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ABSTRACT 

A Novel Framework for Morphological Processing of Turkish 

 

Morphological parsing is the computational task of breaking down words into their 

roots and affixes. There are several successful morphological parsers for Turkish, 

especially for inflectional morphology. However, there is a gap in the literature 

concerning the analysis of fusional properties of foreign-origin words, support for 

prefixes, and comprehensive derivational suffix coverage. To address this gap, this 

thesis describes and implements a new computational morphological processing 

framework for Turkish with novel principles. These principles are based on the 

recent opportunities and requirements in the natural language processing field, 

namely the transformer-based pre-trained large language models and fine-tuning 

approaches. The framework contains a description of language resources structure, a 

morphological analyzer that examines all possible parses of a word, a morphological 

disambiguator that picks the correct hypothesis among analyzer outputs, and error 

analysis modules for these tools.  
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ÖZET 

Türkçe Morfolojinin İşlenmesi İçin Yeni Bir Çerçeve 

 

Morfolojik, yani biçimbirimsel çözümleme, kelimelerin bilgisayarca kökleri ile 

eklerine ayrılması işidir. Türkçe için çeşitli çözümleyiciler vardır; bunlar başarılı bir 

şekilde, özellikle çekim eklerinin yapısını çözümleyebilirler. Fakat literatürde kimi 

yabancı kökenli kelimelerin bükümlü yapısının analizi, ön eklerin desteklenmesi, 

yapım eklerinin geniş bir şekilde kapsanması yönünden kimi eksiklikler vardır. Bu 

eksikliklere çözüm aramak için bu tezde Türkçe için yeni birtakım normlara dayanan 

bir hesaplamalı morfolojik işleme çerçevesi tanımlanıp uygulanmıştır. Bu ilkeler, 

doğal dil işleme alanındaki güncel olanaklar ile gereksinimlere dayanır. Bunların 

başında dönüştürücü (transformer) tabanlı, önceden eğitilmiş büyük dil modelleri ile 

ince ayarlama yaklaşımları gelir. Çerçeve, dil kaynakları yapısının açıklamasını, 

kelimelerin tüm olası çözümlemelerini inceleyen bir morfolojik analizciyi, analizci 

çıktıları arasından doğru hipotezi seçen bir morfolojik muğlaklık gidericiyi ve bu 

araçlar için hata analizi modüllerini içermektedir.  
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CHAPTER 1 

INTRODUCTION 

 

 

This chapter describes the aim of the thesis, the definition of the Turkish language 

and its core morphological phenomenon, as well as the current state of computational 

processing of morphology. 

 

1.1  Aim of the thesis 

The focus of this thesis is the computational processing of Turkish morphology. The 

examination of morphological elements of a word is called morphological parsing. 

As a morphologically rich language, Turkish attracted the attention of multiple 

natural language processing (NLP) scholars. There are several morphological parsers 

for Turkish, as well as some other morphologically rich languages like Finnish. 

However, as with any tool, previous Turkish parsers are based on some design 

choices, and those design choices are not fully aligned with the current NLP trends. 

This thesis aims to create a morphological processing framework for Turkish that 

includes a set of design principles, a resource structure, a morphological analyzer, a 

morphological disambiguator, a morphological tokenizer, and tools for error 

analysis. 

 

1.2  Turkish language 

Turkish is a Turkic language spoken by an estimated 88 million people, mainly in 

Turkey1. Turkish is officially regulated by Turkish Language Association (TDK). 

 
1 https://www.ethnologue.com/25/language/tur/ 
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However, it is far from being an undisputed all-governing authority over the 

language. Former members of the TDK had founded Dil Derneği (Language 

Association) as an alternative authority in 1987, and several editors in Turkey often 

refer to Necmiye Alpay's Türkçe Sorunları Kılavuzu (Alpay, 2000) for dispute 

resolution. 

There are several definitions of Turkish as a language, and some include other 

related languages like Azerbaijani, Uzbek, Kazakh, etc. as dialects of Turkish . 

However, "Turkic languages" is a more accurate definition as an umbrella term for 

related languages. 

Our definition of Turkish as the Turkic language spoken in Turkey aligns with 

the primary uses of a language in computational contexts. However, not all 88 

million estimated speakers speak the same dialect of Turkish. The catalog of TDK 

includes tens of dictionaries of local dialects. However, in this thesis, these local 

dialects are out of scope. The focus is on the Turkish that used to be called "Istanbul 

Turkish," then after the invention of telecommunication methods, "TRT Turkish," 

and now the Turkish that is used in corpora; therefore, mainly the variants used in 

books, newspapers, Wikipedia, etc. 

Within the scope of this thesis, a profoundly descriptive position is adopted 

for what is accepted as and what is not Turkish. Turkish means everything that exists 

in a Turkish text corpus, and many grammatical variations are acceptable, aside from 

obvious and universally agreed-upon grammatical mistakes, such as misspelling of 

clitics de, da (separate from the word) as -de, -da (appended to the word) and vice 

versa. The rationale behind this choice is not from a theoretical point of view. It is 

because of the mass use of any available language data in any language for training 

large language models (LLMs) without significant filtering in current applications. A 
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framework that aims to morphologically parse and segment Turkish texts should 

ideally be able to handle as diverse requests as possible. 

This choice requires leniency towards the use of foreign words, non-

canonical uses, and other phenomena that will be discussed further.  

Contemporary linguists agree on the agglutinative property of Turkish 

(Göksel & Kerslake, 2005). Haspelmath (2009) even criticizes his colleagues for 

confusing agglutination with being Turkish-like. Although there is a consensus 

around the agglutinative property of Turkish, it is incorrect to say that Turkish 

morphology only consists of agglutinative components and no other morphological 

phenomenon can be observed. Korkmaz (2009) notes that pre-republic works on 

Turkish (specifically Ottoman Turkish) grammar mainly consisted of Arabic-based 

kavaid-i Osmaniyye (Ottoman grammars) and some French-influenced works. She 

notes that since the beginning of the 20th century, Turkish has gotten rid of its so-

called "flaws" that came with Arabic and Persian. Therefore, a method that does not 

follow French or Arabic classifications is followed in her work. This approach is not 

entirely incorrect, as contemporary Turkish is mainly agglutinative. However, 

Nişanyan (2022) argues that Arabic words constitute between 24% and 30% of the 

Turkish vocabulary depending on the lexicographic methodology, and Arabic 

morphology should be considered a part of contemporary Turkish grammar.  

Whether speakers of Turkish process Arabic words as singular units or they 

reconstruct the meaning from the roots and morphological patterns (Ar. wazn, awzan 

Tur. vezin) is an open question worth exploring, where the answer possibly depends 

heavily on how familiar the speakers are with the Arabic grammar on its own. Still, 

especially from a computational perspective where the new trend is breaking words 
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down to their smallest meaningful units, parsing Arabic roots and patterns may have 

its benefits in other tasks. 

 

1.3  Definition of morphological parser 

Parsing is the operation of analyzing an input and breaking it down into meaningful 

components. Computational parsing can cover everything from the interpretation of 

coding conventions and data structures, such as JSON parsing, to natural language 

processing applications, such as syntax, dependency, and morphology parsing.  

A morphological parser conventionally consists of two components: an 

analyzer that generates all potential parses of a given input word, and a 

disambiguator that takes the context and the output of the analyzer and decides which 

parse is the correct one given the context (Oflazer & Saraçlar 2018). 

Some recent morphological parsers (Akyürek et al., 2019, Şahin & Atlamaz, 

2022) do not follow this path and given an input with a sequence-to-sequence 

architecture, directly generate the correct parse. Sequence-to-sequence means that the 

model takes text as input and produces text as output, without following a step-by-

step morphological analysis. In such approaches, the morphological parser is 

generally trained with neural networks. Therefore, we can define a morphological 

parser as a unit that takes an input and produces an output that contains the correct 

parse, with its internal structure either a sequence-to-sequence one or consisting of an 

analyzer and a disambiguator. 

 

1.4  Two-level morphology 

One of the most influential ideas in morphological parsing is the two-level 

morphology architecture suggested by Koskenniemi (1983).  
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Koskenniemi (1983) describes a lexical and a surface level for morphological 

processing, where the lexical level contains representations of morphemes that can 

take several surface forms, while the surface level contains the realized form of this 

representation.  

He describes the difference between the lexical and surface level with the 

following inflection example on the Finnish noun talo (house): 

Lexical level: t a l o n A 

Surface level: t a l o n a 

nA is the archiphonemic representation, which can take the forms nä or na 

depending on vowel harmony. Morphological features such as case, number, etc. are 

also a part of the lexical level. His two-level morphology approach is implemented 

through finite state transducers (FST) (Beesley & Karttunen, 2003), and these 

transducers are bidirectional, meaning that given a lexical input, a surface output can 

be produced, and vice versa. 

There are several FST frameworks, starting from Koskenniemi (1983), whose 

framework later became PC-KIMMO. Foma (Hulden, 2009), HFST (Lindén et al., 

2011), SFST (Schmid, 2006), OpenFST (Allauzen et al., 2007) are some of the 

contemporary FST compilers that can be, and are, used for Turkish morphological 

analysis.  

 

1.5  Existing Turkish morphological parsers 

Multiple Turkish morphological parsers exist in the literature, and some are currently 

available for use. This section describes some previous parsers based on availability, 

methodology, and ease of use. 
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1.5.1  Oflazer (1993) 

Oflazer, (1993) is one of, if not the first, Turkish morphological analyzers. It is 

written for PC-KIMMO environment and its source files are accessible through a 

server hosted at Carnegie Mellon University2. Based on Oflazer & Saraçlar (2018), it 

is possibly succeeded by a Xerox Finite State Tools (Beesley & Karttunen, 2003) 

implementation, but this newer implementation is not openly available. Rules contain 

inflectional morphemes, as well as some derivational morphemes. However, the 

support for derivational morphemes is limited. It is inconvenient to use with modern 

hardware, and a virtualization layer is required to run PC-KIMMO.   

Succeeding morphological parsers generally follow the conventions used in 

this parser. An example input and output for this parser for the Turkish word evimizin 

(of our house): 

Input: evimizin 

Output: N(ev)+1PL-POSS+GEN 

 

1.5.2  Sak et al. (2008) 

Sak et al., (2008) consists of an FST-based analyzer and a perceptron-based 

disambiguator. Its rules are mainly based on Oflazer's description of Turkish 

morphology. It contains limited support for derivational morphemes. 

Morphological analyzer and disambiguator are available through TULAP3. 

The morphological analyzer module is dependent on a x86 Linux shared object (.so). 

Therefore, running it requires a Linux machine running on a CPU with x86 

architecture or containerization/virtualization on another OS with an x86 CPU. With 

 
2 https://www.cs.cmu.edu/afs/cs/project/ai-repository 

9/ai/util/areas/nlp/morph/pc_kimmo/turklex/ 
3 Analyzer: http://hdl.handle.net/20.500.12913/4 

Disambiguator: http://hdl.handle.net/20.500.12913/8 
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the recent re-popularization of ARM architecture, especially the adoption of these in 

newer Apple computers, this reliance on the shared object file becomes an 

inconvenience for users. Since the FST is in compiled form, this parser is not 

extensible. 

Perceptron-based morphological disambiguator relies on a model file that is 

retrainable on a given dataset if necessary. This parser is used extensively in other 

works, such as generating the Turkish training data for Morpho Challenge iterations, 

getting baseline morphological features for BOUN UD Treebank (Marşan et al., 

2022), and exploring input variations. An example input and output for this parser for 

the Turkish word evimizin (of our house): 

Input: evimizin 

Output: ev[Noun]+[A3sg]+HmHz[P1pl]+NHn[Gen] 

 

1.5.3  Zemberek NLP 

Zemberek (Akın & Akın, 2007) is an open-source NLP toolkit that includes 

components for tasks such as morphology, tokenization, normalization, and named 

entity recognition. Its morphology module contains support for analysis, 

disambiguation, and generation. It does not rely on an FST backend but handles the 

analysis with a rule-based approach. It has some coverage of derivational suffixes 

and closely follows the behavior of an unknown version of Oflazer's analyzer4. An 

example input and output for this parser for the Turkish word evimizin (of our 

house): 

Input: evimizin 

Output: ev:Noun+A3sg+imiz:P1pl+in:Gen 

 
4 https://github.com/ahmetaa/zemberek-nlp/wiki/Morphology-Notes 
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1.5.4  Dilbaz 

Dilbaz (Yıldız et al., 2019) is available in 6 programming languages, and in terms of 

dependencies, it can be considered self-contained in each of them. It does not rely on 

third-party FST tools, but rather uses a bespoke finite state machine logic. By using a 

trie data structure and an LRU cache, it can handle large corpora efficiently. An 

example input and output for this parser for the Turkish word evimizin (of our 

house): 

Input: evimizin 

Output: ev+NOUN+A3SG+P1PL+GEN 

 

1.5.5  TRmorph 

TRmorph (Çöltekin, 2014) provides an FST morphological analyzer based on the 

foma backend. It covers a large number of morphological phenomena and has most 

of the suffixes from Göksel & Kerslake, (2005). However, the derivational suffixes 

that are deemed unproductive are commented out. Therefore, they are not compiled 

into the analyzer. Foma is a fast backend, and a morphological segmentation tool is 

provided along with the parser. All this makes TRmorph a good candidate to use for 

fast morphological tokenization of corpora. An example input and output for this 

parser for the Turkish word evimizin (of our house): 

Input: evimizin 

Output: ev<N><p1p><gen><0><V><cpl:pres><3s> 
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1.5.6  Morse 

Morse (Akyürek et al., 2019) is a sequence-to-sequence encoder-decoder-based 

morphological parser that can produce a single disambiguate output when given an 

input. It is written in Julia and requires some familiarity with this programming 

language to parse large amounts of text without performance loss. It follows the 

output convention of Oflazer's later parsers, as it is trained on a new dataset 

published along the parser, TrMorph2018, which is generated with Oflazer's parser 

and disambiguator from an updated 2018 version. An example input and output for 

this parser for the Turkish word evimizin (of our house): 

Input: evimizin 

Output: ev Noun+A3sg+P1pl+Gen 

 

1.5.7  TransMorpher 

TransMorpher (Şahin & Atlamaz, 2022) is a sequence-to-sequence parser 

based on transformer architecture and has a component that handles phonological 

normalization, which converts the allomorphs into generalized forms. Although the 

reported accuracy is below Akyürek et al. (2019), within the confines of the system, 

the phonological normalization is reported to increase the accuracy of the sequence-

to-sequence by 5-10% in tag and lemma accuracy. An example input and output for 

this parser for the Turkish word evimizin (of our house): 

Input: evimizin 

Output: ev+NOUN 

 +PersonNumber=A3sg+Possessive=P1pl+Case=Gen+Proper=False 



 10 

CHAPTER 2 

TURKISH MORPHOLOGY 

 

 

This section gives an overview of the rules of Turkish morphology in the context of 

computational processing.  

Although it could be desirable from the point of view of someone aiming to 

build an expert system to have a complete set of rules for a phenomenon to be 

modeled, it is not necessarily possible to write down all the morphological rules of 

Turkish and cover the whole language. There will always be exceptions, edge cases, 

non-canonical uses, new phenomena, outdated phenomena, etc. In the NLP field and 

other areas such as computer vision, the use of deep learning, in part, aims to avoid 

limitations of the rule-writing process. 

In an ideal scenario, deep learning relies on high-quality data to train on. 

Turkish morphology is not a field with a lot of manually tagged data. Consequently, 

even if the aim is to finally migrate all workflows into a deep learning-based 

solution, analyzing the morphological rules and having a non-data-dependent 

analyzer is beneficial.   

 

2.1  Definition of word components 

Turkish has been written in Latin script since 1928, and words have been separated 

by whitespaces even in the Ottoman-Arabic script era before that.  

We use Göksel & Kerslake's (2005) definition of root, stem, base, and word, 

which is described in Figure 1. 
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Figure 1. Visualization of root, stem, and suffixes 

 

From a computational linguistics point of view, the difference between 

Turkish words is generally less diverse than in English. For example, the word yapıt 

(work, noun) can take the dative case marker and become yapıta (to the work), in 

which scenario, yapıt and yapıta are treated as entirely different words in a 

computational sense. 

 

2.2  Definition of morpheme 

Morphemes are, by principle, the smallest meaningful units in a language. They can 

be roots or affixes, meaning prefixes, infixes, circumfixes, and suffixes (Haspelmath 

& Sims, 2010). In Turkish, there are no productive circumfixes or infixes; mainly, 

there are suffixes.  

Although the "smallest meaningful unit" definition looks elegant, it is not 

always possible to trace the "smallest" unit as a morpheme, and sometimes combined 

morphemes do not have their components visible. Several design choices are 

involved in defining suffixes and will be discussed further in the resources section.  

As for roots, almost all the neologisms in the last 100 years and many older 

words have distinguishable roots. However, a rule-of-thumb distinction between an 
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etymological root and a morphological root should be drawn for ease of processing. 

As an example, both verbs öğren (learn) and öğret (teach) undoubtedly come from a 

hypothetical common root, possibly *ögür (community, herd). As this root is not in 

active use today, in the scope of this thesis, öğren and öğret are treated as separate 

roots.  

On the flip side, in the case of words like açı (angle) and sayı, although they 

appear as separate roots and probably are not processed by the speakers of Turkish as 

derivations since their roots can be traced back to aç (open) and say (count), they are 

treated as derivations of verbal roots with the suffix +H (realized as ı, i, u, ü) just like 

çeviri, sayı, sömürü.  

Contrary to the official position and many grammar books, Turkish does have 

prefixes. How productive they are is an open question, but they are generally 

distinguishable from stems, as in the case of atipik (atypical) and gayrinizamî 

(irregular, anomalous). 

 

2.3  Morphemes in Turkish 

Within the constraints of this framework, Turkish morphology consists of 58 

inflectional and 121 derivational suffix forms, as well as some prefixes. Table 1 

contains a legend of generalized forms of morpheme sounds and their expanded 

variants, similar to the notion of archiphonemic representations of Koskenniemi 

(1983). Inflectional suffixes can be found in Table 2, and derivational suffixes in 

Table 3 (loosely based on Göksel & Kerslake, 2005; Korkmaz, 2009). Letters in 

parentheses denote optional thematic sounds.  
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Table 1.  Generalized representations and variations 

Representation Variants 

A a, e 

C c, ç 

H (high vowel) ı, i, u, ü 

K k, ğ 

D d, t 

G g, k 

 

 

Table 2.  Inflectional suffixes of Turkish  

 

+(A/H)r 

+(H)m 

+(H)mHz 

+(H)n 

+(H)nHz 

+(H)yor 

+(H)ş 

+(n)DA 

+(n)Hn 

+(s)H(n) 

+(y)A 

+(y)Abil 

+(y)AcAK 

+(y)Adur 

+(y)Akal 

+(y)An 

+(y)Ayaz 

+(y)DH 

+(y)H 

+(y)Hm 

+(y)Hp 

+(y)Hver 

+(y)Hz 

+(y)lA 

+(y)mHş 

+(y)sA 

+Ak 

+Ar 

+Art 

+DAn 

+DH 

+DHr 

+Hl 

+Hm 

+Hn 

+Hr 

+Ht 

+k 

+kH(n) 

+ki(n) 

+lAr 

+lArH 

+lArH(n) 

+lArHn 

+lHm 

+m 

+mA 

+mAktA 

+mAlH 

+mHş 

+n 

+nHz 

+sA 

+sHn 

+sHnHz 

+sHnlAr 

+t 

+z 
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Table 3.  Derivational suffixes of Turkish  

+(A)C 

+(A)CHK 

+(A)K 

+(A)cAn 

+(A)klA 

+(A)l 

+(A)lgA 

+(A)m 

+(A)mAK 

+(A)n 

+(A)nAK 

+(A)r 

+(A)rH 

+(A)t 

+(A)v 

+(A)y 

+(A)ş 

+(H)CHK 

+(H)K 

+(H)k 

+(H)klA 

+(H)lH 

+(H)msA 

+(H)msAr 

+(H)msH 

+(H)mtraK 

+(H)n 

+(H)ncH 

+(H)ntH 

+(H)r 

+(H)t 

+(H)z 

+(H)ş 

+(H)şDHr 

+(h)ane 

+(t)en 

+(v)i 

+(y)A 

+(y)AcAK 

+(y)An 

+(y)AsH 

+(y)AsHcA 

+(y)AsHyA 

+(y)HcH 

+(y)Hm 

+(y)Hn 

+(y)Hş 

+(y)at 

+(ş)Ar 

+A 

+AgAn 

+AlA 

+AğAn 

+C 

+CA 

+CAK 

+CAnA 

+CAsHnA 

+CAğHz 

+CH 

+CHK 

+CHl 

+DA 

+DA(n) 

+DAm 

+DAn 

+DH 

+DHK 

+Daş 

+Deş 

+GA 

+GAC 

+GAn 

+GH 

+GHC 

+GHn 

+GHr 

+H 

+Hm 

+HnC 

+ane 

+baz 

+cH 

+dan 

+dar 

+engiz 

+gil 

+istan 

+iye 

+iyet 

+kar 

+lA 

+lAm 

+lAmA 

+lAn 

+lArH 

+lAt 

+lAş 

+lH 

+lHk 

+leyin 

+mA 

+mAC 

+mAK 

+mAcA 

+mAdHK 

+mAn 

+mAz 

+mHK 

+mHş 

+rA 

+sA 

+sAK 

+sAl 

+sH 

+sHl 

+sHz 

+tH 

+tay 

+vari 

+zede 
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CHAPTER 3 

FRAMEWORK PRINCIPLES 

 

 

As a description of a novel morphological processing framework, this thesis is based 

on several principles and design choices. This chapter describes these principles.  

 

3.1  Importance of derivational morphemes 

A given derivational morpheme does not always add the same semantic feature to a 

given stem. Especially, language change and arbitrary use of derivational morphemes 

at the first stages of the language reform cause some words to have a more opaque 

composition. However, whether a word with one or more derivational morphemes is 

processed as a whole unit or a combination of root(s) and affix(es) is a question of 

areas such as psycholinguistics. The task of analyzing all possible derivational 

morphemes should not be discarded in favor of developmental convenience or 

challenges due to disambiguation. These challenges should be recognized, and 

answers should be pursued.  

Full coverage of derivational morpheme segmentation is essential for 

historical linguistics and stylistics research.  

 

3.2  Morphemes as subwords 

Several studies explore the feasibility of using morphemes as subword units instead 

of frequency-based character-level methods like byte-pair encoding (Sennrich et al., 

2016) or Wordpiece (Wu et al., 2016). One of the main drawbacks of using BPE for 

Turkish is its inability to recognize allomorphs. While language-specific 
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morphological tokenization can merge plural markers +ler and +lar into a single 

representation +lAr, current language-agnostic approaches do not recognize such 

patterns. The effect of this merge operation on various performance metrics is a 

subject of a separate study. 

BPE and Wordpiece are deemed "good enough" for English, and multilingual 

models have the disadvantage of having to rely on a single tokenization method. 

However, morphology-based tokenization is gaining popularity for Turkish, and 

currently, it is limited to inflectional morphemes, accompanied by a very limited set 

of derivational morphemes in generalized forms. These applications rely on string 

manipulation operations based on the parser outputs, while some parsers do not offer 

word segmentations as default outputs. It is worth noting that this is not due to a 

technical limitation but a design choice. 

A morphological framework should be able to give outputs in both surface 

form and representation form of segmented morphemes through parameters without 

having to tweak the source code. 

 

3.3  Object structure of the framework 

Although the principle of two-level morphology is not necessarily a limiting factor, 

having to define separate states for each exception adds up quickly in development. 

Instead, the OOP paradigm can be used for different features of words, affixes, and 

other components. A morphological processing framework should be able to produce 

outputs with only the relevant information for the user. While a more linguistics-

oriented analysis may require what features each morpheme has. For example, 

automatically pre-tagging words in a Universal Dependencies Treebank (Nivre, 

2020) only requires the ultimate morphological features of the overall word. Instead 
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of deleting parts of an output, some information can be excluded from the output to 

start with.  

In line with this approach, language resources should be structured in a way 

that an object-oriented analysis module can handle them. 

 

3.4  Leniency in analysis, standardization in generation 

Finite state machines have the intrinsic purpose of deciding whether an input is valid 

or not. However, in line with the description of Turkish as anything that goes into a 

moderately controlled corpus, a morphological analyzer should handle the parsing of 

unconventional word formations. For example, *yapdık may or may not be 

considered by the user as a valid form of yaptık (we made) in the analysis because it 

appears in a few news corpora. However, if this form is supported, the 

representational form "yap +DHk" must always be converted back into the 

canonically correct version yaptık as a normalization step.  

 

3.5  Data generation 

Data-driven methods prove to be better than rule-based approaches in many 

computer science fields. The upper bounds of data-driven learning of Turkish 

morphology are limited to the current capabilities of Sak et al. (2008) due to it being 

the basis of the Morpho-Challenge 2010 Turkish dataset and several iterations of 

TrMor datasets5.  

The foremost priority of a morphological parser should be the correct 

segmentation of any given input into their roots and affixes, and assigning correct 

morphological features, rather than checking if a given input adheres to specific 

 
5 2006, 2016, and 2018 iterations can be found at https://github.com/ai-ku/TrMor2018 
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rules. This prioritization assumes that this framework's analyzer and disambiguator 

components will be used to generate high volumes of synthetic or manually verified 

morphology training data based on raw Turkish text. This training data can then be 

used for processing Turkish morphology with data-driven methods. 

 

3.6  User experience 

The learning curve to modify the resources to have an analysis module that fits 

specific needs should be low. For example, if a user wants to add a new suffix to the 

system, it should be as simple as adding some basic suffix properties to a resource 

file. An abstract understanding of the system should be enough, contrary to the need 

to understand all the conventions in an FST file. 

 

3.7  Availability 

A morphological processing framework should not depend on under-maintained 

third-party packages or other difficult-to-install dependencies. As the most popular 

programming language among NLP researchers at the date of writing, at least Python 

should be supported by the framework. In the case of Python, the installation of the 

whole framework should be as simple as "pip install package_name," and default 

resources should be downloaded from within the package, not externally.  

The whole framework should work in all major-league consumer and 

business-grade operating systems and hardware without changing system behavior. 
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CHAPTER 4 

FRAMEWORK RESOURCES 

 

 

This section describes the linguistic resources used in the framework. 

 

4.1  Lexicon 

For any rule or FST-based morphological parser, lexicon coverage is a vital 

component. There are several methods to guess what the root or lexeme of a word is, 

and process which suffixes are added afterwards. However, there is always a 

correlation between the lexicon size and the real-life coverage of the parser. 

In the lexicon of a conventional morphological analyzer, each lexical entry 

must at least have part of speech information to be processed further along the 

morphological states. The lexicon used in this work is a combination of unigram 

entries in the TDK dictionary and the morphological lexicons of Starlang and 

Çöltekin with detailed information to help parsing in various ways.  

First and last names, foreign names, company names, and map data entities 

are also injected into the lexicon as proper nouns that cannot be broken down further.  

The lexicon in this framework contains the following information for each 

entry: entry name, variants, type (part of speech), suffixation exceptions, origin, 

Semitic root, Semitic pattern, and morphological features.  

The addition of extra features and new entries into the lexicon is handled 

through several scripts that help compile information from multiple sources for ease 

of updating in case of changes in the source lexicons. The resulting lexicon file used 

by the parser is a tab-separated text file that can be viewed in any cell-based 
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application, such as Microsoft Excel, for a better reading experience. This file is 

intended to be read-only, as any direct changes would be overwritten in the next 

compilation. 

In this section, the types of information contained in the lexicon are 

described. Some example entries from the lexicon can be found in Table 4. 

Table 4.  Sample lexicon entries 

entry variants type_en suffixation origin semitic_ 

root 

semitic_ 

pattern 

morph_ 

features 

müteakip müteakip,müteakib adverb 
 

Arabic 'Kb mutaFāCiL 
 

gibi gibi conjunction 
 

Turkish 
   

yo yo interjection 
 

Turkish 
   

yok yok,yoğ conjunction ku, -ğu Turkish 
   

rahat rahat interjection 
 

Arabic rwH FaCLa(t) 
 

Demokles demokles proper_noun 
 

Greek 
   

müstehzi müstehzi adjective 
 

Arabic hzA mustaFCiL 
 

alaycılık alaycılık,alaycılığ noun ğı Turkish 
   

eşhas eşhas noun 
 

Arabic şxŞ aFCāL Number=Plur 

 

4.1.1  Entry name 

The entry name is the lexical entry as it appears in TDK dictionaries. Although there 

are disagreements over how to write some words, as TDK seems to maintain a more 

structured dictionary, this framework takes TDK Güncel Türkçe Sözlük (GTS from 

now on) as the standard for the forms of each lexical entry, unless another source 

uniquely has some entries while GTS misses it.  

In TDK convention, verbs typically appear in infinitive form with the suffix 

+mAk (realized as +mek or +mak), such as uçmak (flying). The lexicon contains the 

bare forms of verbs, like uç (fly).  

The original TDK dictionary is kept in a JSON format, and the only direct 

edit on this file is done for the entry nan (bread, borrowed from Persian). It is 

converted to nân (a valid alternative form in use) by adding a circumflex, as it is 
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interpreted as NaN (not a number) when read by several Python packages, including 

Pandas. The original form nan is re-generated at a later stage under variants.  

 

4.1.2  Suffixation exceptions 

Some Turkish roots and stems undergo vowel reduction, or final-obstruent devoicing 

is reverted when they are suffixed. For such roots and stems, suffixation exceptions 

are added for entries in a form that shows how an accusative case marker is added to 

the word in question. 

Entry  Suffixation  Phenomenon 

denk (equal) gi  (voicing) 

burun (nose) rnu  (vowel reduction) 

 

4.1.3  Variants 

The variants column includes the alternative spellings of an entry in case they have 

circumflexes, contested spellings, suffixation exceptions, or other special cases. As 

noted before, there is no total agreement over the written forms of all words by 

everyone, but instead of having separate entries within the lexicon, having them as 

variants of a single entry has the benefit of synchronously normalizing while 

morphologically parsing.   

One of the most critical functions of variants is handling suffixation 

exceptions such as voicing and vowel reduction. If suffixation exceptions exist, they 

are applied to the entry name while generating the lexicon file, reducing the 

operations done in parsing runtime.  
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Entry  Suffixation  Phenomenon  Variants 

denk (equal) gi  (voicing)  denk, deng 

burun (nose) rnu  (vowel reduction) burun, burn 

While parsing, variants are taken as the starting point, and entry names are 

used as deep form roots. Therefore, burna (nose, dative) and burnu (nose, accusative) 

can be represented as "burun, +H, Case=Dat" and "burun, +A, Case=Acc" 

respectively.  

 

4.1.4  Type (or part of speech) 

Part of speech is the most important cue of which affixes a stem can take, and it is 

the bare minimum feature that exists along with the entry names in all morphological 

parser lexicons. Our lexicon contains the following 13 items as parts of speech: noun, 

pronoun, proper noun, verb, adjective, adverb, adposition, determiner, numeral, 

particle, conjunction, interjection, and onomatopoetic. In this way, it contrasts with 

the UD Universal POS Tags (UPOS) description, which contains 16 parts of speech. 

Our lexicon does not contain separate subordinating conjunctions (SCONJ) and 

coordinating conjunction (CCONJ) sets, but rather a merged conjunction set due to 

BOUN UD Treebank not being consistent about which conjunction belongs to which 

subgroup. Symbols (SYM) are also not used in our framework, as they can be 

dynamically handled where necessary and are not covered in BOUN UD Treebank. 

Auxiliary (AUX) is also skipped because it is generally used to tag a single suffix of 

a word rather than being a standalone POS.  

This categorization is not necessarily linguistically motivated; it is rather 

done for the purposes of more precise affixation. For example, onomatopoeic words 

are a subset of interjections. They are initially processed as belonging to a separate 
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category since they can take derivational suffixes like +tH to form nouns such as 

gıcırtı and gürültü or +DA(n) to form verbs such as kıpırdan(mak) and çatırda(mak). 

In contrast, non-onomatopoeic interjections cannot take these suffixes. After 

morphological analysis, UD non-compliant parts of speech are converted into UD-

compliant counterparts.  

 

4.1.5  Origin 

Turkish etymology is not an uncontested area, especially due to the remnants of the 

discussions that started with the Sun-Language Theory and the acceptance of several 

foreign roots as originally Turkish. Notable contemporary etymological dictionaries 

include Nişanyan Sözlük and Eren Türk Dilinin Etimolojik Sözlüğü (ETDES). The 

relevance of word origin is mainly due to suffixation constraints of morphemes like 

+zede, which only takes Persian stems, and +iyet, which only takes Arabic stems, 

without having a Semitic root and pattern information that produces the ultimate 

word form in the lexicon.  

Regarding the etymological origin of words, there are two crucial concepts: 

immediate source and ultimate source. The immediate source is the source language 

from which the target language acquired the word, while the ultimate source is the 

farthest traceable origin of a given word. For example, for the word kahve (coffee), 

the immediate and ultimate sources are one and the same: Arabic. However, for the 

word kafe (cafe), the immediate source is French, while the ultimate source is again, 

Arabic, and Turkish is one of the intermediate sources with the form kahve.  

 Origin information in this lexicon is mainly from the GTS, as Nişanyan 

Sözlük prohibits the use of its database without consent. However, it is worth noting 

that Nişanyan and TDK do not fully agree on word origins. See Figure 2 for a 
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comparison between the percentage of origins of the 10694 lexical entries that exist 

in both dictionaries. 

 

 

 

Figure 2. Comparison of TDK and Nişanyan dictionaries on origin information 

 

This disagreement stems from a few factors. First, TDK marks unknown-

origin words with the same code as Turkish ones. Therefore, Turkish numbers 

include unknown-origin words. Second, the notion of the immediate source is 
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different from the ultimate source, and it is normal to see disagreements, especially 

in the case of English and French.  

Table 5.  Conversion table for Arabic letters 

Arabic Letter Conventional 

romanization 

Letter in 

framework 

Example word 

starting with 

the letter 

Root of 

example in 

framework 

 ʾ (or 'a') A ahali Ahl أ

 b b basit bsT ب

 t t tacir tcr ت

 th S sevap Swb ث

 'j j camia cm ج

 ḥ H harf Hrf ح

 kh x haber xbr خ

 d d dünya dnw د

 dh D zeki Dky ذ

 r r rahat rwH ر 

 z z zeytin zyt ز 

 s s seyahat syH س

 sh ş şimal şml ش

 ṣ Ş sayfa ŞHf ص

 ḍ J zayıf J'f ض

 ṭ T tavır Twr ط

 ẓ Z zulüm Zlm ظ

 ʿ (or 'e) ' ilim 'lm ع

 gh g garip grb غ

 f f fazla fJl ف

 q K kadife KTf ق

 k k kitap ktb ك

 l l lüzum lzm ل

 m m madde mdd م

 n n nafile nfl ن

 h h hedef hdf ه

 w (or 'u') w vatan wTn و

 y (or 'i') y yemin ymn ي

 

 

4.1.6  Semitic root 

The general trend in Arabic morphological parsing, as can be seen in the case of 

ElixirFM (Smrž, 2007), is analyzing words as a combination of a root, pattern 

(wazn), and suffixes. Based on this approach, our lexicon contains Semitic roots 
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based on a conversion of Arabic script into Turkish letters. This conversion is case-

dependent to reduce the number of unicode characters used in the framework by not 

using characters such as ḥ, ṣ, ḍ. See the conversion table in Table 5 for letters used in 

Arabic roots, converted versions in the framework, example Turkish words, and the 

roots of those example words. These roots are taken from the ElixirFM (Smrž, 2007) 

dataset through manual matching of Turkish and Arabic words.  

 

4.1.7  Semitic pattern 

The second component in the description of Arabic morphology (Smrž, 2007) is the 

wazn, the pattern of the word. ElixirFM denotes the patterns with the inflections of 

root fʾl (action) and marks the variables for trilateral roots with F, C, and L, such as 

FaCCāL as the pattern of ḥammāl (hammal in Turkish, meaning "carrier"). There are 

119 different Arabic patterns in the lexicon. 

 

4.1.8  Morphological features 

One of the main objectives of a morphological parser is figuring out which 

morphological properties it carries. Oflazer’s (1993) convention, as well as other 

two-level morphology conventions use a specific feature notation. However, 

maintaining a morphological dataset with a good inter-annotator agreement and 

external checks is a difficult task. Therefore, this framework adopts Universal 

Dependencies (Nivre, 2020) morphological features with a few deterministic tweaks.  

To add UD features such as the pronoun ben (me) for a word, the UD features 

are first added to a separate tab-separated text file where the first tab contains the 

entry, the second contains the part of speech of the related entry that already exists in 
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the lexicon, and the third contains the UD features to be added into the "features" tab 

of the lexicon.  

ben pronoun Person=1|PronType=Prs|Number=Sing 

This format ensures adding these features for the pronoun ben and not the 

noun ben (beauty spot).  

Based on the analysis of BOUN UD Treebank (Marşan et al., 2022), as well 

as what Sak et al. (2008) morphological parser produces, bare form verbs are 

assumed to have the following UD features: 

Polarity=Pos|Person=3|Number=Sing|Tense=Pres|Mood=Imp 

Similarly, bare form nouns can have one of the following: 

Case=Nom|Number=Sing|Person=3 

Case=Acc|Number=Sing|Person=3 

Oflazer (in Oflazer & Saraçlar, 2018, p. 29) argues that no case morpheme 

implies a nominative case, and for a word to have an accusative case, an accusative 

marker morpheme is a requirement. However, the accusative case can be unmarked 

in Turkish, as can be seen in the following examples: 

Kağıdı asacak pano bulmam lazım. (I need to find a board to post this paper.) 

Mehmet iş arıyordu. (Mehmet was looking for a job.)  

Both examples show bare form nouns that have accusative case form.  

Although it is convenient to assume the lack of case morpheme as an 

indicator of nominative form for a simpler analysis and a lighter-weight 

disambiguation module, it is important to acknowledge this as a challenge that 

should be resolved through disambiguation. This is especially important as UD 
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efforts already go through a tagging of accusative cases in bare forms, and seq2seq 

morphological taggers such as SpaCy Turkish Morphologizer6 is already on this path.  

 

4.2  Affix vocabulary 

Affix vocabulary is a tab-separated file intended to be edited with a cell editor like 

Microsoft Excel as a development environment for ease of filtering the entries and 

having a more convenient visual representation than plain text.  

The affixes in this file loosely follow the order in which they are presented in 

Göksel & Kerslake (2005) but not necessarily in the same sequencing.  

Each affix row has a unique affix ID, a generalized representation, variants 

based on the expansion of generalized representation, input parts of speech, output 

parts of speech, input features (in UD form), output features (in UD form), wipe 

features, positional type, peculiarities, and examples. A sample from the affix 

vocabulary file can be seen in Table 6. 

 

Table 6.  Sample affix entries (some columns are omitted) 

affix_id general allomorphs input_pos output_pos output_features function peculiarity example 

DER001 (A)C c,ac,ç,aç,ec,eç adjective adjective  derivational  anaç, 

kıraç 

DER009 (A)l l,al,el noun adjective  derivational  yerel, 

ulusal 

DER011 (A)lgA lga,alga,lge,elge verb 
noun, 

adjective 
 derivational  çizelge 

DER031 Hm ım,im,um,üm verb noun  derivational  bölüm, 
seçim 

INFL048 (H)n n,ın,in,un,ün pronoun pronoun 

Case=Nom| 

Number[psor]=Sing| 

Person[psor]=2 

inflectional   

INFL049 (H)nHz nız,ınız,(...) pronoun pronoun 
Case=Nom| 

Number[psor]=Plur| 

Person[psor]=2 

inflectional    

INFL050 (s)H(n) ı,sı,i,si,(...) pronoun pronoun 

Case=Nom| 

Number[psor]=Sing| 

Person[psor]=3 

inflectional 

CANNOT_ 

END_ 

WITH_N 

 

INFL051 (H)mHz mız,ımız,(...) pronoun pronoun 

Case=Nom| 

Number[psor]=Plur| 

Person[psor]=1 

inflectional   

 
6 See https://github.com/turkish-nlp-suite/turkish-spacy-models 
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4.2.1  Affix ID 

Affix ID is the key by which several operations, such as feature lookups and rule 

implementations on morpheme combinations, are carried out. The convention is a 

prefix DER for derivational, INFL for inflectional morphemes, followed by a 3-digit 

number, starting from 001. IDs are preferred over generalized morpheme 

representations as keys since separate morphemes can appear in the same form but 

have different behaviors.  

A directly hash-based ID naming convention can be more beneficial for 

lookup times, however, this is to be explored.  

 

4.2.2  Generalized representation 

Representation of morphemes loosely follows the convention of Sak et al. (2008), 

following Oflazer (1993). Uppercase letters denote letters that get realized in 

multiple forms based on context. Table 1 in Section 1 contains the conversion rules. 

Some morphemes may also bring thematic letters between them and some 

stems. For such cases, these thematic letters are deemed optional additions for these 

vowels and are denoted in parentheses.  

 

4.2.3  Allomorphs 

Allomorphs are expansions of generalized representations into possible forms that 

can be attached to words. For example, the derivative suffix +(y)Hş can appear as 

+ış, +yış, +iş, +yiş, +uş, +yuş, +üş, or +yüş depending on the phonology of the verb 

stem and generate nouns kaç+ış, ara+yış, gel+iş, işle+yiş, uç+uş, kuru+yuş, 

düş+üş, and yürü+yüş.  



 30 

 

4.2.4  Input part of speech 

As explained under 5.1.d., part of speech (PoS) is a decisive piece of information that 

helps us understand which affixes can be attached to which stems. For example, in 

the example in 5.2.c, derivational +(y)Hş can only take verbs as input. One cannot 

take a noun, for example, bıçak (knife), and produce *bıçakış with this affix.  

For each affix row, at least one input part of speech must be defined. 

 

4.2.5  Output part of speech 

Similar to the input part of speech, what sort of a word an affix can produce when 

attached to a compatible stem is important. The same example, derivational +(y)Hş, 

only produces nouns given a verb input. Although +(y)Hş cannot directly take the 

noun bıçak (knife) as an input, if bıçak takes, for example, derivational morpheme 

+lA that takes nouns, adjectives, or interjections as input and outputs verbs, it can 

become the verb bıçakla (stabbing, verb) and then take +(y)H to produce bıçaklayış 

(stabbing, noun).  

Either input PoS or output PoS must contain only one entry. So, if a suffix, 

such as derivational +CAK, can take adjectives to produce adjectives and take nouns 

to produce nouns, then this suffix should be distributed into separate rows that 

clearly define the inputs and outputs. Otherwise, the analyzer may attach +CAK on 

an adjective and assume that it can produce a noun, while this is not the case.  

 

4.2.6  Input morphological features 

Some affixes require certain morphological features on a stem to be attached. For 

example, derivational +(H)ncH requires a cardinal number as an input, and 
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NumType=Card is the UD feature that denotes a stem that fulfills this requirement. 

This is an optional column for entry rows. 

 

4.2.7  Output morphological features 

The output morphological features column defines the features that should be added 

to the word when an affix is attached to a stem. Since most derivational morphemes 

do not have UD features to add, this is also an optional column, and where it is not 

empty, it can contain multiple sets of UD features in a comma-separated form. As an 

example, inflectional +(H)m has the following output features: 

Case=Nom|Number[psor]=Sing|Person[psor]=1 

 

4.2.8  Wipe features 

Wipe features consist of the features that are to be completely wiped if they exist in 

the stem form. For example, inflectional +(y)Hp as in gelip (by coming) adds the 

features: 

Polarity=Pos|VerbForm=Conv 

While wiping the following: 

Person=*|Number=*|Tense=*|Mood=* 

If there are any person, number, tense, or mood features in the stem, these 

features are removed once this suffix is agglutinated.   

 

4.2.9  Positional type 

Denotes whether an affix is a prefix or a suffix. Adding this feature as a column 

helps preventing the use of separate files for prefixes. Circumfixes or infixes do in 
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fact exist in lexical borrowings but are not productive or distinguishable, therefore 

are not covered under affixes.  

 

4.2.10  Functional type 

Functional type denotes whether an affix is derivational or inflectional. Although the 

current affix IDs already contain cues as to which type of a morpheme is in question, 

it is beneficial to have this column in case a more explanatory or hash-based naming 

would be more efficient in a given application.   

 

4.2.11  Peculiarity 

Many affixes in the vocabulary contain extra constraints or cues that help their 

agglutination with stems and further affixes. Unlike other columns that are processed 

through the main analysis function, these peculiarities are flags that call extra rule 

checks. Some examples are as follows: 

• TAM1, ..., TAM5: Tense-aspect-modality slot, based on Göksel and 

Kerslake. A TAM(n) suffix cannot precede a TAM(n-1) suffix. 

• ARABIC_ORIGIN: Only attaches to stems with Arabic origin. 

• REMOVE_LETTER: Removes one letter from the stem (çabuk +CAK -> 

çabucak). 

• REMOVE_LETTER_OPTIONAL: May or may not remove one letter 

from the stem. 

• CANNOT_END_WITH_N: Can have the letter "n" if it is followed by 

another suffix, but cannot appear at the end of the word with an "n." 

Since these operations are handled with exception rules, this tab triggers a 

core part of the analyzer. However, if, for some reason, the main analyzer function 
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would be refactored to handle these operations in some other way, these flags may be 

distributed to multiple columns.  

 

4.2.12  Examples 

The examples column is filled with one or more examples of a given morpheme for 

all derivational morphemes and some inflectional morphemes to describe better what 

an affix stands for. Examples are significant in error analysis of the parser, as no 

semantic markers are currently supported in the framework.  

 

4.3  Constraint resources 

Although leniency and descriptivism are among the key motivations behind this 

framework, the inclusion of derivational morphemes causes overgeneration beyond 

measure. Letting the analyzer overgenerate as much as it possibly can and then leave 

disambiguating to the disambiguator model is, of course, a choice, especially since 

there are works that even use unsupervised learning to infer morphological rules. 

 However, it is far more likely for words that appear the same to adhere to the 

same or similar word formation paths. As an example, let us take the word 

gözlükçülük, an example extensively used in Turkish morphological processing 

literature. Just by simple string matching without any constraints, possible parses 

include (but are not limited to): 

• göz +lük +çü +lük: En. opticianry (noun), +lük as in günlük (daily) 

• *göz +lük +çül +ük - En. eyeglassic act, +çül as in çürükçül 

(saprophytic), +ük as in gözük- (appear) 

• *göz +lük +çül +ük - En. we are eyeglassic, +çül as in çürükçül 

(saprophytic), +ük as the colloquial first plural. 
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Most probably, only the first parse is correct, and the others are either 

straight-up wrong or contain linguistic gaps.  

The framework in this thesis includes heuristic constraints for seemingly 

straightforward parses like the one above while leaving enough leniency for 

linguistic gaps in cases where there are no predictably correct parses. Some of these 

constraints rely on a lexicon of unbreakable roots and segmentation overrides.  

 

4.3.1  Segmentation overrides 

Segmentation overrides are manual annotations of morpheme boundaries within 

words. Overriding segmentations are stored in a tab-separated text file, where the 

first column contains the regular surface form, and the second column has 

segmentations with "+" between affix boundaries and "-" between compound word 

boundaries. Prefixes are separated from roots with "/" to prevent misrecognition of 

the root. Starting point for the segmentation overrides is the lexicon file; entries are 

manually tagged if they would benefit from an override, or in other words, if they are 

likely to have incorrect parses due to lack of overrides. 

A similar effort in this direction is MorphoLex. However, Turkish 

MorphoLex contains generalized forms and does not contain any distinction between 

compounding and affixation. In the overriding segmentations text file, segmented 

forms are still in their surface form, which may result in the suboptimal performance 

of our framework. There are also different design choices on which morphemes 

should be separately recognized. The example below shows these differences: 

Entry: başdanışmanlık (key advisory) 

This framework: baş-danış+man+lık 

MorphoLex: baş+danışman+lHk 
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4.3.2  Unbreakable roots 

Overriding segmentations is a very invasive method that can result in incorrect 

parses being forced into the system. To overcome this difficulty, unbreakable roots 

are used as an override over overriding segmentations. Some word forms, as well as 

proper nouns are processed as unbreakable roots and are not analyzed further. 

 

4.3.3  Compound words 

Although segmentation overrides include compound words, TDK GTS does not 

contain all compound words. In addition to the resources mentioned before, an extra 

list of compound words with their split boundaries is created through a simple 

heuristic. The assumption is that almost all compound words in Turkish follow the 

fate of sometimes being written separately.  

Based on this assumption, if a word n and next word n+1 occur in a 

development corpus, and a compound of (n, n+1) also occurs as a single token, it is 

exported to a text file. Some common tokens that do not typically generate 

compounds but appear in the results due to misspellings and issues in corpus 

processing, such as "şey" and "ler," and some affixes are excluded from this search.  

This list of compound candidates is then manually cleaned to only have a list 

of actual compound words.  
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CHAPTER 5 

MORPHOLOGICAL ANALYZER 

 

 

This section explains the mechanisms by which the morphological analyzer 

component of the framework operates.  

 

5.1  General structure of analyzer 

Unlike the examples in the literature, our morphological analyzer implementation is 

not based on rule-based string matching instead of FST. This choice is not due to the 

computational limitations of FSTs, but rather due to the ease of implementing 

exceptions and rules.  

Another reason behind choosing a rule-based approach is the comparably 

straightforward integration of object structure into various steps of analysis and 

disambiguation. Use cases of morphological data are not uniform throughout the 

industrial or academic use. As can be seen in the example of SpaCy (Honnibal & 

Montani, 2017), an on-demand supply of linguistic features is nice to have, compared 

to string operations with all information present at all times. Most of the frameworks 

that support Turkish morphology rely on string manipulation at all levels, and for 

taking only the relevant information, end users generally need to use regular 

expressions or similar operations. The framework proposed in this thesis focuses on 

the possibility of varying needs of the end user in terms of features included as a part 

of the output. 

Adopting an object-oriented structure is one of the solutions to the issue of 

choosing the necessary output for a given application. Our morphological analyzer 
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depends on such a strategy, and further analysis, such as a disambiguation step, does 

not conflict with this requirement. 

The morphological analyzer is written in pure Python with minimal third-

party package requirements. The only notable exception is the Pandas library 

(McKinney & others, 2010), which is used for operating on lexicon and vocabulary 

files. On top of that, two newly defined objects are used: Word and Affix objects.  

Word object has the properties surface form, deep form, prefix, root, stem, 

suffixes, morphological features, and part of speech.  

Surface form denotes the actual token within the text, deep form denotes the 

form that is segmented based on root and suffixes, prefix contains the prefix(es) of 

the word, root is the smallest root word analysis of the word, stem denotes the latest 

stem on which the latest suffix has attached to, suffixes are the IDs of the suffixes 

that attach to the root and stems, and part of speech is the latest part of speech after 

the transformations of the root by the affixes.  

Affix object has the features affix ID, affix representation (general form), 

allomorphs, input PoS, output PoS, wipe features, positional type, functional type, 

peculiarity, example, and metadata. Apart from the checks that ensure the availability 

of a given affix to a given stem, affixes are stored based on affix ID on the Word 

object. Therefore, Word object contains the affix IDs on its affix-related properties, 

which are generated dynamically through the read-in affix files.  

 

5.2  Analysis pipeline 

The morphological analyzer expects a single word or a list of words to be analyzed, a 

lexicon DataFrame, an affixes DataFrame, a cache dictionary, and some resource 

lists for rules as input.  
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If there is an analysis for a given analysis input in the cache, the analysis 

pipeline is bypassed, and the cached parse is returned. 

The core algorithm behind the morphological analysis is a modified version 

of breadth-first search. Breadth-first search normally assumes the task at hand is a 

graph traversal problem, and we are reformulating the morphological analysis as 

such a task.  

For a given input word, the matching roots are first retrieved from the lexicon 

DataFrame based on whether the input word starts with one of the variants of a 

lexicon entry. As described in section 4, the variants section of a lexicon entry 

includes alternative forms that undergo phonemic transformations. 

A queue and a set to contain the visited vertices are initialized based on the 

matching root hypotheses. At each iteration, vertices (which are hypotheses in our 

use case) of stem and affix combinations are compared against the input to see if they 

match. If a combination matches the word partially until the same length or fully and 

passes all the rule requirements, such as matching part of speech requirements, the 

vertex is added to the end of the queue.  

This process continues until no more new vertices are generated, and all the 

vertices are visited.  

It should be noted that BFS is not an ideal algorithm for this task, and its 

performance is suboptimal. There is room for improvement with better-suited 

algorithms and efficient implementation. However, from a behavioral standpoint, the 

output of this function is identical to any better algorithm if no extra rules or pruning 

methods are introduced. 
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5.2.1  Handling of apostrophes 

If the input contains an apostrophe, the left side of the apostrophe is considered as a 

proper noun that should not be analyzed further. Instead, a default root hypothesis 

with a root and proper noun as a part of speech is generated. The general assumption 

is that the suffixes after the apostrophe are inflectional. While derivational suffixes 

generally attach to proper nouns without an apostrophe, it is observed that some 

authors prefer attaching some suffixes with an apostrophe, such as: 

(...) bir bakarsınız, “uzlaşmaz bir Marx'çı olarak", Bertolt Brecht'in 

kuramlarını yerleştirmeye çalışır (...) (Yücel, 2017)7 

Therefore, derivational suffixes that do not share the same surface form as 

any inflectional suffixes are enabled to analyze the part after the apostrophe. 

If the right side of the apostrophe does not match any valid suffix 

combination, foreign names with apostrophes in them (such as O'Connor) are tested 

as hypotheses. 

 

 5.2.2  Handling of compound words 

Possible compound words are stored in the lexicon as compound words and are 

generated using the method explained in 4.3.c. Since the lexicon contains them with 

their morpheme boundaries, compound words are added as a hypothesis and treated 

as the stem, but split into multiple roots at the end of the analysis. 

 
7 (...) and then you see that, "as an irreconciling Marxist", he tries to implement the ru 
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5.3.3  Handling of overriding segmentations and prefixes 

On top of derivational suffixes in many words, the preferred method of prefixation is 

relying on the overriding segmentations for recognizing where and when to generate 

a hypothesis with prefixes.  

Overriding segmentations prevent multiple hypotheses with the same 

elements from being created. For example, let us take the input gözlüklerim (my 

eyeglasses). If there was no entry for gözlük (eyeglass) in the lexicon, the analyzer 

would conclude that it derived from göz. However, since gözlük is already an entry in 

the lexicon, there is the risk of two separate hypotheses being created for the same 

word: 

1) Word.deep_form = ['göz', 'lHk', 'lAr', 'Hm'] 

2) Word.deep_form = ['gözlük', 'lAr', 'Hm'] 

By applying segmentation overrides, the initial hypothesis for the root gözlük 

is initiated as a combination of göz and -lük, where the analyzer is asked to find a 

generalized form for the allomorph -lük. As such, only the first hypothesis above is 

generated.  

As for prefixes, for example, the word anormal is represented as a/norm+al 

in the segmentation overrides. This representation denotes that a is a prefix, and al is 

a suffix. Therefore, when anormal is taken as a root hypothesis from the lexicon, the 

hypothesis passed to the queue is already a Word object with the following relevant 

properties: 

Word.deep_form = ['a', 'norm', 'Al'] 

Word.affixes = ['PRE001', 'DER009'] 

Word.root = 'norm' 

Word.stem = 'anormal' 
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If there is no parse available at the end of the pipeline with this approach, the 

analyzer starts its analysis once again, this time with a backup scenario, by adding 

prefixes at the beginning of root hypotheses. This helps prevent attaching prefix a+ 

to any word that starts with the letter a and has a valid parse without a prefix.  

 

5.2.4  Handling of numbers 

Word representations of numbers are a part of the lexicon and are treated as regular 

inputs. However, there are some extra operations on numeric representations.  

If the input consists of numerals only, a generic number root with default 

properties (part of speech: NUM and morphological feature: NumType=Card) and a 

single hypothesis is returned without further processing. The same default hypothesis 

is used for tokens with percent signs and some other mathematical indicators.  

If the input contains a number and a dot at the end, another hypothesis is 

generated with NumType=Ord for ordinal number. The assumption is that 

preprocessing separates full stop dot while keeping the ordinal indicator together.  

If the input contains extra characters that may be suffixes, the numeral part is 

taken as root, and the regular analysis pipeline is followed. 

Current analysis implementation relies on a preprocessing where non-suffix 

letters, such as B in 221B, are split into a list, ['221', 'B']. In different preprocessing 

scenarios where an n number of arbitrary letters can be a part of a token together 

with numerals, new rules can be added for a more robust coverage. 

 

5.2.5  Semitic morphological analysis 

As explained in earlier sections, Semitic morphological analysis is a component 

required to analyze Turkish morphology thoroughly. However, since this is not a 
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common practice, it is an optional component that can be deactivated without 

changing the analyzer's behavior in other operations.  

Analysis of Semitic roots and meters is carried out after the root hypothesis is 

attributed to a word. If the root of a given Word hypothesis matches the form of a 

Semitic root and meter combination, then this root is deemed a combination of this 

root and meter. No dynamic parsing is carried out at the analyzer level for these 

roots, and the only operation is the retrieval of root and meter information from the 

lexicon.  

One design choice to note here is that the Semitic meters and suffixes are 

treated as agglutinations over the root in our framework. For example, the deep form 

of meskenlerin ("of the residences") is: 

Word.deep_form = ['skn', 'maFCaL', 'lAr', 'Hn'] 

Word.root = 'skn'  

This is to ensure the possibility of incorporating root and meter information 

as subwords. While this approach is unconventional, we have not seen any scenarios 

where this can become an issue. However, if further research in this direction shows 

the need for another representation, this component can be revised. 

 

5.2.6  The distinction between inflectional and derivational suffixes 

In Turkish, the general rule is that derivational suffixes cannot come after inflectional 

suffixes. However, some derivational suffixes are more productive than others and 

can attach to almost anything. One such example is the suffix +cH, which generally 

corresponds to similar semantic information to +ist in English. It can even be placed 

right after phrases such as "ben yaptım olducu" (I-did-it-and-it-turned-out-fine-ist).  
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A rule that prohibits derivational suffixes after inflectional suffixes is used to 

prevent less productive suffixes from attaching to bases with inflections. Suffixes 

such as +cH and +sAl are included in an exceptions list, which can be dynamically 

controlled based on output observations. 

 

5.3  Analyzer performance 

The performance of morphological analyzer is based on whether any of the 

hypotheses match the feature sets presented in a given Universal Dependencies 

treebank. Current implementation covers 87% of BOUN UD Treebank (Marşan et 

al., 2022) with exact matches.  

This means, in around 13% of the cases, the parser produces an output that is 

not exactly matching the BOUN UD Treebank features, but only partially. The 

analyzer produces backup “proper noun” parses for unknown words, in a total of 131 

times over the test set size of 11,822 words, meaning a coverage of over 99%. 

In another treebank, the UD Turkish Penn Treebank (Kuzgun et al., 2020) the 

exact matches are 84% and the total coverage is 98.4%. 
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CHAPTER 6 

MORPHOLOGICAL DISAMBIGUATOR 

 

 

This chapter describes the approach of the framework to the morphological 

disambiguation task. 

 

6.1  Previous methods 

Morphological disambiguation is the task of choosing the correct parse given an 

input, possible morphological parses, and context. Any possible morphological parse 

that is given as an input to the morphological disambiguator must be viable parses in 

some context.  

Hakkani-Tür et al. (in Oflazer & Saraçlar, 2018) describe the task as an 

extension of part of speech tagging and list the methods used in Turkish 

morphological disambiguation as constraint-based morphological disambiguation, 

rule-learning, models based on inflectional group n-grams, and discriminative 

methods. These can be grouped into larger categories of rule-based and statistical 

methods. A relatively recent trend in morphological disambiguation is the use of 

Conditional Random Field models on top of the character and tag-level Long Short-

Term Memory (LSTM) language models (Shen et al., 2016). 

The current trend in natural language processing in almost any token tagging 

or classification task is fine-tuning larger language models instead of training a 

neural network model from scratch only with the task-specific dataset, as Shen et al. 

(2016) do. Another attempt to provide morphological analyses for given input words 
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is SpaCy Morphologizer, where Universal Dependencies datasets are used for 

training a layer within a linear NLP pipeline.  

 

6.2  Fine-tuning transformer language models for disambiguation 

The method adopted in this framework is converting the morphological 

disambiguation into a multitask token classification task that benefits from the 

contextual embeddings provided by masked language models, such as BERT. 

Although it is not impossible to fine-tune or prompt autoregressive language models 

such as GPT variants, masked language models are more intuitive to use for token 

classification tasks.  

The architecture we propose relies on training three separate classifier layers 

in parallel on top of the pre-trained model. For this, a dataset containing POS tags, 

morphological features, and segmentations is required. 

 

6.2.1  Dataset creation 

Due to the lack of available high-volume hand-tagged disambiguation datasets 

(TrMor datasets are synthetically generated) and the costs overweighing the benefits 

of creating a publicly available one, this framework proposes a method to convert 

Universal Dependencies treebanks into disambiguation datasets. This enables the 

framework to benefit from each advancement in Turkish treebanks. 

As a proof of concept, BOUN UD Treebank (Marşan et al., 2022) is used for 

the dataset generation. Train, test, and validation splits of the treebank are kept as 

they are.  

In generating the training dataset, each word in each sentence of the treebank 

is parsed with the morphological analyzer. Each analysis is compared against the part 
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of speech and the morphological feature given in the treebank, and it is ensured that 

the root analysis is no longer than the lemma marked on the treebank.  

One key difference with the treebank is the POS marking of verbal nouns. 

This treebank marks the verbal nouns as VERB, and since they act as nouns in 

suffixation, they are converted into NOUNs in the dataset creation.  

BOUN UD Treebank has a potentially useful feature under the miscellaneous 

features column: "DerivedFrom". For example, pulsuzduk has the lemma pulsuz, but 

it has DerivedFrom=pul which shows the ultimate root.  

However, only 249 entries in the training set have a DerivedFrom feature, and 

many apparent roots are not tagged as such. Therefore, for the time being, the dataset 

creation process relies on the analysis outputs being uniquely identifiable by the 

morphological features, part of speech, and whatever cue is available from the 

lemma. Out of all the analyses of a given word, one "best parse" is chosen based on 

comparison with UD features.  

Segmentations in this dataset are not word-specific, but rather a generalized 

form, where the deep forms are converted into strings of P (prefix), R (root), S 

(Semitic meter), I (inflectional suffix), D (derivational suffix), and M (punctuation 

mark). This conversion minimizes the issues caused by mismatches in subword 

tokenization and morphemes and prevents no-parse scenarios for unseen words.  

Combinations of morphological features are treated as unique sets rather than 

an open dictionary of features. This choice is again due to the mismatch between the 

subword tokenization and actual morphemes.  

A JSON entry for each sentence is created from the analyses, where lists of 

items are stored under the keys sentence, pos_labels, correct_pos, morph_labels, 
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correct_morph, segments, and correct_segment. An example of this structure can be 

found in Appendix A. 

In that example, pos_labels, morph_labels, and segments are lists of features 

in each hypothesis from the morphological parser. Even though morphological labels 

for hiç (nothing) as adverb and noun are both empty, to be able to convert the 

analysis hypotheses back into Word objects, the empty hypothesis is duplicated to 

keep the indices consistent. 

After analyzing the whole UD treebank training set and generating JSON 

entries for each sentence, a JSON file is created to be used in the training of the 

disambiguator.  

 

6.2.2  Model architecture and training 

For the proof-of-concept implementation, the morphological disambiguator takes 

advantage of the model weights in BERTurk8 cased 32k, which is a pre-trained 

BERT model available on Huggingface9 and can be used through transformers (Wolf 

et al., 2020) Python library. Three linear classification layers over the BERT model 

are parallelly placed for learning morphological parsing. 

The model takes the inputs from the sentence and the correct morphological, 

POS, and segment entries and tokenizes the regular words with the pre-trained 

BertTokenizer that comes along with the BERTurk model. POS tags, segments, and 

morphological features are separately vectorized with one hot vectors, with padding 

where necessary. 

One design choice here is the tagging of each subword with the properties of 

the complete word. There are alternative approaches, such as only tagging the first 

 
8 https://github.com/stefan-it/turkish-bert 
9 https://huggingface.co/dbmdz/bert-base-turkish-cased 
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subword of each word and adding [PAD] tokens for the rest or only tagging the last 

subword. The ideal scenario would be having actual morphemes as subwords and 

tagging each morpheme with the feature that morpheme carries. However, this is a 

limitation that requires a different tokenization approach for pre-training transformer 

language models.  

Then, both the BERT model and the three heads are trained together. Weights 

in the BERT model are not frozen; therefore the raw sentences also contribute to the 

model.  

Figure 3 shows the training pipeline, and Figure 4 shows the architecture of 

the model itself.  

 

Figure 3. Model training steps 
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Figure 4. Model architecture 

 

 

The model has 12 attention heads and 12 hidden layers and uses GELU 

activation function in these hidden layers of size 768. It uses the regular BERT 

architecture with a vocabulary size of 32000.  

Fine-tuning of this model together with three task heads take around 6 hours 

before overfitting on a consumer-grade Nvidia RTX3090 GPU with 24GB of 

VRAM. 

 

6.2.3  Using a sequence-to-sequence model as a disambiguator 

As can be seen in the training data and the architecture itself, up until this point, the 

model trained with this methodology is a model that takes a raw text input and gives 

three separate outputs: PoS, morphological features, and segmentation. There is 

nothing that ensures these three outputs are compatible with each other or the output 

will be a valid hypothesis. Furthermore, it is not a morphological disambiguator, but 

rather a sequence-to-sequence (seq2seq) morphological tagger. 

To use this model as a disambiguator for potential parses, we are applying a 

mask to the logits for each head before the softmax layer. For example, if the word 

hiç (nothing) can either be a noun or adverb, then the raw logit probabilities of all 
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other parts of speech are set to negative infinity. This forces the model to pick one of 

the analyzer hypotheses, rather than any other part of speech.  

 

6.3  Model evaluation 

The morphological parser model is evaluated based on the test split of the BOUN 

UD Treebank and the UD Turkish Penn Treebank. The test sets are created with the 

same procedures as the training set. The accuracy of the model in seq2seq tagging 

and morphological disambiguation scenarios in predicting all elements (part of 

speech, morphological features, segmentation) of a given input in BOUN UD 

Treebank can be seen in Table 7. The table also includes the reported10 POS tagging 

accuracy of BERTurk cased 32k model on BOUN treebank, which is fine-tuned over 

the same pre-trained model with more data than we have used in fine-tuning.  

Table 7.  Model accuracy with BOUN UD Treebank 

Model Accuracy

  

Multitask BERT model as seq2seq tagger 57.6% 

Multitask BERT model as disambiguator 94.6% 

BERTurk fine-tuned on POS tagging task 91.4% 

 

As can be seen from the accuracy results, using the model with output 

constraints based on logit masking before the softmax function dramatically 

increases the overall task accuracy.  

This increase can be partially attributed to the fact that some words only have 

a single parse output from the analyzer, and limiting the sequence output to this parse 

ensures correct recognition.  

 
10 https://github.com/stefan-it/turkish-bert#evaluation-on-boun-datasets 
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Although our multitask model's accuracy in the disambiguation scenario is 

higher than the accuracy reported by BERTurk developers, we cannot explain this 

accuracy increase as a benefit of multitask learning, as we are not following the same 

fine-tuning parameters such as learning rate, batch size, and number of training 

epochs, and more training data on BERTurk fine-tuning may not have necessarily 

increased the performance over this specific test set. However, it can be safely said 

that our model produces acceptable results.  

Following the same preprocessing and training steps as done to the BOUN 

UD Treebank, we have also generated the analyses and trained a new model for UD 

Turkish Penn Treebank, as it is a translation of a well-known English treebank 

(Taylor et al., 2003) and contains several foreign proper words.  

Table 8.  Model accuracy with UD Penn Turkish Treebank 

Model Accuracy

  

Multitask BERT model as seq2seq tagger 50.4% 

Multitask BERT model as disambiguator 90.4% 

 

Disambiguator accuracy for UD Turkish Penn Treebank is on Table 6.2. 

Although we do not have a baseline like a previously fine-tuned BERTurk for a 

specific task, we can still see that using the multitask model as a disambiguator 

yields better results than the seq2seq tagger use case. Also, this shows that our 

framework is applicable to multiple treebank conventions. 
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CHAPTER 7 

DISCUSSION 

 

 

This section lays out the novelties and contributions of the framework, and discusses 

limitations and the steps to address these limitations. 

 

7.1  Contributions of the framework 

This thesis contributes to the literature on computational morphology of Turkish by 

providing a set of new linguistic resources, namely a detailed lexicon with variants of 

each entry, as well as Semitic roots and meters of them, a dataset of manually tagged 

morpheme boundaries for each entry in the lexicon, a compound word lexicon, and a 

spreadsheet of affixes in Turkish along with features explained in section 2.3.  

The analyzer of this framework has relatively comprehensive prefix support, 

along with special handling for compound words. The possibility to expand the 

compound word lexicon through corpora analysis is an advantage, given that such 

resources can also be expanded with automatic methods. 

The limited availability of high-quality morphological disambiguation data 

skewed the focus toward repurposing an actively maintained and hand-tagged dataset 

type, UD Treebanks, as the training data. Larger the treebanks will get, the better the 

disambiguator will perform without specialized effort for a morphology dataset.  

Extensive coverage of derivational suffixes without eliminating any of them 

for the sake of simplifying the implementation, as well as the coverage of Semitic 

roots and meters will enable researchers to delve deeper into the historical changes 

by which Turkish has undergone, as well as better stylistic analysis of texts with a 
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focus on the effects of the Turkish language reform. On top of this, better subword 

tokenization based on derivational and inflectional morphemes is made possible with 

this framework. 

The model provided in Chapter 6 is not the ultimate form of the 

morphological disambiguation component of this framework. It is rather a recipe for 

fine-tuning any pre-trained BERT-like transformer model into multitask models. 

Being able to achieve state-of-the-art results by fine-tuning any encoding model 

within a matter of hours with a consumer-grade GPU enables the users of this 

framework to customize the analyzer (for example, by extending or reducing the 

affixes), automatically generate training data from a UD Treebank, and have a fully-

fledged morphological parsing framework within a day.  

 

7.2  Limitations and future steps 

There are several critical limitations in various components of this framework. The 

first limitation is that the linguistic resources are not validated by additional linguists. 

These resources may contain errors or decisions that require the measurement of 

inter-annotator agreement.  

The second limitation is due to the automatic generation of training data for 

the disambiguator. Since "DerivedFrom" feature in BOUN UD Treebank has not 

been added for all words that have roots different than their lemmas, it is sometimes 

required to assume the segmentations in some parse hypotheses are correct, without 

validation. Depending on the direction Turkish UD treebanks will take, either manual 

post-processing of the training data or complete marking of root information on the 

treebank will be required.  
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One of the most severe limitations is the suboptimal runtime of the 

morphological analyzer. Since an almost pure Python approach with a suboptimal 

algorithm (BFS) at the core is used, analyzing 1000 unique words takes around 49-56 

seconds on each core of a consumer-grade AMD Ryzen 5 5600X CPU, between 19-

23 seconds on Apple M1 CPU, and between 12-15 seconds on Apple M1 Max CPU. 

In the best-case scenario, it will take around 20 minutes for a 10-core M1 Max CPU 

to completely parse 1 million unique word forms and around 150 minutes for a 6-

core 5600X to carry out the same task. Any subsequent parsing operation is taking 

place radically faster due to the only operation being cache retrieval. Although these 

speeds were acceptable for the development of the framework, given the sheer 

amount of room for optimization, this is an issue that should be addressed. Automatic 

conversion of the rules and lexicon into FST inputs and then compiling an FST may 

be a viable solution that can be explored. 

Yet another limitation is the need for a fast and reliable tokenization 

morpheme-based tokenizer within the framework. One such tokenizer distilled from 

morphologically analyzed and disambiguated token segmentations can be trained 

before parsing large amounts of text data for language model training. 
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CHAPTER 8 

CONCLUSION 

 

 

This thesis aims to lay out the foundations for a new approach to morphological 

parsing of Turkish. Although there are several limitations, as explained in Chapter 6, 

the resources and tools made available by this work are a contribution in that 

direction. 

We have observed several complications, especially overgeneration issues 

due to introduction of more derivational morphemes. These issues ultimately led to 

creation of new resources which can be used by researchers in areas other than 

computational linguistics.  

The use of UD Treebanks as training data ensure the improvement of our 

parser's performance as it is an actively maintained project. Additionally, our 

extensive coverage of derivational suffixes could help expanding the Turkish UD 

Treebanks with this information. 

Both the analyzer and disambiguator components can be optimized further 

for better coverage and accuracy, and the framework is especially designed to be 

customizable and extensible. 

 

  

  



 56 

APPENDIX A 

SAMPLE ANALYZER OUTPUT 

 

output = { 

        "sentence": [ 

            "Hiç", 

            "itirazım", 

            "yok", 

            "." 

        ], 

        "pos_labels": [ 

            ["ADV", "NOUN"], 

            ["NOUN"], 

            ["NOUN", "CONJ", "PART", "ADJ"], 

            ["PUNCT"] 

        ], 

        "correct_pos": [ 

            "ADV", 

            "NOUN", 

            "NOUN", 

            "PUNCT" 

        ], 

        "morph_labels": [ 

            [{},{}], 

            [{'Polarity': 'Pos', 'Person': '1', 'Number': 'Sing', 'Tense': 'Pres', 'Mood': 'Opt', 'Aspect': 

'Hab'}], 

            [{'Number':'Sing', 'Person': '3', 'Polarity':'Neg'},{},{},{}], 

            [{}] 

        ], 

        "correct_morph": [ 

            {}, 

            {'Polarity': 'Pos', 'Person': '1', 'Number': 'Sing', 'Tense': 'Pres', 'Mood': 'Opt', 'Aspect': 

'Hab'}, 

            {'Number':'Sing', 'Person': '3', 'Polarity':'Neg'}, 

            {} 

        ], 

        "segments": [ 

            [['R'],['R']], 

            [['R', 'S', 'I']], 

            [['R'],['R'],['R'],['R']], 

            [['M']] 

        ], 

        "correct_segment": [ 

            ['R'], 

            ['R', 'S', 'I'], 

            ['R'], 

            ['M'] 

        ] 

    }, 
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