanding and generation of the models.

However, there are not many studies using subwords in recurrent neural network based

models in abstractive summarization. It is interesting to analyze their effectiveness in

common abstractive summarization models. In this thesis, we used various subword

models and analyzed their influences on these models as another contribution.

1.3. Thesis Outline

The organization of the thesis is as follows. The information that needs to be

known as a background to understand the subsequent chapters is described in Chap-
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ter 2. Some important studies related to abstractive summarization are mentioned in

Chapter 3. The descriptions of frequently-used datasets can be found in Chapter 4.

Chapter 5 contains the descriptions of the models and the additional mechanisms re-

garding abstractive summarization. It also includes the additions required for the

analysis of word dependency relations and subword models. All of the related exper-

iments, their results and our deductions are mentioned in Chapter 6. Lastly, we give

a brief summary of the thesis and offer potential future works in Chapter 7. We also

give some example summaries generated from our models in Appendix A.
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2. BACKGROUND INFORMATION

In this chapter, we summarize some topics required for the rest of the thesis

as background information. There are explanations related to deep learning, recur-

rent neural networks, sequence-to-sequence models, attention mechanism, dependency

parsing, subword models, extractive and abstractive summarization.

2.1. Deep Learning and Neural Networks

With recent advances in deep learning, many researchers try to solve various prob-

lems in computer science using some varieties of deep neural networks. These prob-

lems can range from computer vision through bioinformatics, from robotics through

finance, and so on. As another important subfield in computer science, NLP is no

different. Morphological analysis tasks such as part-of-speech tagging or stemming,

syntactic analysis tasks such as dependency or constituency parsing, other main topics

such as named entity recognition, semantic role labeling, machine translation, speech

recognition, sentiment analysis, word sense disambiguation, textual entailment, story

generation, question answering, etc. are all suitable areas for the use of deep neural

networks. New models related to each of these problems are being proposed frequently

in recent years. Summarization is another important subfield that is considered among

the ones described above.

Neural networks are basically collections of artificial neurons that compute the

desired transformations based on their inputs and send signals to other neurons as

outputs. The connection between them is typically called an edge. The edges have a

weight that is used for a weighted summation for every input signal, and a non-linear

function is applied. The whole network is trained for obtaining the optimum weight

values for each edge based on some loss or objective function.
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Neural networks can be trained with the use of large datasets. The examples

in a dataset are processed by repeatedly trying to predict the actual (target) output.

The difference between the predicted output and the target output is considered as the

error. Typically, the loss functions are defined such that large errors give large values of

loss, which means the lower loss values give better accuracy. By processing a dataset

repeatedly, the model tries to minimize the loss with the use of some optimization

techniques. In general, the gradient of the loss function over every weight is computed

with the help of the chain rule. This provides how much error each weight compensates

for the overall loss value. With these gradients, gradient descent algorithms (or some

other methods) can be used to update each weight to decrease the loss. Overall, this

method is called backpropagation and is at the heart of many deep learning model

trainings.

2.2. Recurrent Neural Networks

The inputs to be used by the neural networks in NLP have a sequential nature.

This means that letters, words or sentences exist consecutively in input texts. Even

though the standard feed-forward neural networks are good for many application areas,

they are not natively suitable for sequential tasks. For this purpose, Recurrent Neural

Networks (RNNs) are used. These networks have an internal state that holds the

information of the previously processed sequential elements, which are generally words

(or subwords) in the context of many NLP subfields. This internal state can intuitively

be regarded as a memory. Generally, the word embeddings are sequentially fed into

an RNN step by step as inputs. At each step, RNN uses the internal state, among

the other necessary vectors such as the word embedding vectors of the current step, to

depend on the previous words. This effectively provides the ability to hold temporal

information.

The parameters of RNNs are optimized using the backpropagation algorithm

like the other neural networks. However, basic RNNs have the problem of vanishing

gradient. Note that the backpropagation algorithm must be used for the flow of gradient
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over the memory state as well. Since the input sequences can be very long, the gradients

tend to get smaller and smaller as the RNN rolls up. At some point, because of the

precision issues of floating numbers in computers, the gradient becomes zero. As a

result, this causes no update for the model parameters. Even if the precision were not

a concern, gradients would become so small that the update is very little, and, as a

result, the training would take too long.

2.2.1. Long Short-Term Memory

There are several RNNs that can overcome the vanishing gradient problem. Long

Short-Term Memory (LSTM) is one of the widely used networks for an RNN. The

computations done by an LSTM cell can be seen in Equation 2.1 [1].

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf )

gt = tanh(Wgxt + Ught−1 + bg)

ot = σ(Woxt + Uoht−1 + bo)

ct = ft ∗ ct−1 + it ∗ gt

ht = ot ∗ tanh(ct)

(2.1)

where ∗ is the element-wise multiplication operation (Hadamard product), xt ∈ Rd is

the input vector, ct ∈ Rd is the cell state vector, ht ∈ Rd is the hidden state vector (or

the output vector of the LSTM), it ∈ Rd, ft ∈ Rd, gt ∈ Rd and ot ∈ Rd are the input,

forget, cell and output gate vectors respectively. Note that d is the dimension of these

vectors and is often altered as a hyper-parameter in training. The sizes of the weight

matrices Wi, Ui, Wf , Uf , Wg, Ug, Wo, Uo and the bias terms bi, bf , bg, bo are altered

according to the hyper-parameter configuration of the value d and the size of the input

vector. A diagram that represents the computation carried by an LSTM cell can be

seen in Figure 2.1.
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Figure 2.1. Long Short-Term Memory Cell.

2.2.2. Gated Recurrent Unit

Gated Recurrent Unit (GRU) is another widely used example of RNNs. The

computations done by a GRU cell can be seen in Equation 2.2 [2]. Note that it is very

similar to an LSTM cell. Because it lacks an output gate, it has fewer parameters to

be trained.

rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz)

nt = tanh(Wnxt + Un(rt ∗ ht−1) + bn)

ht = (1− zt) ∗ ht−1 + zt ∗ nt

(2.2)

where ht ∈ Rd is the hidden state vector (or the output vector of the GRU), rt ∈ Rd,

zt ∈ Rd and nt ∈ Rd are the reset, update and new gate vectors respectively. Same

discussions regarding the value d, the weight matrices Wr, Ur, Wz, Uz, Wn, Un and the

bias terms br, bz, bn also holds for GRU. Figure 2.2 is the diagram that represents the

computation carried by a GRU cell.
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Figure 2.2. Gated Recurrent Unit Cell.

2.3. Influential Deep Learning Models in NLP

With the introduction of deep learning techniques, the models proposed for ma-

chine translation specifically shone out compared to the models of other NLP subfields.

The problems related to other subfields are typically solved using models that are very

similar to the state-of-the-art ones for machine translation. These models are adapted

for the corresponding problems with small suitable changes. For example, researchers

simply change the final computational layers or units so that the model becomes a

classifier for sentiment analysis (instead of a word generator for machine translation).

It turns out that even some simple adaptations give state-of-the-art results for their

corresponding problems as well. Summarization is no different. The state-of-the-art

models up to now are very similar to popular machine translation models with suitable

adaptations for the summarization tasks and datasets. For this reason, it is important

to observe the popular machine translation models.

2.3.1. Sequence-to-Sequence Encoder-Decoder Models

Most of the machine translation models that use neural networks consist of two

sub-components, namely the encoder and the decoder [3]. Encoder networks first read

the input text and encode it into some suitable intermediate representation, which is



11

commonly called the context.

ht = f(xt, ht−1)

c = q(h1, h2, ..., hn)
(2.3)

where ht ∈ Rd is the hidden state of the encoder at the time (or step) t and c is the

context vector. Typically, the last hidden state of the encoder (i.e. hn), or average-

pooling over all of the hidden states of the encoder is used as the function q to compute

the context vector.

Decoder networks, on the other hand, read this representation and generate the

output words. It computes the probability of the output words (translation) by

p(y | x) =
m∏
t=1

p(yt | y1, y2, ..., yt−1,x) (2.4)

where y = (y1, y2, ..., ym) and x = (x1, x2, ..., xn). Each conditional probability term is

modeled by an RNN as

p(yt | y1, y2, ..., yt−1,x) = q′(yt−1, st, c) (2.5)

where st ∈ Rd is the hidden state of the decoder at the decoding step t. Note that the

function q′ is typically a (possibly multi-layered) feed-forward neural network.

The decoder constructs its hidden state in a similar way to the encoder. It is

computed by

st = f(yt−1, st−1, c) (2.6)

which uses the previously generated word yt−1 instead of the input words and the

context vector c as an addition.
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An encoder-decoder network is basically defined as the combination of these two

sub-components, which can be jointly trained. In the context of machine translation;

the encoder reads the input words of a sentence in language A (x) and converts it into

a suitable representation (c); the decoder reads this representation and generates the

resulting words as the potential translation of that sentence in language B (y). Both

of these two sub-components are typically RNNs. The encoder RNN reads the input

word by word and the computations are conditioned over the previous words (or also

following words if it has bidirectional nature). This makes the encoder handle sequential

data. On the other hand, the decoder RNN generates a new word by conditioning

over the previously generated words in addition to the encoder representations. This

enables the decoder to handle sequential data as well. Overall, these kinds of models are

typically called sequence-to-sequence models since the model reads sequences of words

as the input and generates sequences of words as the output. A diagram representing

a sequence-to-sequence model can be seen in Figure 2.3.

Encoder

Decoder

Figure 2.3. Sequence-to-Sequence Encoder-Decoder Network.

2.3.2. Attention Mechanism

The approach explained in Section 2.3.1 has a huge bottleneck. The represen-

tation constructed by the encoder is generally a fixed-sized vector. All necessary in-

formation needs to be compressed into this fixed vector. Since it has a fixed length,

the longer the input sentences are, the more information loss there will be. The de-

coder cannot generate suitable translation when it cannot effectively condition over the

source sentences to be translated. On the other hand, the decoder uses the same con-
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text vector when generating different parts of the predicted translated sentences. This

also brings another bottleneck for the decoder as it would be easier to condition over

only the relevant parts of the source sentences while the generation of the translations

as the irrelevant parts most likely cause errors.

In order to overcome these problems, researchers have proposed the idea of at-

tention. The context vector does not need to contain all of the information. Instead, it

should contain only the relevant parts of the source sentence. The attention mechanism

can be regarded as a soft-searching over the words in a source sentence that has the

most relevance [3]. Therefore, at each decoding step, the context vector gets dynam-

ically changed using all of the previously computed hidden vectors of the encoder hi.

It is generally computed by

ct =
n∑

i=1

αtihi (2.7)

which is basically a weighted sum of the hidden states. The attention weights αti are

computed by

eti = a(st−1, hi)

αti =
exp(eti)

n∑
j=1

exp(etj)

(2.8)

where the function a is generally modeled as a simple feed-forward neural network.

Note that this network can be jointly trained with the encoder and the decoder, which

means that the backpropagation of the gradients flows through this model towards the

encoder as well. In the context of machine translation, the function a can intuitively

be regarded as the alignment model. By visualizing αti values corresponding to all

of the source words xi, we can have an intuitive way of thinking about what the

attention mechanism actually does. It mimics how much focus over the parts of the

source sentence there needs to be while generating a particular word for a potential

translation.
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2.4. Dependency Parsing

Dependency parsing is the process of obtaining word dependency relations in a

sentence, which can be very important in speech and language processing systems. The

relations are often represented as dependency parse trees. Dependency parsing focuses

on the syntactic features of a sentence. Basically, it finds the dependencies between

words of a sentence and analyzes the grammatical structure.

A dependency parse tree is a collection of dependency relations that consist of

three elements, namely head, dependent (or modifier), and dependency type [4]. Head

and dependent are the words that are linked with each other. The dependency type

indicates the grammatical relation between the head-dependent pair. Typically, it is

represented with three or four letter abbreviations with capital letters. For example,

“NSUBJ” is used for a dependent word being a nominal subject of a head word. Simi-

larly, “DOBJ” is used for a direct object, “NMOD” is for nominal modifier, “AMOD”

is for adjectival modifier, “DET” is for determiner, etc. Researchers have constructed

various taxonomies of different dependency types. With the introduction of Universal

Dependencies formalism, many studies follow this same inventory of categories and

guidelines for consistent annotations and structures.

By focusing on the syntactic structure of sentences, systems might perform better

on their specific tasks. Therefore, the features obtained from the outputs of dependency

parsing are used in some studies as an external aid. Note that there are a lot of software

packages available that do automatic dependency parsing. Many of them capture not

only dependency relations but also the part-of-speech tags of each word.

2.5. Subword Models

Tokenization is the process of splitting text into smaller chunks, which are gen-

erally the words and/or the punctuation. It is an important step that is almost always

done as preprocessing. After tokenization, a vocabulary is constructed by combining
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the unique words in the corpus. However, the size of the vocabulary becomes very large

for big corpora as they simply include too many unique words. This causes very big

embedding matrices. Considering the memory and computation time complexities, the

size of the vocabulary should be trimmed down to a fixed value, and the least frequent

tokens should be represented with an out-of-vocabulary token.

Instead of tokenizing the text into words, it can be tokenized into characters.

The number of all unique characters in a corpus is much smaller. However, the models

will have a harder time learning the context of each character. This means that the

model will be too busy to capture the meaning of the words let alone the sentences.

It is simply too fine-grained. Researchers thought that a hybrid approach can be

used. Each unique word can further be divided into subwords. Several algorithms were

proposed for this purpose, which try to set a balance between more vocabulary entries

and further subword tokenization. It can be observed that the prefixes and suffixes,

such as -ing, -s, -tion, -ly, etc., are captured as subwords with these algorithms. Note

that all of these algorithms eliminate the possibility of out-of-vocabulary words.

2.5.1. Byte-Pair Encoding

Byte-Pair Encoding (BPE) [5] is an example of a subword tokenization algorithm.

It starts by setting the vocabulary with entries that have only one character observed

in the corpus. First, the corpus gets tokenized into words in a standard fashion, and

the frequencies of each unique word are computed. Then, the algorithm repeatedly

learns the merge rules. It counts the frequencies of all possible combinations of two

characters in the vocabulary being consecutively seen in the corpus. The most frequent

character pair is selected and the resulting subword is added to the vocabulary as a new

entry. The algorithm iteratively does this until the size of the vocabulary reaches the

desired number. With the learned merge rules, it is possible to tokenize into subwords

when a new text is seen.
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2.5.2. WordPiece

WordPiece [6] is another example of a subword tokenization algorithm, famously

used for the BERT model [7]. It is very similar to BPE. Instead of choosing the most

frequent character pairs, the algorithm chooses the pair that maximizes the likelihood

of the training data if the corresponding pair is added to the vocabulary. The character

pair with the greatest value of “the probability of two characters divided by the prob-

ability of the first character followed by the second character” gets selected. Similarly,

this process is iteratively done until the size of the vocabulary gets the desired value.

2.5.3. Unigram Language Model

Unigram language model [8] differs from both of the previous algorithms. Instead

of merging smaller chunks, it trims down bigger chunks into smaller ones to obtain

smaller vocabulary. At each training step, the algorithm computes loss values over

the whole training data given the current vocabulary and a unigram language model.

It tries to find out how much the overall loss would increase if the symbol was to be

removed from the vocabulary for each character in the vocabulary. After computing

the loss values, typically 10-20% of the characters whose corresponding loss values are

the lowest are removed. This means that the characters with the lowest effect on the

overall loss get trimmed out. This process is done until the vocabulary is reduced to

the desired size. There are no merge rules in this algorithm. In fact, there is more than

one way to tokenize a text after training. The probability of each token in the training

corpus is saved along with the vocabulary. Therefore, the probabilities of each possible

tokenization can be computed.

2.6. Summarization

Summarization can be defined as the following [9]. Let the input consists of a

sequence of n words, x = (x1, x2, ..., xn). A summarizer takes x as an input and outputs

another sequence of m words, y = (y1, y2, ..., ym). Notice that n should be larger than
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m. Given a scoring function s, a model is extractive if it tries to find

argmax
y∈S

s(x,y) (2.9)

where S is the set of all possible combinations of words, phrases or sentences obtained

from the input. In contrast to that, a model is abstractive if it tries to find

argmax
y∈Y

s(x,y) (2.10)

where Y is the set of all possible sentences as summaries.

2.6.1. Extractive Summarization

Like the other subfields of NLP, text summarization using deep learning tech-

niques is achieved by the adaptations of popular machine translation models. Instead

of generating words of the target language for potential translation in decoding, an ex-

tractive summarization model is expected to output the relevant sentences in the input

document. For a sentence-based extractive summarization, instead of Equation 2.9,

the objective becomes finding

argmax
y∈{0,1}m′

s(x, y) (2.11)

where m′ is the number of sentences required for the resulting summaries. Notice that

this is basically a binary decision over every input sentence, whether to include that

sentence in the summary or not.

Researchers have proposed many hierarchical encoders. For words in every sen-

tence, standard word-level encoders are used. On top of the word-level encoder, there

is also a sentence-level encoder that expects sentence representations obtained from

the previous level as input. Generally, the concatenation of the first and last hidden

states of the bidirectional word-level encoders is used as the sentence representations.
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The decoders are not necessary for these kinds of models, instead, the main work is

typically done by a classification layer. On top of the sentence-level encoder, a logis-

tic layer makes binary decisions about whether a particular input sentence should be

included in the resulting summary or not [10].

p(yt = 1 | ht, st, d) = σ(W1ht

+hTt W2d

−hTt W3 tanh(st)

+W4p
a
t

+W5p
r
t

+b)

(2.12)

where yt is a binary variable indicating the tth sentence is in the resulting summary. ht

is the hidden state of the sentence-level encoder which corresponds to the tth sentence

in the document, W1, W2, W3, W4 and W5 are the weight matrices and the vector b

is the bias term. The vector d is used for the overall document representation. It is

generally computed as the average pooling of all hidden states. The vector st is the

dynamic representation of the summary up to the sentence t. It can be computed by

st =
t−1∑
i=1

hip(yi = 1 | hi, si, d) [10].

Each term in Equation 2.12 has different contributions to the resulting probability

estimation. The first term represents the content of the tth sentence in the input

document. The second term captures the salience of that sentence with respect to

the document. The third term models the novelty of that sentence regarding the

current state of the summary (notice the minus sign before the term). The fourth term

represents the importance of the absolute position of that sentence in the document

and pat is the encoding of the absolute position. Similarly, the fifth term represents

the importance of the relative position of that sentence and prt is the encoding of the

relative position. Generally, the relative position values of the sentences are categorized

into 10-15 classes, which are decided priorly.
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2.6.2. Abstractive Summarization

An important difference between abstractive and extractive summarization is the

inclusion of natural language generation techniques. They both share similar princi-

ples of natural language understanding with their use of encoders. However, extractive

summarization tries to come up with a simple binary decision with this understand-

ing whereas abstractive summarization simply generates new words from scratch. In

this sense, abstractive summarization is very similar to machine translation since they

both share these principles. Indeed, many abstractive summarization models are very

similar to machine translation ones including their similarity of decoders or decoding

techniques (e.g. beam search). Instead of generating words of the target language for

potential translation in decoding, an abstractive summarization model is expected to

generate words of the same language. Note that the resulting summaries should be

substantially short and have the main information, of course.
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3. RELATED WORK

In this chapter, we briefly explain some important studies related to abstractive

summarization. Prior to deep learning, abstractive summarization was a big challenge

for the researchers. Because of the absence of the current natural language under-

standing and natural language generation techniques, researchers tried to come up

with statistical summarization models or graph-based approaches. After the advances

of deep learning techniques, abstractive summarization has gained more focus as it is

an interesting challenge to generate words and summaries from scratch.

Ganesan et al. proposed an unsupervised method to obtain “micropinion” (2-3

words-long opinions) from input texts [11]. They designed an optimization problem

that forms higher-order n-grams step-by-step by scoring them in terms of their repre-

sentativeness over the original input and readability. They achieved rather good results

with their works. However, it was about opinions, not summaries, and the outputs were

too short.

In order to construct new phrases or sentences, researchers often used the idea of

word graphs. For example, Ganesan et al. [12] proposed Opinosis which constructs an

associated word graph that represents all of the input sentences. By using the properties

of the edges and the nodes, they constructed and ranked all valid paths with respect

to their scores. The resulting paths were regarded as potential summaries. Lloret

et al. [13] also used word graphs to generate new sentences by traversing the graph.

Moawad et al. [14] constructed rich semantic graphs of the original documents instead

of word graphs and repeatedly reduced the graph to have abstracted graphs. They used

various NLP tools to obtain parse trees, dependencies, word senses, etc. With some

heuristics they proposed, the graphs were reduced to obtain the resulting summaries.

Word graphs provide an effective way to produce new sentences. However, re-

searchers often added additional methods to the path traversing to make it even more
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effective. For example, Banerjee et al. [15] aligned similar sentences of different doc-

uments to form clusters and generated summaries from each cluster to obtain final

summaries. Each sentence from the most important document, which was calculated

using LexRank [16] and pairwise cosine similarity, was initialized as separate clusters.

Other sentences from other documents were assigned to respective clusters based on

their similarities. Then, word graphs were formed for each cluster. In the end, the best

paths were obtained regarding the informativeness and the linguistic quality with the

help of integer linear programming.

Another way to generate new sentences is the use of natural language generation

tools. Khan et al. [17] defined a framework that uses predicate-argument structures by

employing semantic role labeling. Each predicate-argument structure was compared

and clustered using its features. At each cluster, the structures were ranked and se-

lected. The resulting summaries are obtained by the SimpleNLG tool using the selected

structures. Similarly, Genest et al. [18] proposed the concept of “Information Items”,

which is the smallest element of coherent information for a text. In their case study,

they also used SimpleNLG to generate new sentences, which provided abstractiveness

to their summarization model.

3.1. Studies Using Deep Learning

With the eyebrow-raising uses and successes of deep learning models, the re-

searchers tend towards data-driven models with neural networks, which can be trained

end-to-end. Indeed, Rush et al. [9] designed a fully data-driven model for abstractive

summarization. They used a convolutional network to encode the source sentences and

an attentional feed-forward neural network to generate the resulting summaries. Both

networks were trained jointly. Their proposed model, which is called the Attention-

Based Summarization (ABS) model, can also be used for any dataset consisting of

document-summary pairs. Many subsequent works usually regard this model as a

baseline model for any comparative evaluation over the Gigaword or the DUC datasets.

This work was a very important landmark for abstractive summarization because of the
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introduction of deep learning techniques over the rule-based extractive or abstractive

summarization techniques used previously.

Nallapati et al. [19] proposed an attentional encoder-decoder RNN that is very

much similar to the standard machine translation model by Bahdanau et al. [3]. They

expressed that capturing the unknown words in the source sentences is one of the major

problems in abstractive summarization. In addition to their model adaptation for

abstractive summarization, they focused on this problem by adding a new mechanism

called “Switching Pointer-Generator”. Before generating a new word, the model decides

whether to generate a new word ordinarily over the whole vocabulary, or it will choose

a word that is in the source sentences but not in the vocabulary. This has the chance

of generating a word that is not in the vocabulary and the writers thought that it

mimics how a person produces summaries. Lastly, they also focused on the problem of

a source document being too long, which might cause generating irrelevant summaries.

They introduced a two-level attention mechanism for that. This hierarchical attention

re-weights the word-level attention probabilities by the sentence-level attention values.

By also attending over the sentences, the model focuses on the important parts of the

document better.

Chopra et al. [20] used almost the same model as ABS. However, instead of

using a feed-forward neural network for generation, they used RNNs for generation,

specifically LSTM and Elman RNN architecture. They have achieved notable increases

over the Gigaword dataset, mainly with the model using Elman structure, which is

shortly mentioned in the literature as Recurrent Attentive Summarizer with Elman

RNN (RAS-Elman).

Xu et al. [21] proposed a new method by decoupling the encoder and the decoder

with the use of the doc2vec method. The doc2vec method, which is an extension

of word2vec by Mikolov et al. [22], is a successful unsupervised document encoding

method [23]. Feeding the doc2vec vectors of the input document to the decoder using

several ways (e.g. concatenation, element-wise summation, via multi-layer perceptron,
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etc.) leads to the summary sentences that are coherent and sensible considering the

original documents. They noted that, while their method works well in-domain data,

it does not work that well for out-of-domain data. They showed very similar scores

compare to ABS for the Gigaword dataset.

Zhou et al. [24] implemented a selection mechanism on the encoder in addition

to the standard sequence-to-sequence networks, which they shortly named SEASS.

This mechanism produces second-level sentence representations between the encoder

and the decoder and is achieved by a selective gate network. Their encoder consists of

bidirectional GRUs. The last forward and the backward states are concatenated to con-

struct the overall sentence representation. In the selective gate network, a multi-layer

perceptron with a sigmoid activation function logically chooses whether a particular

word should be selected or not using the hidden states of the encoder and the overall

sentence representation. This intermediate network actually computes element-wise

multiplication of the encoder hidden states to generate new ones. Lastly, they used an

attention mechanism over these new hidden states and another GRU for the decoder

to generate the resulting summary words. They showed significant increases in the

ROUGE scores compared to ABS in both Gigaword and DUC datasets.

Tan et al. [25] pointed out the problem of too long documents being hard to train

in deep learning techniques. They introduced a “coarse-to-fine” approach in which they

first select the important sentences by using several well-known document summariza-

tion techniques and then using a hierarchical attention mechanism to generate the

summary words. They used some popular extractive summarization methods, namely

Lead, Luhn, LSA, LexRank, TextRank, SumBasic and KL-Sum, to identify the im-

portant source sentences. For each output of these methods, the model generates an

overall representation vector with its LSTM encoders. A control layer, which is also

an LSTM, works on top of these representations. In the decoder, they implemented a

hierarchical attention mechanism, which considers the importance of these overall rep-

resentations and the actual words of a particular extractive summarization technique

mentioned above. Their scores are very similar to the RAS-Elman structure.
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Li et al. [26] used both discriminative deterministic states and generative latent

variables by introducing variational autoencoders in abstractive summarization. They

stated that human-generated summaries have common structures of latent information

and believed that this can improve the quality of the resulting abstractive summaries

for any system. Traditional models compute the internal decoding states completely

deterministically. The researchers used GRUs for the encoder and the decoder in a

standard fashion. However, before generating the summary words, the hidden states

were fed to variational autoencoders. The output is then fed as an additional feature in

the generation step of summary words, which mimics the representation of the latent

information. The whole model is jointly trained by using backpropagation. The scores

are even higher than RAS-Elman, let alone ABS for both Gigaword and DUC.

Pasunuru et al. [27] considered using entailment generation techniques. They used

a standard sequence-to-sequence encoder-decoder model consisting of LSTMs for both

summary generation and entailment generation. It encodes the premise and decodes

the entailed hypothesis via bilinear attention between them. In the end, multitask

learning approach is used to share the knowledge generated by both of the networks

with the help of the summary/entailment decoder. Two loss functions (for summariza-

tion and entailment generation) are optimized in training. The researchers showed that

sharing the parameters of both networks improves the quality of the results and main-

tains salient information. The ROUGE scores are slightly lower than the RAS-Elman

structure for the Gigaword dataset.

Paulus et al. [28] introduced a key attention mechanism for both encoder and

decoder and integrated reinforcement learning methods. They used a simple bilinear

function to temporally incorporate the hidden states of the encoder and the decoder.

However, they normalized these attention weights with their previous ones while de-

coding, which results in penalizing the source words that were already attended to

previously. In addition, they used a new intra-decoder attention mechanism, which

also provides more information flow about the previously generated summary words.

This is mainly because of the prevention of repeated phrases. In their model, they
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also used the pointer/generator mechanism described by Nallapati et al. [19]. The

overall model has a mixed training objective function that combines both the classical

maximum-likelihood cross-entropy loss and policy learning. The policy learning max-

imizes the ROUGE scores of the sampled words since ROUGE favors more natural

summaries [29]. Their results over the CNN/Daily Mail dataset are noticeably higher

regarding the other abstractive models at that time.

See et al. [30] proposed a hybrid pointer/generator network along with a coverage

mechanism. On top of the classical sequence-to-sequence encoder-decoder models, they

implemented a switch that effectively decides whether to generate a new word from

the vocabulary or point a word in the input to copy that word to the summary at

each decoding step. This procedure is a very good way to solve out-of-vocabulary

token problems in many abstractive summarization systems since out-of-vocabulary

words are generally very important for resulting summaries. It differs from the switch

proposed by Nallapati et al. [19] since the pointer/generator network from See et al.

can also copy a token from the input that is already in the vocabulary. In addition, they

implemented a coverage mechanism, which is basically the summation of the attention

distributions computed in the previous decoding steps. Their results showed that using

the coverage mechanism after the model is trained for some time is quite useful for not

attending the same parts of the input sentences, which means avoiding repetition over

the input parts. Both of their mechanisms are explained in Sections 5.2 and 5.3. The

scores with the coverage mechanism are significantly higher than Nallapati et al. [19] for

the CNN/Daily Mail dataset. Their works are widely used on the Internet, especially

the specific splits of the training-validation-test set of the non-anonymized CNN/Daily

Mail dataset.

Chen et al. [31] proposed a hybrid extractive-abstractive system. Their extractor

agent first selects the salient sentences. It consists of LSTM, for global information,

on top of a Convolutional Neural Network (CNN), for temporal information of the

source sentences. Sentence selection is done by a pointer network, which is also an

LSTM with attention. Their abstractor agent is similar to the Bahdanau network [3]
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along with the pointer/generator mechanism. They separately trained the extractor

and the abstractor. The whole model is optimized using policy gradient techniques

by computing the ROUGE scores of the generated summary from the abstractor. If

the extractor chooses a good sentence and the abstractor produces a good summary

with a higher ROUGE score using that sentence, the action is favored by reinforcement

learning. They showed a slight score improvement over See et al. [30] and very similar

results with Paulus et al. [28]. They also expressed that their methods, as the name of

their paper implies (“Fast Abstractive Summarization with Reinforce-Selected Sentence

Rewriting”), are very fast in terms of training and testing time compared to the other

similar works.

Cao et al. [32] underlined the problem of irrelevant or wrong facts generated as

the resulting summaries by many models. To fix this, they integrated information

extraction and dependency parsing techniques. By using OpenIE [33], they extracted

facts of the source sentences as relation triples containing subject, predicate and object.

These facts are used as an input to one encoder, similar to the input words, which are

used for another encoder (both are biGRUs). With a dual attention mechanism, the

decoder computes two context vectors for relations and words and combines them with

the use of a gate (switch) network. The generation of the words is done according to

this vector. Over the Gigaword dataset, the ROUGE scores are significantly higher

than the RAS-Elman structure.

Amplayo, Lim et al. [34] used an off-the-shelf entity linking system to extract a

sequential list of linked entities from the source sentences because they showed that

some important entities are not on the resulting summaries by many systems. Some

entities need to be selectively disambiguated by an RNN or a CNN using all other

neighboring entities, and the hidden states of the networks can then be used for cor-

responding entities. The resulting vectors are used by a pooling sub-module which

uses a firm attention mechanism that considers only top k entities. As a result, this

sub-module constructs a topic vector. The topic vector is then concatenated with all

of the decoder hidden states in each decoding step while generating summaries. They
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achieved slightly better results compared to SEASS for the Gigaword dataset.

Liu et al. [35] proposed a generative adversarial network for abstractive summa-

rization. The generative model consists of an LSTM encoder and decoder with an

attention mechanism. The discriminative model is basically a binary classifier that

tries to guess whether its input sequences, which are encoded by CNNs, are generated

by a machine or not. They showed very similar results with Paulus et al. [28], except

for ROUGE-2 scores which were almost 2 points better.

Lin et al. [36] considered the problems of repetition and semantic irrelevance and

tried to solve these problems with some global encoding. They used a convolutional

gated unit on top of an LSTM encoder, which makes the source context representation

better by improving the connection of word representations with the global context.

They noted that this unit finds some useful n-gram relations as well. In this unit,

the researchers also implemented a self-attention mechanism that considers all of the

encoder outputs. This encourages the model to learn long-term dependencies. The

output of this model is concatenated with the hidden states of the RNN encoder with

a gate (switch), and the decoder works using these states with a standard attention

mechanism. Their scores are almost the same as SEASS with very few improvements.

Hsu et al. [37] tried to unify extractive and abstractive approaches. They showed

that extractive approaches produce higher ROUGE scores compared to abstractive ap-

proaches, but lower readability. They used the then-state-of-the-art extractive model

by Nallapati et al. [10] and the abstractive model by See et al. [30]. The extractive

model, which is a classifier over the source sentences in its core, uses sentence-level at-

tention whereas the abstractive model has a decoder with word-level attention. Their

novel inconsistency loss function encourages the consistency between these two atten-

tions. Both of their models were pre-trained separately beforehand. Then, they either

trained the whole model in an end-to-end fashion or by using a two-staged approach.

They showed slightly better results compared to See et al. [30], Paulus et al. [28] and

Liu et al. [35] over the CNN/Daily Mail dataset.



28

All of the studies described above are generally for academic purposes, each tries

to introduce their novel approaches. Fan et al. [38], on the other hand, proposed an

extensible controllable model that is suitable for any live system. Their model consists

of deep convolutional networks with word embedding layers and alternated convolutions

with gated linear units. The decoder uses Bahdanau attention [3]. They achieved the

length constraint specified by the user by adding additional tokens into vocabulary and

prepending these tokens. Similarly, they also achieved entity and source constraints,

which are used to focus only on these entities or sources in the resulting summaries.

Lastly, they also explained a remainder summarization technique, which can be used to

generate the summary of the remainder after reading some sentences in the document.

Song et al. [39] pointed that the models are not successful enough to keep the

original meaning of the documents and do not include important words or relations.

They added some syntactic constructions in order to overcome these problems. Their

model is very similar to See et al. [30]. Additionally, they used the dependency parse

tree of the sentences for the pointer/generator mechanism to consider the syntactic

constructions better. After obtaining some features from the dependency tree, they

proposed using two parallel attention for both words (semantic) and dependency fea-

tures (structural). They achieved between 1.5-2 increase of ROUGE scores over the

Gigaword dataset compared to the RAS-Elman structure and slightly lower results

than Li et al. [26].

Wang et al. [40] incorporated topic information into their model which is a con-

volutional sequence-to-sequence model. They used latent Dirichlet allocation [41] to

obtain topic embeddings. They fed the words and the topic to two parallel convo-

lutional encoders. Then, a joint attention mechanism is used to combine them for

decoding. Lastly, they utilized self-critical sequence training which is a policy gradi-

ent algorithm for reinforcement learning to maximize the ROUGE metric (similar to

Paulus et al. [28]). Their results are slightly better compared to SEASS regarding both

Gigaword and DUC datasets.
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Çelikyılmaz et al. [42] proposed a different approach, which is called deep commu-

nicating agents. The encoding task is divided into subsections and handled by multiple

agents communicating with each other. These encoder agents have two parts. The first

part acts as a local encoder and consists of biLSTMs. The hidden states are passed

to the second part which acts as a contextual encoder, which is also a biLSTM with

several layers. The contextual encoder also takes the message sent by the other agents

at each layer. These messages are then average-pooled. This makes each encoder agent

to condition over them as well. Their decoder uses a hierarchical attention mechanism

over the agents and the source words. They also proposed a pointer/generator mech-

anism working hierarchically over the agents using these attention weights as well. In

addition to the classical negative log-likelihood, they added semantic cohesion loss to

penalize the similarity between the hidden states of the end-of-sentence while decoding.

Their three-agent model is slightly better than Paulus et al. [28] over the CNN/Daily

Mail dataset, which they report as the optimal number of agents.

Cohan et al. [43] tried to deal with long documents by adding discourse-awareness

to the system, which can specifically be used for research papers. They used a hierar-

chical encoder. The word embeddings for each section are fed to the “section RNN”.

The first and last hidden states are concatenated to get the section vectors. These

vectors are then fed to the “document RNN”. With the same principle, a document

vector is obtained. In each decoding step, the model also attends to the relevant dis-

course section in addition to the actual words (the discourse-level attention weights of

each section are multiplied with the corresponding word-level attention weights). The

model also has the pointer/generator and coverage mechanism as explained in See et

al. [30].

Li et al. [44] complained about the resulting summaries lacking key information.

They thought that, without external guidance, the pointer/generator mechanism does

not work optimally. They offered a combination of extractive and abstractive methods

to solve this problem. First, they used the unsupervised TextRank algorithm [45] to

extract keywords. These keywords are fed to “key information guide network”, which
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is an RNN, and the first and last states are concatenated to get the overall keyword

vector. While calculating the attention weights of Bahdanau attention, they added

this vector with a learnable weight parameter as an additional term. This vector is

also used as another term in decoding and pointer/generator switch. Lastly, at test

time, they used cosine similarity with the overall keyword vector to predict the extent

of the key information covered up to that point in their beam search algorithm. They

showed that the results are 1.5-2 points better than their baseline model with pointer/

generator over the CNN/Daily Mail dataset.

Xie et al. [46] also offered to include external approaches for improving semantic

relevance by adding a WordNet-based sentence ranking algorithm. Their model has two

LSTM encoders, which are for source words and extracted sentences. They combined

these with a dual attention mechanism, which is basically a gate (switch) network

running over the context vectors generated by both. The extracted sentences are

obtained by a ranking algorithm that uses WordNet. For each sentence, they filtered

the stop words and unambiguous tokens out, sorted the words regarding their number

of senses, and kept the first n words. Then, they counted the common number of senses

for each word as weights, and these weights were summed to get the weights for each

sentence. The highest-rated n sentences are extracted and used as described above.

Their model has the pointer/generator and coverage mechanisms as described in See et

al. [30]. Their ROUGE scores are comparable to Paulus et al. [28] and some extractive

models regarding the CNN/Daily Mail dataset.
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4. DATASETS

There are two main datasets that are widely used for abstractive summarization,

namely Gigaword and CNN/Daily Mail. In addition to these two, there are also minor

datasets that are used at DUC shared tasks. They both are pretty basic, contain

approximately 500 document-summary example pairs obtained from New York Times

and Associated Press. The summaries are human-generated and there are four of them

for each document. Because of the concerns of the computational resources at that

time, the size of the datasets and the length of the summaries are limited. Therefore,

they are not suitable for the use of training deep learning models. Instead, they can

be used for evaluation purposes as Rush et al. also propose [9].

DUC shared tasks play an important role by setting a standard in the evaluation

of abstractive summarization models. Their evaluation workflow uses ROUGE [29],

which is a set of metrics for evaluating machine translation and summarization sys-

tems. It can be used to compare reference summaries with the summaries generated by

systems. Typically, ROUGE-1, ROUGE-2 and ROUGE-L metrics are used. ROUGE-1

and ROUGE-2 consider the overlap of unigrams and bigrams respectively. ROUGE-L

measures the longest matching sequences of words.

4.1. Gigaword

Rush et al. formed a new dataset using the annotated Gigaword dataset [9].

Originally, Gigaword has around 9.5 million news articles from various sources. Rush

et al. used the headline of each article as the target (reference) summary, and the first

sentence in the document as the input sentence, both of which form input-summary

example pairs for the dataset. In this sense, it can be regarded as a sentence sum-

marization dataset rather than a document or an article summarization dataset. The

examples were then filtered using some heuristics. For example, they eliminated the

examples in which the summary contains a question mark, a colon, byline or editing
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marks, etc. This reduced the number of examples to approximately 4 million pairs.

Normally, the original annotated Gigaword dataset can only be obtained from

Linguistic Data Consortium. However, Rush et al. shared the dataset on which their

original preprocessing scripts applied [47]. Almost every paper using Gigaword uses

either the same scripts as Rush et al. applied to construct the same dataset or uses the

shared dataset directly for a fair evaluation. The preprocessing was done using Stanford

CoreNLP tools. PTB tokenization and sentence separation utilities were used along

with lower-casing all tokens. Additionally, they replaced all numeric characters with

the character “#” and replaced the word types that are not seen more than five times

with the “UNK” token.

The Gigaword dataset has around 3.8 million pairs in its training set, 190,000

pairs in its validation set and 2,000 pairs in its test set. The sentences in the dataset

have an average size of 31.3 words whereas the summaries have 8.3 words. The vocab-

ulary for the sentences in each pair consists of 119 million tokens and 110,000 unique

word types. The vocabulary for the summaries (headlines) consists of 31 million to-

kens and 69,000 unique word types. It is a huge dataset and that makes it suitable for

training deep learning models.

We think that the test set of Gigaword is not of high quality. The examples con-

tain very odd sentence-summary pairs. For example, one summary contains only one

token which is an out-of-vocabulary word considering the original vocabulary obtained

by Rush et al. Moreover, the size is also very small. Therefore, we construct three

more test sets and show the evaluation results of those as well. The first test set is

obtained from the original training set by randomly picking 100,000 example pairs,

which we called Gigaword I. The second one Gigaword II is similarly obtained from

the original validation set by picking 100,000 pairs as well. The third one Gigaword

III is constructed using both sets. Considering the ratio of the sizes of training and

validation sets, we randomly picked 95,238 pairs from the training set and 4,762 pairs

from the validation set (95, 238 : 4, 762 ∼= 20 : 1 ∼= 3, 800, 000 : 190, 000). Note that,
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for the sake of fair and proper validation and evaluation of the model, we removed the

randomly picked examples from their corresponding sets. Constructing new test sets

also makes the original validation set smaller, which was unnecessarily big. We also

show the results of the original test set for better comparison of other studies.

4.2. CNN/Daily Mail

Nallapati et al. formed the CNN/Daily Mail dataset by modifying an existing

dataset by Hermann et al. [19, 48]. The original dataset is for the task of passage-

based abstractive question answering. It originally has human-generated summary

bullets from articles published by CNN and Daily Mail websites. These summaries

were transformed into questions by hiding one of the entities. In a question answering

task, a system is expected to find the proper answer from the article for the generated

fill-in-the-blank questions.

Nallapati et al. used the same web-crawling scripts to extract the original articles.

With some simple modifications, they achieved article-summary pairs with no entities

hidden. All summary bullets were used as multi-sentence summaries corresponding to

an article. The CNN/Daily Mail dataset is a document summarization dataset rather

than a sentence summarization dataset such as Gigaword.

The CNN/Daily Mail dataset has around 280,000 training pairs in its training

set, 13,000 pairs in its validation set, 11,000 pairs in its test set. Even though it looks

a lot smaller than Gigaword, the articles are very long so that it is also suitable for

the training of deep learning models. There are 781 tokens and 29.74 sentences in the

articles of the training set on average, whereas there are 56 words and 3.75 sentences as

summaries. Note that there are actually two versions of CNN/Daily Mail. One of them

is the non-anonymized version which consists of the actual entity names. The other

one is the anonymized version in which the entities are replaced with some additional

document-specific tokens with integer-ids to distinguish them. The non-anonymized

version is used more than the anonymized one in summarization studies.
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5. MODEL

In this chapter, we explain the models that we built for the experiments. We also

describe some additional mechanisms suited for abstractive summarization, namely

pointer/generator and coverage. In addition, we explain the uses of word dependency

features and different subword models in the baseline models.

5.1. Baseline Model

The baseline model is basically an encoder-decoder sequence-to-sequence model.

The encoder reads the input word embedding vectors (e1, e2, ..., en) and transforms

them into the hidden states (h1, h2, ..., hn). The encoder can be any type of RNN, but

typically LSTMs or GRUs are used.

hi = LSTM(ei, hi−1) (5.1)

for all i = {1, 2, ..., n}. Note that h0 is typically set as a zero vector.

The RNNs have a sequential nature, as described in Section 2.2, and the sequential

nature is directional. This means that the input tokens are processed in one way, most

of the time it is from left to right. Researchers often use bidirectional LSTMs or GRUs

hoping that the hidden states capture the overall meaning of the whole sentence better.

Bidirectional RNNs produce two different hidden states corresponding to each input

token. One of them represents the pass from left to right (
−→
h1,
−→
h2, ...,

−→
hn). The other one

represents the pass from right to left (
←−
h1,
←−
h2, ...,

←−
hn). These two different hidden states

are generally concatenated with each other in order to unify the output of the encoder
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as a whole.

−→
hi = LSTM(ei,

−−→
hi−1)

←−
hi = LSTM(ei,

←−−
hi+1)

hi =
−→
hi ⊕

←−
hi

(5.2)

where ⊕ is the concatenation operation. Considering the hyper-parameter of hidden

state size as d,
−→
hi ∈ Rd,

←−
hi ∈ Rd and consequently hi ∈ R2d.

The decoder predicts an output token step by step. It is a unidirectional LSTM

or GRU network, which means that the words are generated one by one from left to

right. At each step, the token generation is done with the help of a softmax layer. This

layer makes the model estimate the token generation probability distribution over all

of the tokens in the vocabulary.

pvocab(wt) = p(wt | w1, w2, ..., wt−1, ct) = softmax(Wv(st ⊕ ct) + bv) (5.3)

where ct ∈ R2d is the context vector and st is the hidden state of the decoder RNN

at step t. This expression is actually a single-layer feed-forward neural network with

softmax as the activation function. Wv ∈ Rv×3d is the learnable parameter and bv ∈ RV

is the bias term. Note that V is the vocabulary size.

The decoder updates its hidden state using the embedding vector of the previously

generated summary token yt−1 and the context vector ct.

st = LSTM(yt−1 ⊕ ct, st−1) (5.4)

for all t = {1, 2, ...,m}. For s0, a combination of
−→
hn and

←−
h0 is used, hoping that they

represent the whole input sufficiently. For this purpose, we can use

s0 = tanh(Ws0(
−→
hn ⊕

←−
h0) + bs0) (5.5)
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which is basically a single-layer feed-forward neural network. The hidden state sizes

of the encoder and the decoder can be different. However, if they both are set as d as

a choice of hyper-parameter, the learnable parameter Ws0 ∈ Rd×2d and the bias term

bs0 ∈ Rd.

The context vector ct is computed with the help of the attention mechanism.

Simply, the same equations in Section 2.3.2 can be used.

αti =
exp(eti)

n∑
j=1

exp(etj)

ct =
n∑

i=1

αtihi

(5.6)

and the values eti are computed by

eti = V T
a tanh(Wa(st−1 ⊕ hi) + ba) (5.7)

where Wa ∈ R2d×2d and Va ∈ R2d are the learnable parameters and ba ∈ R2d is the bias

term.

As usual, negative log-likelihood is used as the loss function in training.

losst = − log pvocab(w∗t )

loss =
1

m

m∑
t=0

losst
(5.8)

where w∗t is the predicted word at the decoding step t.

5.2. Pointer/Generator Mechanism

The model described in Section 5.1 is a basic summarizer with attention. Al-

though it works better than most abstractive models, it has several important prob-
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lems. Notice that the softmax function of Equation 5.3 converts the scores of each

token given by the model into a probability distribution over every token in the vocab-

ulary. This might seem convenient as the out-of-vocabulary tokens are represented by

the vocabulary as a special “OOV” token. This approach is used for many sequence-to-

sequence models. However, this is not viable in the context of summarization.

Out-of-vocabulary tokens, as their names imply, are the tokens that are very

rarely seen if not never in the whole corpus. If the corpus is big enough, it is logical to

assume that many verbs, adjectives, adverbs, or the tokens that belong to other parts

of speech are not represented as “OOV”, except nouns. Common nouns are generic

names for items in classes or groups. Because of the generalization, it is also logical

to assume that they have a high frequency in a corpus, which is not the concern in

this case. Proper nouns, on the other hand, are specific names for particular people,

places, or things. Therefore, they particularly have a high chance of low frequency in

a corpus. As a result, they often get represented as out-of-vocabulary.

Summarization is generally applied to articles, and articles often describe events.

The main constituents of an event are the performers, receivers and/or location of

the action. These typically are proper nouns unless they are taken the place by pro-

nouns. For a summary to have “OOV” tokens are useless because it lacks this important

information. Summaries should contain as many informative tokens and as few non-

informative tokens as possible, and proper nouns are often part of the informative

ones. For a potential summary to be a qualitative one, the proper nouns in the source

document should be present.

Pointer/generator mechanism is a way of generating out-of-vocabulary tokens

with their original forms. To do that, we introduce a binary switch into the model.

The probability of the switch is estimated by the value pgen at each decoding step t [30].

pgen = σ(Wg(st ⊕ ct ⊕ yt−1) + bg) (5.9)
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where Wg ∈ R1×(3d+E) is the learnable parameter and bg ∈ R is the bias term. E

is the word embedding vector dimension and can be set as a hyper-parameter. Note

that this is actually a single-layer feed-forward network with sigmoid as the activation

function. With the concatenation operation, we unify the input of this network so that

the probability of the switch being on or off depends on the hidden state of the decoder

st, the context vector ct and the embedding of the previously generated token, yt−1.

The model generates a token wt from the vocabulary if the value pgen becomes 1,

which means the switch is on. Conversely, it points to a particular token in the original

input if the value becomes 0, which means the switch is off. When the model opts to

point, it actually copies the token that is being pointed to into the potential summary.

This means that the model now needs a mechanism for pointing over the input tokens.

Indeed, the original attention mechanism can be used for this purpose. It produces a

probability distribution over all of the input tokens regardless of the out-of-vocabulary

tokens. If the switch becomes off, the model points to the token according to this same

probability distribution.

Notice that the probability to generate a particular token is pvocab and can be

computed using Equation 5.3 previously. Now, in order to formulate the whole pointer/

generator mechanism, the estimation of the probability of generating a particular token

is changed to

p(wt) = pgenpvocab(wt) + (1− pgen)
∑

i:wi=wt

αti (5.10)

which still uses pvocab in Equation 5.3 [30]. The term
∑

i:wi=wt

αti collects all of the

attention distribution values of the word wt if it exists in the input document. With

this term, the whole model gains the ability to generating the out-of-vocabulary tokens.

With the addition of the pointer/generator mechanism, the whole model graphi-

cally becomes as in Figure 5.1.
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Encoder

Decoder

Attention

Figure 5.1. Sequence-to-Sequence Encoder-Decoder Model with Pointer/Generator

Mechanism.

5.3. Coverage Mechanism

Another important problem with the baseline model is that the summary does not

contain the important facts of the original input article. Instead, it contains repetitions

of some words or phrases. Most of the encoder-decoder sequence-to-sequence models

are designed for machine translation, as described in Section 2.3.1. For each token in

the source sentence, machine translation models generally try to generate translated

tokens. The lengths of the source and translated sentences usually have a ratio close

to 1:1. However, summarization is not like this by definition. Using the same models

often produces repetitive words or phrases, and causes to miss the important facts.

The larger the input document is, the more likely it will be for the summaries to

contain repetitions. This is even a problem for the Gigaword dataset, in which the

inputs consist of only one sentence, let alone the CNN/Daily Mail dataset, in which

the inputs are long articles.

Oftentimes, the model outputs the same tokens or phrases subsequently. In this

case, It is usually deduced that the model is not trained properly and the weights
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might not have optimal values. However, even if the model was forced to overfit over

the dataset purposefully, these kinds of outputs could still be seen. Generating the

same phrases subsequently makes the summaries contain the same facts more than

once. For the inputs that are longer articles, it can even generate the same sentence

more than once. This obviously is not suitable for summarization.

The problem occurs because the attention mechanism ignores the past distribu-

tions. In theory, only the hidden state of the decoder might help for this purpose.

However, repetition still occurs regardless of the hidden state. Attention mechanism

shows how much focus there needs to be on specific parts of the input. There is no

need the focus on the same parts. For this purpose, a new coverage vector is defined

as

covt =
t−1∑
t′=0

αt′i (5.11)

which is basically the sum of attention distributions of the previous decoding steps

[30]. We integrate this coverage vector into the attention mechanism, specifically in

Equation 5.7, such that

eti = V T
a tanh(Wa(st−1 ⊕ hi ⊕ covt) + ba) (5.12)

which uses the coverage vector covt as an addition to the previous hidden state of the

decoder st−1 and the hidden states of the encoder hi.

As See et al. stated, this modification alone does not produce successful results,

as the model might opt to ignore this term while training [30]. Therefore, a new loss

term is defined as

losscovt =
m∑
i=1

min(αti, covti) (5.13)

which is upper bounded by 1 since αti is a proper probability distribution. In addition
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to the modification of the attention computations, the original loss computation in

Equation 5.8 is also modified.

losst = − log p(w∗t ) + λlosscovt (5.14)

where λ is a hyper-parameter. See et al. suggested that the best value for it is 1 [30].

Higher values do not work as desired since the loss becomes too much to handle.

The coverage loss is actually used like a regularization term. It contributes to

the overall loss more if both the coverage vector and the attention distribution for a

particularly generated word at any decoding step becomes high. Two becoming high

means that the model tries to attend over the same parts of the input. This forces

the model to decrease the loss more in training and, as a result, the model will try to

attend to different parts. The overall coverage mechanism pushes the model to cover

all of the tokens in the input article by forbidding it to attend the same parts. This

effectively makes the resulting summaries consider the overall semantic of input text

better, and therefore, not miss the important facts and avoid repetitions.

5.4. Word Dependency Features

Word embeddings are widely used in deep learning. Almost every NLP-related

networks have word embedding layers which every token is fed as inputs. A properly

trained word embedding matrix captures the semantic relations successfully. Never-

theless, it does not capture the syntactic features. When we summarize documents,

we might not analyze these features for every sentence we face in particular. However,

we actually do it instinctively when we try to understand sentences. RNNs, because

of their sequential nature, might capture these relations by themselves. Still, we can

help further the models by integrating syntactic features of words in sentences.

We used dependency parsing to obtain a dependency parse tree for each sentence

in the datasets. By using the properties of the tree and the results of the parsing, we
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obtain five syntactic features:

• Part-of-speech tag,

• Label of the incoming edge,

• Token position in the sentence,

• Relative token position in the sentence,

• Depth in the parse tree.

The number of different part-of-speech tags and the label of the incoming edges

are fixed, which means that it is easy to categorize them. We set different non-negative

integers for each category and use an embedding layer in the model for each of these

features separately. The relative position feature is a real number between 0 and 1.

To categorize this continuous feature, we discretize this interval into 10 classes. For

example, the interval (0, 0.1] is the category 0, (0.1, 0.2] is 1, and so on. Then, a different

embedding is applied just like the previous features as usual. The remaining features

are simply non-negative integers. Considering the biggest values of each feature in the

datasets, we can decide on a safe maximum value to make these features bounded and

easy to discretize. Similarly, different embeddings are applied for these features as well.

Encoder

Figure 5.2. Incorporating Word Dependency Features with Inputs of Encoders.

After embedding these features for each token in the input, we concatenate the

resulting embedding vectors to get an overall structural embedding vector fi. This vec-
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tor can be integrated into the model in two different places. First, the word embedding

vector ei and the structural embedding vector fi can be concatenated and used as the

input of the encoder

ei = ei ⊕ fi (5.15)

which is visualized in Figure 5.2. Another possibility to integrate is the output of

the encoder. This means that the hidden states of the encoder hi and the structural

embedding vector fi can be concatenated

hi = hi ⊕ fi (5.16)

which is visualized in Figure 5.3. The attention mechanism and the decoder can use

these new states as if they are the original outputs of the encoder. By combining the

structural features with one of these ways, we hope that the model depends on them

as well as it depends on the semantic features.

Encoder

Figure 5.3. Incorporating Word Dependency Features with Hidden States of Encoder.

5.5. Subword Usage

Recently, subwords are very widely used in NLP-related deep learning models

because of their contributions and successes. Many new models frequently use sub-
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word models and achieve state-of-the-art results regarding their specific problems. For

example, the famous BERT model uses a variation of WordPiece [7]. We find that

not many studies in abstractive summarization use subwords in their models let alone

analyzing their effect.

We used the Tokenizers library from Hugging Face [49], which provides im-

plementations of many popular tokenizers. It provides functionalities to train new

tokenizers and vocabularies from scratch. The library is designed for research and

production purposes and is pretty fast. It also has several widely-used preprocessing

tools.

We used byte-pair encoding, WordPiece and unigram language model as the

subword models. We trained each of them separately with different vocabulary sizes

and integrated them into the models. For all article-summary pairs in the datasets, we

first used a Unicode normalization algorithm, namely NFD. Then, we applied lower-

casing and stripped accents. After these normalization procedures, we replaced some of

the special tokens in the datasets with suitable ones. For example, both of the datasets

contain special tokens for parentheses, braces and brackets. Since the datasets are

already tokenized, we used a simple tokenizer that uses white-space as the separator.

The resulting tokenizers and vocabularies can easily be used on any input text.

They can encode the input text into a sequence of integer values based on the resulting

vocabulary in order to be used as an input for the embedding layer. We used these

values as the input to the encoder as if they were normal tokens. This means that

ei represents the embeddings of the subwords in Equations 5.1 and 5.2. The decoder,

in the end, generates integer values corresponding to specific subwords in the vocabu-

lary. We can easily decode them into their textual representations to obtain the whole

resulting text.
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6. EXPERIMENTS AND DISCUSSIONS

In this chapter, we show the results of the experiments we conducted for the

effectiveness of different additions explained in Chapter 5. We also compare their

successes and try to give our reasonings behind the results.

6.1. Preliminaries

Datasets. We used the same Gigaword dataset provided by Rush et al. [9]. The

preprocessing workflow can be found in Section 4.1. On top of it, we clipped its input

sentences to make them contain 100 tokens maximum, and the output summaries to

50 tokens. In addition, we used the non-anonymized version of the CNN/Daily Mail

dataset through the use of the scripts provided by See et al. [30]. Similar to Rush

et al. and See et al., we used PTB tokenization and lower-casing as preprocessing.

We clipped the input articles to 400 and the output summaries to 100 tokens since

it contains larger texts. For both of the datasets, we limited the vocabulary size to

50,000 most frequent unique tokens for the baseline models, and the rest of the tokens

are set as out-of-vocabulary.

Word Embeddings. We used pre-trained GloVe vectors as the word embeddings.

They were trained using the Wikipedia 2014 and the Gigaword 5 datasets, in which

there are a total of 6 billion tokens and have a vocabulary size of 400,000 [50]. The word

embedding vector dimension is 200. We chose to freeze the parameters of the word

embedding layers in the baseline models while training, and use the same parameters

for embedding layers of both encoder and decoder.

Model Architecture. The baseline models consist of 2-layer bidirectional GRU

as the encoder and 1-layer unidirectional GRU as the decoder. Both of them have a

hidden vector dimension of 256. The weights and biases for feed-forward layers are

initialized by sampling from a uniform distribution with bounds ±
√

1
input vector dimension

.
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The weights on RNNs are similarly initialized from a uniform distribution with bounds

±
√

1
hidden vector dimension

.

Training. We used a batch size of 16. The optimization algorithm that we used

was Adagrad [51]. We set the learning rate to 0.15 and the initial accumulator value to

0.1 as its hyper-parameters. In order to overcome the problem of exploding gradient,

we used gradient clipping with the value 2.0 as the threshold for each gradient with

respect to every parameter. We used beam search for decoding the output summaries

in evaluation, and the beam size was set to 4.

We trained the models on the NVIDIA DGX-1 server with Tesla V100 devices.

Generally, the training of the models took approximately 2-3 days on average. The

models with the pointer/generator converge earlier than the others. The models have

around 30 million parameters, but it depends on various configurations. For construct-

ing and training the models, we mainly used PyTorch which is an optimized tensor

library for deep learning and can utilize GPUs for efficient training.

Word Dependency Relations. For the models using dependency features, we used

spaCy, which is a library for NLP in Python [52]. It uses some of the latest studies for

its functionalities. It was aimed to be used in real products and live environments. We

used its part-of-speech tagging and dependency parsing models to get the corresponding

predictions for each token in input sentences. Note that it provides the annotations

that follow Universal Dependencies formalism.

Abbreviations Used in Tables. We used abbreviations to refer to various models

we constructed for the sake of simplicity in the subsequent tables. “Baseline” model

uses the same hyper-parameters and design choices explained up to this point. “PG”

model uses the pointer/generator mechanism on top of “Baseline” model, as described

in Section 5.2. “COV” model uses only the coverage mechanism on top of “Baseline”

model, as described in Section 5.3. As its name also implies, “PG+COV” uses both of

these mechanisms. Note that all of the other parts of these three models are the same
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as “Baseline” model. We specifically compare their effectiveness in Section 6.2.

We also used different names for the models that use different hyper-parameters.

“Large Vocab” model uses a vocabulary of size 100,000 instead of 50,000. In “No Freeze”

model, the word embedding matrices can get updated in training. “No Pretrain” model

does not use any pre-trained word embedding matrix. The embedding layers start to

learn from scratch. For the parameters in the lookup table for word embeddings, they

are initialized from a Gaussian distribution with 0 mean and 1 standard deviation.

Lastly, “LSTM” model uses LSTMs instead of GRUs as the RNNs in both encoder

and decoder. Similarly, all of the other parts of these models are the same as “Baseline”

model. The names of the test sets are explained in Section 4.1.

Additionally, we show the results of the models that use the word dependency

features in Sections 6.2, 6.3, and 6.4. All of the models have the corresponding ones that

do not use dependency relations. In order to distinguish them, we used “Dep” prefix

for the names of the models that use dependency features and kept the rest the same.

For example, “Dep Baseline” model corresponds to “Baseline” model with the only

addition of integration of dependency features. Similarly, “Dep+PG+COV” model is

“PG+COV” model with dependency usage. “Dep w/LSTM” stands for dependency

features with LSTMs as the RNNs instead of GRUs, and its corresponding model that

does not use dependency features is “LSTM” model.

Lastly, we present the results of the models that use subwords in Section 6.5.

Each model that uses a different subword model can be distinguished with a prefix. The

prefixes are “BPE”, which stands for byte-pair encoding, “WordPiece” for WordPiece,

and “Unigram” for unigram language model. “BPE No PG+COV” model is similar

to “Baseline” model. It does not use any additional mechanisms. The only difference

is that it uses BPE subwords instead of words as the input. “BPE” model uses the

pointer/generator and coverage mechanisms on top of “BPE No PG+COV” model.

The only difference between “BPE w/LSTM” and “BPE” models is that the former

uses LSTMs as RNNs instead of GRUs. Note that for all these models, the subword
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algorithm is used to generate a vocabulary size of 16,000 unique subwords. “BPE 30k”

model, on the other hand, uses 30,000 as the vocabulary size on top of “BPE” model.

The models using other subword algorithms can be distinguished with corresponding

prefixes instead of “BPE”.

Note that for each table, R-1, R-2 and R-L stand for the F1 scores of ROUGE-1,

ROUGE-2 and ROUGE-L scores respectively. We used the pyrouge library, which is a

Python wrapper for the original ROUGE summarization evaluation package, to obtain

these scores [53].

6.2. Dependency Features on Abstractive Summarization Models

6.2.1. Gigaword Experiments

Table 6.1 contains the ROUGE scores of the models with different mechanisms

evaluated by using all of the Gigaword test sets explained in Section 4.1. First of all,

the table shows that there are big differences in ROUGE scores between “Gigaword

Original” and the other custom test sets. The models evaluated by the custom ones

generally have consistent results with each other. We randomly selected the examples

as explained in Section 4.1. This provides that the test sets resemble the training

(and validation) set well. As a result, these three custom test sets actually have very

similar characteristics, and these consistent results are expected. The original test set,

however, is very different. It might not resemble the whole dataset like the others do

since it only contains a little less than 2,000 examples.

We first give our observations of the models that do not use dependency features

(whose names do not start with “Dep”) in Table 6.1. For all models, ROUGE-1 scores

are between around 39-41.3, ROUGE-2 scores are between 16.8-18.5, and ROUGE-L

scores are between 36.7-38.9 for all of the custom Gigaword test sets, except “COV”

model. It can only achieve around 28, 9 and 26.5 for each ROUGE score respectively,

which are significantly lower scores than the other models for all test sets. This ten-
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Table 6.1. The ROUGE scores of the models with different additional mechanisms

over the Gigaword test sets.

Gigaword Original

Model R-1 R-2 R-L Model R-1 R-2 R-L

Baseline 29.889 12.402 27.889 Dep Baseline 30.172 12.580 28.019

PG 31.169 13.333 29.142 Dep+PG 31.711 13.403 29.571

COV 21.645 6.718 20.211 Dep+COV 20.468 6.112 19.782

PG+COV 30.494 13.310 28.758 Dep+PG+COV 30.986 13.348 28.998

Gigaword I

Model R-1 R-2 R-L Model R-1 R-2 R-L

Baseline 39.019 17.003 36.708 Dep Baseline 39.274 17.513 37.207

PG 41.007 18.264 38.511 Dep+PG 41.747 19.941 39.004

COV 27.962 9.022 26.214 Dep+COV 26.325 9.007 26.179

PG+COV 39.322 17.792 37.217 Dep+PG+COV 39.937 18.480 37.717

Gigaword II

Model R-1 R-2 R-L Model R-1 R-2 R-L

Baseline 39.574 17.383 37.209 Dep Baseline 39.814 17.917 37.617

PG 41.331 18.569 38.932 Dep+PG 41.926 19.264 39.479

COV 28.654 8.966 26.847 Dep+COV 28.614 8.938 26.848

PG+COV 39.713 18.159 37.501 Dep+PG+COV 40.516 18.730 38.167

Gigaword III

Model R-1 R-2 R-L Model R-1 R-2 R-L

Baseline 38.975 16.865 36.732 Dep Baseline 39.157 17.422 37.067

PG 41.265 18.563 38.809 Dep+PG 41.123 18.490 38.946

COV 28.324 8.899 26.557 Dep+COV 28.394 8.878 26.547

PG+COV 39.055 16.852 36.754 Dep+PG+COV 39.617 17.655 37.236
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dency can also be observed in the other results shared below. All models except “COV”

can achieve scores between 29.9-31.1, 12.4-13.3, 27.9-29.1 respectively when evaluated

by using “Gigaword Original”. Even though the models achieve lower ROUGE scores

for the original Gigaword test set, the differences between the scores of different models

are similar.

Compared to “Baseline” model, we can see that “PG+COV” model increases all

of the ROUGE scores by around 0.1-0.9. This is a rather good improvement since even

the slightest increase in any ROUGE score is considered noteworthy in the context of

abstractive summarization. However, the performance expectation might rightfully be

higher than this since it contains all of the new mechanisms we explained in Chapter 5.

It can also be observed that “PG+COV” model has lower ROUGE scores than “PG”

model which performs the best for all of the test sets. It is surprising since “PG+COV”

model has one more additional mechanism that we hoped to make the performance

better. Moreover, it is obvious that “COV” model produces significantly worse results

compared to the others. Because of these situations, we can conclude that the coverage

mechanism decreases the performance of the models. Further explanations about the

situation can be found in Section 6.2.3.

The models that use dependency features (whose names start with “Dep”) in Ta-

ble 6.1 have a similar tendency in terms of the ROUGE scores. Excluding “Dep+COV”

model, each model can achieve between 39.2-41.9 as ROUGE-1 scores, 17.4-19.9 as

ROUGE-2, 37-39.5 as ROUGE-L for the custom test sets. It is clear that “Dep+COV”

model still gives very bad results (approximately 28, 9, 26.5), which is similar to “COV”

model. The scores are in between around 30.2-31.7, 12.5-13.4, 28-29.5 respectively when

the models are evaluated with “Gigaword Original”.

Each model performs very similarly to its counterparts that do not use depen-

dency features. Apparently, “Dep+PG” model produces the best results for every

ROUGE score in every test set. “Dep+PG+COV” model achieves worse results than

“Dep+PG”, but it surpasses “Dep Baseline” model despite the coverage mechanism.
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“Dep+COV” clearly performs the worst, even worse than “Dep Baseline” model.

The models that use dependency features achieve better results than their cor-

responding models that do not use the features. This is true with an exception of the

models with the coverage mechanism. “Dep+COV” model generally produces even

lower results than “COV” model. However, we can consistently see notable increases

in the other scores for all of the test sets. Generally, the addition of dependency fea-

tures helps the models increase the ROUGE-1 score by around 0.3-0.8, ROUGE-2 by

around 0.1-0.7, ROUGE-L by 0.2-0.5.

Table 6.2. The ROUGE scores of the models with different additional mechanisms

over the CNN/Daily Mail test set.

CNN/Daily Mail

Model R-1 R-2 R-L Model R-1 R-2 R-L

Baseline 31.183 11.769 28.429 Dep Baseline 32.047 11.990 28.718

PG 34.914 14.934 32.025 Dep+PG 34.807 14.072 31.198

COV 25.406 9.923 24.101 Dep+COV 25.278 6.942 22.135

PG+COV 33.023 13.886 30.353 Dep+PG+COV 34.038 14.022 30.989

6.2.2. CNN/Daily Mail Experiments

We first give our observations of the models that do not use dependency features

in Table 6.2. “COV” model gives significantly lower results for all ROUGE scores in the

CNN/Daily Mail test set as well. It achieves 5.7, 1.8 and 3.7 less than “Baseline” model

for each ROUGE score respectively. The conclusion about the coverage mechanism

decreasing the performance can also be observed in Table 6.2. “Baseline” model for

CNN/Daily Mail gives very similar results to its corresponding model for “Gigaword

Original”. It can achieve better ROUGE-1 and ROUGE-L scores, but worse ROUGE-

2 score. The remaining models can achieve scores higher than 33, 13.8 and 30.3 for

each score respectively. “PG” model performs the best for CNN/Daily Mail as well
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as Gigaword. It produces 3.8 higher score than “Baseline” model for ROUGE-1, 3.2

higher for ROUGE-2, 3.6 higher for ROUGE-L. Although “PG+COV” also performs

much better than “Baseline” model, it cannot surpass “PG” model. This behavior

was also observed in Table 6.1. Overall, The differences between each score are very

similar to their counterparts using Gigaword.

Looking at Table 6.2, the tendency of the scores achieved by the models using

dependency features is similar to the ones that do not use dependency features. “Dep

Baseline” model achieves 32, 12 and 28.7 as ROUGE scores respectively. “Dep+PG”

and “Dep+PG+COV” models perform similarly to each other. Still, they can achieve

scores around 34, 14 and 31. “Dep+PG” model performs the best, and “Dep+COV”

model performs the worst. “Dep+COV” model can only produce 25.2, 6.9 and 22.1,

which is the worst performance.

The addition of dependency features seems to help the models for CNN/Daily

Mail as well. We can even see an improvement of ROUGE-1 score as high as 1. In

general, these models achieve 0.3-0.8 higher scores than their counterparts with no

dependency features. The most obvious effect of adding dependency features can be

observed by comparing the scores of “Baseline”-“Dep Baseline” and “PG+COV”-

“Dep+PG+COV” models. The bad effect of coverage can also be seen from both

“COV” and “Dep+COV” models, which can also be observed in Table 6.1.

6.2.3. The Effects of Additional Mechanisms

With the observations we made, it is clear that integration of the pointer/

generator mechanism increases the performance. Every model that has this mecha-

nism clearly achieves better results compared to the baseline models. This shows its

usefulness in an abstractive summarization task. With its addition to any model, the

ability to generate out-of-vocabulary words is gained. For a summarization task, it is

vital to include them in the resulting summaries as explained in Section 5.2. As it can

be observed from the results, the models can achieve much better ROUGE scores with
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this ability.

On the other hand, the coverage mechanism does not seem to be useful since it

decreases the scores drastically. This is actually a true statement but a misleading one.

The actual reason for the low scores is due to the nature of coverage. By definition,

it is actually a regularization term that penalizes the model if it tries to attend the

same parts of the input repeatedly. At the starting time of the training from scratch,

the model knows absolutely nothing about the nature of the dataset and abstractive

summarization task. We penalize the model by introducing the coverage term to the

loss. Therefore, it becomes hard to train the model to get lower loss values. This is why

the models with coverage mechanism produce inconsistent results in Tables 6.1 and 6.2.

Note that despite the coverage mechanism, “PG+COV” and “Dep+PG+COV” models

can still surpass the baselines, which also shows the improvement provided by the

pointer/generator mechanism alone.

The coverage mechanism specifically shines by getting activated after the training

reaches a decent point without using it. When the parameters are adequately opti-

mized, enabling the coverage mechanism and continuing the training for a little while

increases the performance. It forces the models to avoid generating repeated phrases

and cover all of the input sentences, which helps the summaries not to miss the im-

portant facts and avoid repetition, as described in Section 5.3. This obviously ensures

us to achieve better scores since the predicted summaries will have more similarities

to the reference summaries. Indeed, the model we trained considering the proper us-

age of coverage mechanism, which we called “Dep+PG→COV” model, has the highest

ROUGE scores compared to the other models that we constructed, as can be seen in

Section 6.6.

6.2.4. The Effects of Dependency Features

Generally, the integration of dependency features to each model increases al-

most every ROUGE score. The only exception seems to be the models only with the
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additional coverage mechanism, namely “Dep+COV”. It produces worse results for

“Gigaword Original” and “Gigaword I”, and similar or slightly better results for “Gi-

gaword II” and “Gigaword III” in Table 6.1. The other models generally have increased

ROUGE scores by around 0.5-1, specifically for “Gigaword I” and “Gigaword II”. Even

though the scores seem to be slightly worse for “Dep+PG” model in “Gigaword III”,

the ROUGE-L is slightly better than “PG” model. These behaviors can similarly be

observed for CNN/Daily Mail in Table 6.2.

The improvements of the scores show the benefit of integrating dependency fea-

tures into abstractive summarization models. When we try to read and understand

sentences, we instinctively observe the syntactic structures because of our knowledge

of that particular language. This helps our understanding and makes us grasp the

main ideas easier. As a result, we can construct novel words, phrases and sentences to

form a whole summary. Actually, a similar process is followed for these models. Along

with the semantic features, the encoder can learn the syntactic structure of words in

sentences. It can understand the important parts of the sentences easier with the in-

tegration of dependency features and generate its own hidden states more efficiently.

The decoder can then generate words better along with the attention mechanism which

uses these better encoder hidden states.

Another case to note is the difference between “Dep+PG” model and “Dep Base-

line” model for both Gigaword and CNN/Daily Mail test sets. Regarding the CNN/

Daily Mail test set, the addition of the pointer/generator mechanism increases the

scores of “Dep Baseline” model by around 2.8, 2.2 and 2.5 respectively for each ROUGE

score. However, for the Gigaword test sets, even though it is still impressive, the in-

creases of the scores of corresponding models are at most around 2 for each score. It

is clear that the pointer/generator mechanism works better for the CNN/Daily Mail

dataset. This is due to the fact that the CNN/Daily Mail dataset contains much longer

input texts compared to the Gigaword dataset as explained in Section 4.2. It is difficult

for “Dep+Baseline” model to generate summaries for the CNN/Daily Mail test set.

After all, “Dep+Baseline” model shows many resemblances to standard machine trans-
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lation models. It is designed for the input and output length ratio to be 1:1. However,

CNN/Daily Mail expects a much asymmetrical ratio. On the other hand, the Giga-

word dataset also has an asymmetrical ratio, but the input texts are much shorter.

The models can learn the important phrases or facts of shorter inputs compared to the

long ones. With the pointer/generator mechanism, “Dep+PG” and “Dep+PG+COV”

models have better scores for both CNN/Daily Mail and Gigaword test sets. However,

this mechanism helps “Dep+PG” and “Dep+PG+COV” models more for CNN/Daily

Mail than Gigaword.

6.3. Dependency Features with Different Hyper-Parameter Configurations

6.3.1. Gigaword Experiments

In addition to the effectiveness of the mechanisms, we also compare the influences

of some important hyper-parameter configurations. In Table 6.3, the related results

can be found for each Gigaword test set. First, we mention the models that do not use

dependency features. Each ROUGE score is close to the scores of “PG+COV” model

in Table 6.1, which is explained in detail previously. We wanted to use this model as

a baseline for Table 6.3 since the others are also based on this model. Note that the

scores for custom test sets are significantly higher than the original test set, as observed

in Table 6.1 as well.

In general, “No Freeze” model achieves the best results compared to the others,

including “PG+COV” model. Its scores are around 1.2-1.5, 0.5-1.1 and 0.5-1.2 more

than “PG+COV” model for custom test sets for each ROUGE score respectively. It

also increases the ROUGE-1 and ROUGE-L scores for “Gigaword Original”. “Larger

Vocab” model can also achieve slightly better results than “PG+COV” model. How-

ever, “No Pretrain” model seems to show rather inconsistent behavior. Most of the

time, the scores are lower than “PG+COV” model when evaluated using the test sets,

including the original one. Lastly, “LSTM” model also achieves good results compared

to “PG+COV” model. It can perform almost as high as “No Freeze” model.
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Table 6.3. The ROUGE scores of the models with different hyper-parameter

configurations over the Gigaword test sets.

Gigaword Original

Model R-1 R-2 R-L Model R-1 R-2 R-L

PG+COV 30.494 13.310 28.758 Dep+PG+COV 30.986 13.348 28.998

Large Vocab 30.650 13.118 28.599 Dep+Large Vocab 31.381 13.622 29.312

No Freeze 31.125 13.152 29.070 Dep+No Freeze 31.606 13.343 29.325

No Pretrain 30.119 12.092 28.048 Dep+No Pretrain 30.767 12.175 28.317

LSTM 30.993 13.760 29.412 Dep w/LSTM 31.562 13.628 29.509

Gigaword I

Model R-1 R-2 R-L Model R-1 R-2 R-L

PG+COV 39.322 17.792 37.217 Dep+PG+COV 39.937 18.480 37.717

Large Vocab 39.882 18.387 37.799 Dep+Large Vocab 40.517 18.918 38.693

No Freeze 40.540 18.886 38.362 Dep+No Freeze 40.690 19.581 38.817

No Pretrain 39.494 16.904 37.073 Dep+No Pretrain 39.897 17.721 37.602

LSTM 40.284 18.190 37.879 Dep w/LSTM 40.796 18.957 38.486

Gigaword II

Model R-1 R-2 R-L Model R-1 R-2 R-L

PG+COV 39.713 18.159 37.501 Dep+PG+COV 40.516 18.730 38.167

Large Vocab 40.366 18.354 38.030 Dep+Large Vocab 41.174 19.004 39.103

No Freeze 41.282 18.637 38.707 Dep+No Freeze 41.986 19.323 39.447

No Pretrain 40.273 17.400 37.712 Dep+No Pretrain 40.989 18.136 38.258

LSTM 40.410 18.357 38.234 Dep w/LSTM 41.180 18.906 38.831

Gigaword III

Model R-1 R-2 R-L Model R-1 R-2 R-L

PG+COV 39.055 16.852 36.754 Dep+PG+COV 39.617 17.655 37.236

Large Vocab 39.433 17.466 37.222 Dep+Large Vocab 40.275 17.993 38.271

No Freeze 40.530 17.660 38.121 Dep+No Freeze 41.097 18.475 38.646

No Pretrain 39.572 16.795 37.118 Dep+No Pretrain 40.228 17.657 37.434

LSTM 39.684 17.447 37.919 Dep w/LSTM 40.847 18.621 38.408
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Integrating dependency features to the models increases the scores as expected.

“Dep+No Freeze” model can achieve 40.7-41.9, 18.5-19.6 and 38.6-39.5 ROUGE-1, 2

and L scores over the custom test sets. Overall, we can say that it performs the best

among the other models with some exceptions in Table 6.3. “Dep+Large Vocab” and

“Dep w/LSTM” model have similar results, which are slightly less than “Dep+No

Freeze” model. For “Gigaword Original” and “Gigaword I”, “Dep w/LSTM” model

can even surpass “Dep+No Freeze” model in several types of ROUGE scores. “Dep+No

Pretrain” model performs slightly worse than “Dep+PG+COV” model for the original

test set. Generally, it again produces inconsistent results when evaluated using the

custom test sets.

Similar to the tendency observed in Table 6.1, integration of dependency fea-

tures makes the models achieve better results. Literally, all of the ROUGE scores of

the models that use dependency features for every test set are better than the corre-

sponding models that do not use those features. The difference between “Large Vocab”

and “Dep+Large Vocab” models is noticeably higher than the other differences. The

dependency features help “Dep+Large Vocab” model more than the others so that it

can perform as well as “Dep+No Freeze” model. ROUGE-L scores of “Dep+Large

Vocab” can even increase as much as 1. Even “Dep+No Pretrain” model can perform

noticeably better than “No Pretrain” model. On average, it seems that dependency

feature usage increases the scores by around 0.2-0.8, 0.5-1.2 and 0.3-1 for each ROUGE

score respectively over the custom datasets. The increases of ROUGE-1 and ROUGE-L

scores are also significant for the original test set.

6.3.2. CNN/Daily Mail Experiments

We also show the results of the same experiments in Table 6.3 for CNN/Daily

Mail, which can be seen in Table 6.4. Considering the models that do not use depen-

dency features, the tendency is very similar. “No Freeze” model performs the best

compared to the others. It can achieve 1.9, 1 and 1.6 more than “PG+COV” model

for each ROUGE score respectively, which is a quite significant improvement. “Large
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Vocab” model also performs better than “PG+COV” model in terms of ROUGE-1 and

ROUGE-L scores, but slightly worse for ROUGE-2. “LSTM” model achieves ROUGE

scores between “Dep+Large Vocab” and “Dep+Large No Freeze” models. The same

situation about “No Pretrain” model performing worse than “PG+COV” model can

also be seen in Table 6.4.

Table 6.4. The ROUGE scores of the models with different hyper-parameter

configurations over the CNN/Daily Mail test set.

CNN/Daily Mail

Model R-1 R-2 R-L Model R-1 R-2 R-L

PG+COV 33.023 13.886 30.353 Dep+PG+COV 34.038 14.022 30.989

Large Vocab 33.324 13.841 30.350 Dep+Large Vocab 34.718 14.024 31.010

No Freeze 34.966 14.884 31.997 Dep+No Freeze 35.155 14.912 32.244

No Pretrain 32.871 13.806 30.210 Dep+No Pretrain 33.994 13.350 30.321

LSTM 33.986 14.214 31.264 Dep w/LSTM 34.943 14.151 31.592

By looking at the models that use dependency features in Table 6.4, we can see

that “Dep w/LSTM” model gets closer to “Dep+No Freeze” model. “Dep+No Freeze”

model still performs the best among the other models with dependency. The scores

of “Dep+Large Vocab” model also increase so that the difference between “Dep+No

Freeze” model decreases. Even if the increase is not as high as the other models,

“Dep+No Freeze” model achieves significantly better scores than “Dep+PG+COV”

model. “Dep+No Pretrain” model still produces worse results than “Dep+PG+COV”

model.

Incorporating the dependency features into the models clearly increases the scores

as expected. Even “Dep+No Pretrain” model produces much better results than the

worst performer “No Pretrain” model. “Dep+PG+COV” model can achieve 1, 0.2 and

0.6 better results than “PG+COV” model for each ROUGE score respectively, which

is a worthy improvement. “Large Vocab” model seems to react much better than this.

ROUGE-2 scores of “Dep+Large Vocab”, “Dep+No Pretrain” and “Dep w/LSTM”
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models are slightly worse than their counterparts. However, ROUGE-1 and L scores

are better. In general, it is correct to say that the integration of dependency features

increases performance.

6.3.3. The Effects of Hyper-Parameters

Both in Tables 6.3 and 6.4, “No Freeze” and “Dep+No Freeze” models perform

the best considering almost all of the ROUGE scores and test sets. This is due to

the word embeddings getting properly adjusted to each dataset by not freezing the

parameters. As a result, this makes the job of the encoder and decoder easier since

they use better representations of the word embedding vectors. Even though “No

Pretrain” and “Dep+No Pretrain” models produce slightly worse results compared to

the other test sets, they can achieve better results for “Gigaword II” and “Gigaword

III”. Considering that they do not use GloVe embeddings, which are meticulously

trained, these worse results could have been even much worse. After all, the models

have a harder time learning the suitable word embeddings. However, note that the

parameters of the word look-up table in “No Pretrain” and “Dep+No Pretrain” models

are not frozen. Therefore, a similar discussion about the non-frozen parameters of the

word embeddings for “No Freeze” model can apply in “No Pretrain” model as well.

“Larger Vocab” and “Dep+Larger Vocab” models also achieve higher scores than

“PG+COV” and “Dep+PG+COV” models respectively. This is expected since there

are fewer out-of-vocabulary words. For summarization tasks, it is very important for

the output to contain some important non-frequent tokens. However, it is not vital to

have a very large vocabulary because the model also has the pointer/generator mech-

anism, which can handle out-of-vocabulary tokens. After all, the increases in ROUGE

scores are not as big as the increase observed between “No Freeze” and “Dep+No

Freeze” models. Lastly, “LSTM” model performs noticeably better. For abstractive

summarization, we can conclude that LSTM works better than GRU, at least for these

datasets.
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6.4. Integration Position of Word Dependency Features

We also examine the effect of the placement position of dependency features in the

models. There are two possible approaches, and we named the models corresponding

to each approach as “Input” and “Hidden”. “Input” model uses Equation 5.15, which

concatenates the embeddings of the dependency features to input word embeddings

just before the computation of encoder RNN. “Hidden” model uses Equation 5.16,

which concatenates the embeddings of the dependency features to the hidden states of

the encoder. The other parts of these models are the same as “PG+COV” model.

Table 6.5. The ROUGE scores of “Input” and “Hidden” models over the Gigaword

test sets.

Gigaword Original Gigaword I

Model R-1 R-2 R-L R-1 R-2 R-L

Input 30.986 13.348 28.998 39.937 18.480 37.717

Hidden 30.190 12.653 28.345 39.015 17.987 37.061

Gigaword II Gigaword III

Model R-1 R-2 R-L R-1 R-2 R-L

Input 40.516 18.730 38.167 39.617 17.655 37.236

Hidden 39.480 18.090 37.411 38.367 16.958 36.173

Table 6.6. The ROUGE scores of “Input” and “Hidden” models over the CNN/Daily

Mail test set.

CNN/Daily Mail

Model R-1 R-2 R-L

Input 34.038 14.022 30.989

Hidden 33.886 13.350 30.334
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By looking at Tables 6.5 and 6.6, we can see that “Input” model achieves better

results than “Hidden” model. This is true for literally every ROUGE score for all

datasets. It is due to the fact that the encoder uses them along with the word embed-

dings to generate better hidden states. These hidden states depend on the dependency

features in addition to the word embeddings. Because each hidden state depends on

all of the previous (and subsequent) ones in RNNs, the resulting hidden states become

more efficient than the ones in “Hidden” model. Note that we used the same approach

as in “Input” model as the baseline for the models including the use of dependency

features in all of the tables above.

Table 6.7. The ROUGE scores of the models that use byte-pair encoding over the

Gigaword test sets.

Gigaword Original Gigaword I

Model R-1 R-2 R-L R-1 R-2 R-L

BPE No PG+COV 30.219 13.080 28.647 39.299 17.212 36.918

BPE 31.492 13.580 29.511 41.080 18.090 39.177

BPE 30k 31.477 13.514 29.430 41.028 18.040 39.101

BPE w/LSTM 32.186 14.003 30.344 41.973 18.579 40.107

Gigaword II Gigaword III

Model R-1 R-2 R-L R-1 R-2 R-L

BPE No PG+COV 39.923 17.490 37.566 39.417 17.002 37.027

BPE 41.797 18.318 40.029 41.146 17.780 39.302

BPE 30k 41.791 18.310 40.022 41.138 17.760 39.290

BPE w/LSTM 42.620 18.812 40.893 41.972 18.428 40.734

6.5. Subword Models on Abstractive Summarization Models

Table 6.7 shows the scores of the models that use BPE as the subword model

evaluated by using the Gigaword test sets. We can see that the best performer is

“BPE w/LSTM” model, with producing around 42 as ROUGE-1, 18.5 as ROUGE-2



62

and 40.5 as ROUGE-L score for the custom test sets. It can achieve 32.2, 14 and 30.3

as ROUGE scores respectively for the original test set as well. “BPE” and “BPE 30k”

models both have lower scores than “BPE w/LSTM” model but significantly surpass

“BPE No PG+COV” model. They achieve around 1.8, 0.8 and 2.4 more scores than

“BPE No PG+COV” model for each ROUGE score respectively over the custom test

sets. Similar differences can be observed for the original test set as well. Moreover,

both “BPE” and “BPE 30k” models have almost identical results for every score,

with “BPE” model having marginally higher scores. The worst performer is “BPE

No PG+COV” model. It can achieve ROUGE-1 scores between 39.3-39.9, ROUGE-2

between 17-17.5 and ROUGE-L between 36.9-37.5 for the custom test sets.

Table 6.8. The ROUGE scores of the models that use WordPiece over the Gigaword

test sets.

Gigaword Original Gigaword I

Model R-1 R-2 R-L R-1 R-2 R-L

WordPiece No PG+COV 30.240 13.017 28.698 39.401 17.211 37.027

WordPiece 31.510 13.502 29.571 41.057 18.180 39.351

WordPiece 30k 31.500 13.499 29.560 41.031 18.160 39.304

WordPiece w/LSTM 32.201 14.014 30.367 41.997 18.591 40.230

Gigaword II Gigaword III

Model R-1 R-2 R-L R-1 R-2 R-L

WordPiece No PG+COV 39.989 17.560 37.600 39.409 16.816 36.988

WordPiece 41.864 18.297 40.131 41.170 17.128 39.327

WordPiece 30k 41.853 18.291 40.126 41.167 17.120 39.311

WordPiece w/LSTM 42.605 18.813 40.890 41.997 18.431 40.754

In Table 6.8, we can see the results of the models that use WordPiece as the

subword model. The tendency of the performances of each model is very similar to

Table 6.7. In fact, almost all of the scores of the corresponding models are nearly iden-

tical. BPE-based models seem to perform marginally worse than WordPiece models,
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but considering that researchers generally round ROUGE scores towards the nearest

hundredth, the difference is negligible. Therefore, the same observations we mentioned

above apply to WordPiece-based models as well.

Table 6.9. The ROUGE scores of the models that use unigram language model over

the Gigaword test sets.

Gigaword Original Gigaword I

Model R-1 R-2 R-L R-1 R-2 R-L

Unigram No PG+COV 30.014 13.010 28.498 38.871 17.894 39.241

Unigram 31.502 13.216 29.506 40.830 18.001 40.513

Unigram 30k 31.417 13.175 29.501 40.816 17.983 40.510

Unigram w/LSTM 32.584 13.502 30.681 41.698 18.237 41.149

Gigaword II Gigaword III

Model R-1 R-2 R-L R-1 R-2 R-L

Unigram No PG+COV 40.040 17.580 37.689 39.581 17.137 37.186

Unigram 41.840 18.094 40.079 41.163 17.136 39.331

Unigram 30k 41.816 17.993 40.033 41.109 17.131 39.286

Unigram w/LSTM 42.577 18.308 40.676 41.640 17.735 40.105

The results of the models that use unigram language model as the subword model

can be seen in Table 6.9. The scores are again very close to the ones in Tables 6.7

and 6.8. “Unigram” and “Unigram 30k” models achieve very close ROUGE scores.

“Unigram w/LSTM” model performs the best among all. All three models surpass

“Unigram No PG+COV” model significantly for each test set.

Even though the scores are very close to the ones in Tables 6.7 and 6.8, the

improvements between the corresponding models are not similar. For example, “Uni-

gram w/LSTM” model surpasses its counterparts over the original Gigaword test set.

For “Gigaword I”, Unigram models also seem to achieve higher ROUGE-L scores than

other subword models. In all of the test sets, “Unigram No PG+COV” performs better
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than its counterparts with different subword models. The other results, however, are

generally worse so it is not accurate to compare unigram language model with others.

Table 6.10. The ROUGE scores of the models that use byte-pair encoding over the

CNN/Daily Mail test set.

CNN/Daily Mail

Model R-1 R-2 R-L

BPE No PG+COV 33.176 13.890 30.483

BPE 35.304 14.107 32.745

BPE 30k 35.291 14.100 32.739

BPE w/LSTM 36.196 14.371 33.554

Table 6.11. The ROUGE scores of the models that use WordPiece over the

CNN/Daily Mail test set.

CNN/Daily Mail

Model R-1 R-2 R-L

WordPiece No PG+COV 33.204 13.895 30.451

WordPiece 35.345 14.113 32.781

WordPiece 30k 35.318 14.116 32.777

WordPiece w/LSTM 36.196 14.372 33.556

We also present the results of the same models trained with the CNN/Daily

Mail dataset. Table 6.10 contains the ROUGE scores for BPE-based models. The

scores of “BPE” and “BPE 30k” models are again very close, each surpassing “BPE

No PG+COV” model by around 2.2, 0.2 and 2.3 for each ROUGE score respectively.

“BPE w/LSTM” model achieves the best results. It improves the scores of these two

models by 1.1, 0.2 and 0.8 respectively. A similar tendency can also be observed in

Table 6.7. WordPiece-based models achieves very similar results to BPE-based models.

WordPiece-based models can produce only marginally higher scores than BPE-based
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models as can be observed in Table 6.11. The models that use unigram language model

as the subword model perform worse than BPE and WordPiece, as can be observed in

Table 6.12. The only exception seems to be the ROUGE-2 scores, as unigram models

achieve slightly better scores than their counterparts.

Table 6.12. The ROUGE scores of the models that use unigram language model over

the CNN/Daily Mail test set.

CNN/Daily Mail

Model R-1 R-2 R-L

Unigram No PG+COV 33.006 13.925 30.203

Unigram 34.053 14.245 32.248

Unigram 30k 34.051 14.233 32.240

Unigram w/LSTM 34.963 14.506 32.972

For both datasets, the scores of “BPE No PG+COV”, “WordPiece No PG+COV”

and “Unigram No PG+COV” models are very close to the scores of “PG+COV” mod-

els. Some of the ROUGE scores are higher, some of them are lower. Considering

that these subword-based models do not use any additional mechanism suitable for

abstractive summarization, these results are pretty decent. There are two reasons

for that. First, these subword-based models do not use the coverage mechanism. As

we concluded above, enabling the coverage mechanism from the start of the train-

ing decreases the performance, which is how coverage is used in “PG+COV” model.

This causes a decrease in the scores of “PG+COV” model, and they get closer to

the scores of “BPE No PG+COV”, “WordPiece No PG+COV” and “Unigram No

PG+COV” models. The second reason is that the subword models naturally handles

the out-of-vocabulary tokens. It might seem that “PG+COV” model should perform

better because the pointer/generator mechanism is enabled, and it handles the out-of-

vocabulary tokens. The same situation also holds for all subword-based models, which

causes the corresponding scores to be similar to the scores of “PG+COV” model.
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The most obvious observation that can be seen in Tables 6.7 to 6.12 is that the

addition of the pointer/generator mechanism significantly improves the performances.

The pointer/generator mechanism is used because of its ability to generate out-of-

vocabulary tokens. However, the same ability is inherently gained by using subword

models. It could be confusing to understand which factor plays a role in this improve-

ment when they both solve the problem of out-of-vocabulary tokens. The pointer/

generator mechanism does not only point to an out-of-vocabulary token seen in input

sentences. It can also decide to point to a token that is already in the vocabulary. This

effectively introduces extractiveness to the models. Indeed, “BPE”, “WordPiece” and

“Unigram” models have gained extractiveness and this, as a result, helps to increase

the scores.

As mentioned in Section 5.5, all of the subword models that we use have an

adjustable vocabulary size as a hyper-parameter. We also wanted to see the effect of

it. There is hardly any change in the scores if the vocabulary size gets increased for

both datasets. In fact, it even causes a very small decrease. Note that obviously, this

decrease is negligible. In the end, “BPE 30k”, “WordPiece 30k” and “Unigram 30k”

models can achieve between 1 or 2 more than the scores of their counterparts that

do not use any additional mechanism. However, the model complexity gets higher if

the vocabulary size becomes large. Because of this, the sensible approach is to use a

smaller vocabulary size as we did for “BPE”, “WordPiece” and “Unigram” models.

Using subword models alone increases the effectiveness of models as they solve

the problem of out-of-vocabulary tokens. With the addition of the pointer/generator

mechanism, these models improve their performances even more. We conclude that

integrating subwords into abstractive summarization models is beneficial as the related

scores increase in our experiments.
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6.6. Proper Usage of Additional Mechanisms

We also built a model by combining the approaches used in the best results

shared above. Because “LSTM” and “No Freeze” models perform well, we used LSTMs

instead of GRUs and did not freeze the parameters of word embeddings while training.

This model uses the pointer/generator mechanism. We trained the model without

using the coverage mechanism until it converged to a point (approximately 2 days).

Then, we enabled coverage and trained the model further for a while (approximately

3-4 hours) as it shows its benefits in this way. The model also uses dependency features.

We call this model “Dep+PG→COV”.

Table 6.13. The ROUGE scores of various models including “Dep+PG→COV” over

the Gigaword test set.

Gigaword Original

Model R-1 R-2 R-L

ABS (Rush et al., 2015) 29.55 11.32 26.42

ABS+ (Rush et al., 2015) 29.76 11.88 26.96

lvt2k-1sent (Nallapati et al., 2016) 32.67 15.59 30.64

RAS-LSTM (Chopra et al., 2016) 32.55 14.70 30.03

RAS-Elman (Chopra et al., 2016) 33.78 15.97 31.15

Multi-Task (Pasunuru et al., 2017) 32.75 15.35 30.82

UniLM (Dong, Yang, Wang, Wei et al., 2019) 38.90 20.05 36.00

PEGASUS (Zhang, Zhao et al., 2020) 39.12 19.86 36.24

ProphetNet (Qi, Yan, Gong, Liu et al., 2020) 39.51 20.42 36.69

Dep+PG→COV 32.95 15.30 30.97

With the proper usage of the coverage mechanism, we can see that

“Dep+PG→COV” model produces very good results compared to “Dep+PG+COV”

and “Dep+PG” in Tables 6.1 and 6.2 for both Gigaword and CNN/Daily Mail datasets.

It surpasses them by more than 2 points in each ROUGE score for the Gigaword
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dataset. This shows the benefit of the coverage mechanism in abstractive summariza-

tion tasks. On the other hand, the improvement is even higher for the CNN/Daily

Mail dataset. It achieves around 4, 3 and 4.5 more for each ROUGE score respectively.

The reason for the higher contribution over the CNN/Daily Mail dataset comes from

the nature of these two datasets. As explained in Section 6.2.4, the input texts of

Gigaword are a lot shorter than CNN/Daily Mail. The longer texts cause the model

to generate repeated words or phrases more frequently. Therefore, using the coverage

mechanism for the Gigaword dataset is not as vital as using it for the CNN/Daily Mail

dataset.

Table 6.14. The ROUGE scores of various models including “Dep+PG→COV” over

the CNN/Daily Mail test set.

CNN/Daily Mail

Model R-1 R-2 R-L

words-lvt2k-temp-att (Nallapati et al., 2016) 35.46 13.30 32.65

seq-to-seq + attn baseline (See et al., 2017) 30.49 11.17 28.08

pointer-generator (See et al., 2017) 36.44 15.66 33.42

pointer-generator + coverage (See et al., 2017) 39.53 17.28 36.38

UniLM (Dong, Yang, Wang, Wei et al., 2019) 44.17 21.47 41.11

PEGASUS (Zhang, Zhao et al., 2020) 43.33 20.21 40.51

ProphetNet (Qi, Yan, Gong, Liu et al., 2020) 44.20 21.17 41.30

Dep+PG→COV 38.17 16.93 35.88

Table 6.13 contains the results of some popular models evaluated using the Gi-

gaword dataset. We can see that our model can achieve better scores compared to the

models by Rush et al. [9], Nallapati et al. [19], Chopra et al. (except their RAS-Elman

model) [20] and Pasunuru et al. [27]. In Table 6.14, the scores of various models can be

seen for the CNN/Daily Mail dataset. Our model can perform better than Nallapati

et al. [19]. It also surpasses the baseline and the pointer/generator model from See et

al. [30]. However, it fails to achieve better scores than “pointer-generator + coverage”
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model designed by See et al. Note that we failed to create a baseline model performing

close to their baseline model. We think that integrating dependency features on top of

their baseline model would achieve better scores than their best model.

UniLM [54], PEGASUS [55] and ProphetNet [56] are relatively new models. They

differ from the others in Tables 6.13 and 6.14. The other models use RNN-based

networks whereas ProphetNet, UniLM and PEGASUS are based on transformers. It

can clearly be seen that these transformer-based models achieve significantly higher

results. However, we showed that integration of dependency features increases the

performance. Utilizing transformer-based approaches with dependency usage might

surpass some baseline transformer models if not these models.

6.7. Discussions Regarding the Evaluation Metrics

In all of the tables above, we shared the F1 scores of ROUGE-1, ROUGE-2 and

ROUGE-L for each model evaluated by using each test set. These scores are typically

shared in order to show how well the proposed models perform and to compare various

models fairly in many abstractive summarization studies. However, ROUGE-N metrics

are basically based on n-gram matches. They favor the models that can generate the

summaries in the exact way that the target summaries are constructed. This means

that even the words should be the same as the words in the target summary, and the

order of words should be very close to. We think that summarization systems should

not be evaluated in this way. They can generate summaries with different wordings

compared to the target summaries. This should not mean that they are of bad quality.

In fact, summaries can have many different ways to describe facts. Many similar

summaries can be constructed by extensive paraphrasing, and all of them can keep the

condensed information intact.

In addition to the ROUGE scores, we wanted to show the METEOR scores [57]

for some of our important models in Table 6.15. Note that “CNN/DM” stands for

the CNN/Daily Mail test set, and “Org.” stands for the original test set for each
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dataset in the table. In addition to the exact matching, METEOR can also utilize

functionalities for aligning based on stems, synonyms and paraphrase matches between

words and phrases. We used its full mode when computing the scores since these

approaches provide better evaluation for the system summaries that use very similar

words instead of the exact words in the target summaries. It can fairly evaluate the

paraphrased sentences too. Therefore, METEOR might actually be a better way to

evaluate models, specifically for abstractive summarization systems. Unfortunately,

almost none of the studies in abstractive summarization evaluate their models using

the METEOR metric. The researchers typically do not report these results. Therefore,

it is hard to compare the models based on the METEOR scores.

Table 6.15. The METEOR scores of the different models over both the Gigaword test

sets and the CNN/Daily Mail test set.

Gigaword CNN/DM

Model Org. I II III Org.

Baseline 20.77 28.94 28.51 29.09 13.76

PG+COV 21.97 29.52 29.12 29.61 14.29

Dep+PG+COV 22.45 30.51 30.43 30.98 16.91

Dep+PG→COV 25.81 34.62 34.72 34.90 18.83

The score improvements gained by each model for the ROUGE metric in the

previous tables can also be observed in Table 6.15 for the METEOR metric. For

example, “PG+COV” model performs better than “Baseline” model, as can also be

seen in Tables 6.1 and 6.2. This means that the additional mechanisms help the

models improve their performances. “Dep+PG+COV” model can also produce better

scores than “PG+COV” model. This shows that the addition of dependency features

increases the METEOR scores as well. Lastly, “Dep+PG→COV” model performs the

best for each test set in Table 6.15.
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7. CONCLUSION

In our experiments, we analyzed the effects of the additional mechanisms used in

abstractive summarization models. We have found that the pointer/generator mecha-

nism increases the scores of models significantly. Most of the out-of-vocabulary words

in the input texts are very important to be included in summaries in any summa-

rization task. We observed that the pointer/generator mechanism handles the issue

of generating out-of-vocabulary words. It also brought extractiveness to the models

and balanced between these two summarization approaches, which was another reason

for the improvements that we saw in our results. We also observed the effects of the

coverage mechanism. We have found that using it after the parameters of the models

converge in training increases the performance of the models too. It helped the models

avoid any repeated words or phrases, and was very useful for summarizing long input

texts.

We further improved these models with the addition of word dependency rela-

tions. We used dependency parsing on every input sentence and obtained some of the

features for each word. These features were then embedded and integrated into the

model. We have found that this inclusion indeed helped the models achieve better

results. The knowledge of dependency structure made natural language understanding

more efficient and natural language generation better. We also analyzed the use of

subwords in our models since it is widely used in recent state-of-the-art NLP mod-

els. We trained three different subword models and used their resulting subwords in

our models. The results showed that the use of subwords is a good approach. They

naturally handle the out-of-vocabulary word issues in summarization tasks. With the

additional mechanisms, the performances of the models got even better.

For future work, we think that other training approaches can be adapted for

the models that we used. For example, policy gradient techniques in reinforcement

learning to directly maximize the ROUGE scores are used, and they produce worthy
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results [28]. Along with the additions of word dependency relations or subword models,

such techniques can help the models perform even better. There are also some other

approaches that can be adapted. For example, deep communicating agents can be used

for abstractive summarization tasks as well [42]. Integrating the additions we have

shown into such models might be useful. Similarly, generative adversarial networks

can also be used with these additions [35].

Recently, transformers are used very frequently, and they achieve state-of-the-art

results in many NLP problems, including abstractive summarization [54–56]. Even

though we could not achieve the scores of recent studies, using the same models as

a baseline and integrate our additions into them might produce better scores. Many

popular models use subwords internally. However, finding a suitable way to incorporate

word dependency features into these models might provide better results.
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APPENDIX A: A CLOSER LOOK ON GENERATED

SUMMARIES

Some example summaries generated by both “PG+COV” and “Dep+PG→COV”

models can be observed below. The details of these models can be found in Chapter 6.

We present the input text, the reference summary and the summaries generated by

these models consecutively. Note that these examples are selected from the custom

Gigaword test sets.

Original Text: british foreign office minister mike o’brien on tuesday criticized the

latest violence in israel, saying the attack by israeli troops on gaza would jeopardize

the peace process in the middle east region.

Reference Summary: britain slams latest israeli attack on gaza

System Summary: britain condemns israeli violence in israel

System Summary (w/Dependency): british fm criticizes latest mideast

violence

The system summary looks successful, but it gives wrong information. The lo-

cation is not Israel, instead, it should be Gaza. The addition of dependency features

seems to fix this issue. Even if the location is now more general, it is correct. In addi-

tion, the person that criticizes the situation becomes more informative. It even uses the

abbreviation “fm” instead of “foreign minister”, which fits the idea of summarization.

However, the perpetrator is missing in the last summary.
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Original Text: belgian maritime police arrested an iranian man after discovering a

compatriot in the trunk of his car on board a passenger ferry between zeebrugge

and britain, belgian media reported monday.

Reference Summary: iranian man arrested trying to smuggle compatriot into

britain in car trunk

System Summary: belgian man arrested in belgian ferry

System Summary (w/Dependency): belgian police arrest iranian man

The system summary contains an unnecessary word. The word “belgian” in

“belgian ferry” is unnecessary. Besides, the arrested person is not Belgian. These

issues seem to be handled by the model with dependency usage. The knowledge of the

structural information of the sentence helps the model generate that summary.

Original Text: britain’s new security chief has warned that the country’s battle

against terrorism could take up to ## years, while prime minister gordon brown

says he wants an expanded european system to share information on potential

threats.

Reference Summary: britain’s new terror chief says ## years needed to fight

islamic terrorism

System Summary: british security chief warns against terror threat

System Summary (w/Dependency): british security chief warns against terror

threat

Both of the models generate the same results, and both seem to be successful.
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Original Text: eight men who used donkeys to smuggle anti-tank missiles and

rpgs across a desert border received prison terms of five to ## years with hard

labor on tuesday.

Reference Summary: court sentences eight men to prison terms of #-## years

for arms smuggling

System Summary: eight men sentenced for anti-tank smuggling

System Summary (w/Dependency): eight jailed in prison for smuggling

missiles

Both of the system summaries are similar to each other, but the first one has

wrong information. The smuggled object should “anti-tank missiles”, and it is correctly

generated by the second model.

Original Text: prime minister viktor chernomyrdin settled his differences thursday

with polish officials over the mistreatment of russian travelers by police in warsaw,

the itar-tass news agency reported.

Reference Summary: dispute over beaten tourists settled

System Summary: chernomyrdin settles differences with russia

System Summary (w/Dependency): chernomyrdin settles differences with

polish

The summaries are very different from the reference. As a result, this summary’s

contribution over the ROUGE score is very low. However, both of the resulting sum-

maries are not particularly bad. This shows that the ROUGE metric is not totally

adequate for abstractive summarization tasks. On the other hand, the name “cher-

nomyrdin” is an out-of-vocabulary word. Both summaries can successfully generate

it, which shows the benefit of the pointer/generator mechanism. In addition, the first

summary contains wrong information. Instead of “russia”, it should be “polish”, which

is correctly generated in the second summary with the help of the word dependency

features.


