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Abstract—Morphological information is important for many
sequence labeling tasks in Natural Language Processing (NLP).
Yet, existing approaches rely heavily on manual annotations or
external software to capture this information. In this study, we
propose using subword contextual embeddings for languages with
rich morphology. Evaluated on Dependency Parsing (DEP) and
Named Entity Recognition (NER) tasks, which are shown to ben-
efit highly from morphological information, subword contextual
embeddings consistently outperformed other approaches on all
languages tested (Hungarian, Finnish, Czech and Turkish). Our
proposed method enables achieving state-of-the-art results with
little annotation requirements compared to the previous work.
Besides, the novel network architecture we propose, coupled with
a Bayesian hyperparameter optimization suite, achieved state-of-
the-art results for both tasks for the Turkish language. Finally,
we experimented with different multi-task learning architectures
to analyze the effect of jointly learning the two tasks.

Index Terms—transfer learning, deep learning, nlp, named
entity recognition

Deep learning based models achieved state-of-the-art results
for many sequence labeling tasks in NLP. Representing each
input token with a fixed or a trainable vector has shown
remarkable progress over previous approaches [1], [2]. How-
ever, the token-level approach is not well-suited for languages
with rich morphology, where important morpho-syntactic in-
formation is retained inside the morphology of the surface
form [3]. In addition, out-of-vocabulary and data sparsity
pose an important challenge for token-level based systems [4],
especially for languages with rich morphology. Fig. 1 shows
the coverage of the test vocabulary for increasing sizes of
the training set for five languages. Compared to languages
with rich morphology, the English language requires the least
amount of training data to get equal coverage of the test
vocabulary.

In agglutinative languages (e.g., Finnish, Turkish, and Hun-
garian), words with 3-4 suffixes are quite common, and impor-
tant information is included in these morphological units rather
than within the syntax [3]. For instance, the Turkish word
‘geliyordum’, which means ‘I was coming’, contains three
suffixes appended to the root ‘gel’ (to come): ‘(i)yor’ denotes
continuous tense, ‘du’ denotes past tense, and ‘m’ denotes first
person singular. [5] also showed that the vocabulary size drops
from 475,975 to 97,734 when only root forms are considered
over a corpus of around 10 million words for the Turkish
language. This analysis shows that five different words are

generated from the same root on average [6], which causes
data sparsity. Thus, it is challenging to obtain good word-level
vector representations for such languages.

In another group of languages, called inflectional languages
(e.g., Czech and Spanish), a single morpheme is used to
represent multiple semantic features. For example in Spanish,
the -ó in habló, which means ‘to speak’, simultaneously
denotes indicative mode, third person, singular, past tense, and
perfective aspect.1 One of the challenges of entity recognition
for inflectional languages like Czech is that the surface form
of the words change depending on the case. ‘I go to Tokyo’
is translated to Czech as ‘Jdu do Tokia’ (dative), and ‘I live
in Tokyo’ is translated as ‘Bydlı́m v Tokiu’ (locative). The
word ‘Tokio’ becomes ‘Tokia’ and ‘Tokiu’ for dative and
locative cases, respectively. This change in the surface forms
makes it difficult for the token-based models to capture good
representations for proper nouns.

Fig. 1. The coverage of the test set vocabulary for increasing sizes of the
training sets (relative to the size of the test sets). The Hungarian language
requires around four times more training data to have equal coverage with
the English language.

1https://glossary.sil.org/term/fusional-language



Linguistically motivated attempts focus on capturing the
morphological information by dividing the tokens into sub-
word lexical units and use the vector representations of these
units to represent a token [4]. Early approaches mostly use
character n-gram features [7] or morphological analyses [3],
[8]. Recent works make use of character n-gram embeddings
to capture the subword information [9], [10].

The importance of using morphological features and mor-
pheme embeddings for morphologically rich languages has
been shown in various studies. Specifically [3], [11], and
[6] showed significant performance improvements for named
entity recognition (NER) by using either hand-crafted morpho-
logical features or by using morphological embeddings. [12]
denoted lemmatization as a necessary step for Czech NER
systems, and compared different lemmatization approaches.
[8] obtained significant gains for dependency parsig (DEP)
by using a lexeme-based rather than a token-based approach,
where the lexical units are obtained using a morphological
analyzer. Yet, all models require either a manually annotated
dataset for morphological analysis or an external analyzer for
annotation.

Multi-task Learning (MTL) and Language Modeling (LM)
have both seen remarkable breakthroughs in recent years. MTL
is shown to boost the performance of high-level tasks by
leveraging the information obtained in low level tasks [1], [13]
and preventing deep learning models from overfitting a single
task domain. Language Models trained on huge unlabeled
datasets such as ELMo [14] and BERT [15] are successfully
applied to many downstream NLP tasks.

The above findings and challenges motivated us to an-
alyze the effect of using subword contextual embeddings
for languages with rich morphology. We claim that sub-
word contextual embeddings improve the performance over
other approaches for these languages. We use multilingual
BERT [15] (mBERT) to obtain the subword contextual em-
beddings, and compare the performance with using word-level
Word2Vec embeddings [2], and subword-level non-contextual
FastText embeddings [9]. To test our claim, we picked two
NLP tasks for which morphological information is shown to
be critical [3], [8]: Dependency Parsing and Named Entity
Recognition. Empirical results on four morphologically rich
languages (Hungarian, Finnish, Czech, and Turkish) verified
our claim for both tasks. mBERT embeddings significantly
outperformed the other approaches on all languages tested.
Besides, we incorporated a Bayesian hyperparameter opti-
mization to obtain state-of-the-art results for both tasks on
commonly used benchmarks for the Turkish language. Finally,
we experimented with different multi-task learning architec-
tures to see if the information obtained from each task can
be utilized to improve the overall performance. Our main
contributions can be listed as follows:

• We analyze using subword contextual representations on
four morphologically rich languages for two sequence
labeling tasks.

• We outperfom the previous state-of-the-art models on
both tasks for the Turkish language by 1) using subword

contextual embeddings and 2) implementing a novel
neural-network architecture.

• We experiment with different multi-task learning archi-
tectures and analyze the effect of information sharing for
NER and DEP tasks.

Our work extends the previous work on using subword
contextual embeddings for sequence labeling [16], [17] and
using subword contextual embeddings with multi-task learn-
ing [18]. Recently, [19] also used BERT and Flair [20]
contextual embeddings to improve the performance of their
neural network baselines for the NER and DEP tasks. How-
ever, they do not give a comparison with other embedding
approaches and their work is limited to the Czech language.
[21] evaluated the performance of mBERT for NER and DEP
tasks for 39 languages. Our work differs from them in that we
give a comparison with other embedding approaches using the
same neural network architecture (embedding-level compari-
son), whereas they compare mBERT results with the best-
published results (model-level comparison). [16] proposed
a similar dependency parser which incorporates word-level
ELMo embeddings [14] and obtained the highest LAS score
(overall and for the Turkish language) on the ‘CoNLL 2018
Shared Task’. Our final model outperformed their approach
for the Turkish language by using minimal features.

I. METHODOLOGY

A. Contextual Subword Embeddings
Representing words with pretrained and fixed vectors

learned over huge unlabeled datasets [2] has been a significant
breakthrough in NLP research. However, word-level vector
representations are not capable of capturing the sub-word
level information, which is important for many sequence
labeling tasks such as NER, part-of-speech (POS) tagging,
and DEP [4]. Another main drawback of these approaches,
and of non-contextual vector representations in general, is that
they are independent of the context once they are learned. For
example, the word ‘bass’ in ‘I like eating bass’ and ‘I play bass
guitar’ would be represented with the same vector even though
they refer to different senses. Recent works on contextual
representations overcome this problem by using a Long Short
Term Memory (LSTM) [22] or a Transformer model [23] to
condition the output for a word to its surrounding context.

In this study, we use multilingual BERT [15], which is a
sub-word level pretrained Transformer-based language model
for multiple languages. We claim that the information retained
in the morphological units of a word can be captured through
the contextual subword representations generated by BERT.

B. Input Layer
The input layer is the concatenation of three vectors. For

each word wj in an input sentence, the output is represented
as oj = v

word
j � v

cas
j � v

pos
j , where v

word
j , v

cas
j , and v

pos
j

correspond to the word embedding, casing embedding, and
POS tag embedding, respectively. For Word2vec embeddings,
v
word
j is the vector corresponding to that word if the word

is included in the training vocabulary or is the vector used



Fig. 2. Overview of the input for the task-specific components. These
components are trained jointly in the multi-task settings.

to represent all unknown words. For FastText embeddings,
v
word
j is the combination of the vectors of its n-grams if the

word is not included in the training vocabulary. To obtain
v
word
j for the mBERT case, we first tokenize the word into its

BERT subtokens. Then for each subtoken, we get the mean
of hidden vectors of the final four layers of BERT following
the suggestions of [15]. Finally, we take the average over all
subtokens to get the final representation.

Lower casing is a common preprocessing step when using
word embeddings to reduce the vocabulary size. To retain the
casing information, which is shown to be useful for the NER
task [3], [17], we use casing embeddings with five categories.
An example to each category is as follows : ‘Title’, ‘ALL-
CAPS’, ‘lower’ , ‘contains’apostrophe’ and ‘1234’ (numeric).
For POS embeddings, we used the XPOS, language-specific
POS tags defined in the Universal Dependency format [24].
The input layer is trained jointly on the multi-task settings.

C. Dependency Parser
The dependency parser we used in this work is heav-

ily influenced by the graph-based parsers proposed by [25]
and [26]. It consists of two modules to generate scores for
arcs between words (denoting dependencies), and labels for
each arc (denoting dependency type), separately. We first
followed [25] and incorporated a Highway-LSTM (HLSTM)
architecture [27] as the initial task-specific layer. HLSTM
learns adjustable parameters for controlling the information
flow between LSTM layers. Given a sequence of n vectors
{ot : 1  t  n}, we obtain

ht = HLSTM
dep(o1, ..., on; t)

where n is the number of tokens and ht is the hidden
representation for ot. [26] make a key observation that the
vector representation of a word should be different when it is
considered as a head or a dependent. Following this observa-
tion, these representations are fed into two Fully Connected

Fig. 3. The detailed architecture of the hierarchical multitask setting when
DEP is modeled to be the low-level task.

layers (FC
edge
head and FC

edge
dep ) to generate representations for

each word as a head and as a dependent. Unlike the reference
parsers, which use the concatenation of six different embed-
dings, we only make use of two embeddings in addition to
the word embedding. Our parser with mBERT embeddings
outperformed both parsers, when trained and tested on the
same settings.

D. Named Entity Recognizer

The named entity recognizer consists of three layers: LSTM
layer, Fully Connected layer, and Conditional Random Fields
(CRF) layer. This combination of LSTM and CRF is com-
monly used for the NER task [10], [28]. We extend the previ-
ous work on BiLSTM-CRF based architectures by replacing
the BiLSTM layer with the Highway-LSTM architecture [27].
The architecture of the Highway-LSTM is identical with the
DEP component.

E. Multi-task Learning Framework

After verifying our initial claim on using subword con-
textual embeddings for languages with rich morphology, and
achieving state-of-the-art results for both tasks for the Turkish
language, we also analyzed the effect of learning the two tasks
in different multi-task learning settings.

For the MTL framework, we considered three different
architectures where the main difference is how the task-
specific components communicate. The first model, flat, is
similar to the Multi Task Deep Neural Networks (MT-DNN)
framework [18], which uses hard-sharing. In hard-sharing,
task-specific components share a common low-level layer, and
the arcs in Fig. 3 from the parser to the NER component
(hier repr and hier pred) are null. For the second and third
models, we followed [13], and implemented two hierarchical
models. In the second setting, which we call hier pred as an
abbreviation for ‘hierarchical and prediction’, the higher-level
component receives the embedding of the prediction made by
the low-level task component. First, the DEP component gets
the input sentence and makes a dependency label prediction
for each word. Next, we use an embedding layer to generate
the vector representation of the label type. To get the label
representation, we first use a simplistic assumption and pick



the highest scoring label of the highest-scoring arc for each
word wi.

headi = argmax
j2{1,...,n}

s
arc
i,j

label maxi = argmax
l2L

pi,headi

v
dep
i = DEP EMBED(label maxi)

oi = v
word
i � v

cas
i � v

pos
i

vi = oi � v
dep
i

where s
arc
i,j is the score of the arc from wi to wj , L is

the label set for the dependency task, pi,headi is the vector
containing the score for each label for an arc from wi to
wheadi , label maxi is the highest scoring label for this arc,
DEP EMBED is the function that maps a dependency label
to a fixed-size vector, and vi is the input vector to the NER
component. We refer to this method of inputting the prediction
embedding as ‘hard’. Alternatively, we also used a weighted
average of the embeddings, which we refer to as ‘soft’, for
each dependency label type based on the scores generated for
each of them, also employed by [13]. In this setting v

dep
i is

defined as

v
dep
i =

X

l2L

DEP EMBED(l)
exp(pi,headi [l])P
l2L exp(pi,headi [l])

For the third setting, which we call ‘hier repr’ to denote ‘hier-
archical representation’, we consider directly concatenating the
hidden layer output generated for the DEP component (arrow
denoted as ‘hier repr’ on Fig. 3).

h
dep
i = HLSTM

dep(o1, ..., on; i)

oi = v
word
i � v

cas
i � v

pos
i

vi = oi � h
dep
i

where h
dep
i is the final hidden layer output of the HLSTM of

the DEP component for wi (see Appendix A for details regard-
ing the implementation of each task-specific coomponent).

II. EXPERIMENTAL SETTINGS

For all the experiments, we used Tesla V100 GPU’s with a
single thread. The multitask model with the highest number of
parameters trains at a speed of around 200 sentences/second.
During the inference mode, the model can output predictions
with 600 sentences/second (see Appendix C1 for more details
about the experiments).

A. Datasets

For each language, we used the largest datasets provided
in ‘CoNLL 2018 Universal Dependencies Shared Task’ [24]
for the DEP task. The datasets are annotated in CoNLL-U
format and contain XPOS tags in addition to the head and
dependency label for each token. For evaluation, we report
results using the two most common scoring metrics for the
DEP task: Labeled Attachment Score (LAS) and Unlabeled
Attachment Score (UAS). LAS considers a prediction correct

only if both the head index and the dependency label are
predicted correctly. For UAS the latter constraint is removed.

The Turkish NER dataset is a commonly used bench-
mark [29], which contains named entity labels for Location
(LOC), Organization (ORG), and Person (PER). The Hungar-
ian NER dataset [30] also contains MISC type, in addition to
the labels inside the Turkish dataset. CNEC 2.0 [31] corpus
was used for the Czech language, which contains two-level
annotations for each named entity. For all experiments, we
used the seven supertypes as the named entity labels. Finally,
for the Finnish language, we used a dataset compiled from
news articles [32]. The dataset is annotated for ten entity
types. For all languages, the annotation is done using the IOB-
2 tagging scheme, where the first token of each entity has the
prefix ‘B-’ and the remaining tokens are prefixed with an ‘I-’.
To evaluate the performance of the NER component, we use
the micro F-1 score over all entities. All details regarding each
dataset is given in Appendix C1.

B. Training Details

For all the reported results of our models, we used a default
batch-size of 500 words. We define an epoch as 100 steps to
have a roughly equal evaluation interval with the StanfordNLP
dependency parser [26]. We evaluated the performance on the
validation datasets, and used early stopping with patience,
and stopped the training when we could not observe any
improvements on the validation splits (see Appendix C1 and
C1 for more details about the training).

1) Pretraining word embeddings: Publicly available pre-
trained models for Word2Vec and FastText use up to 300-
dim vectors to represent each word, whereas mBERT uses
768-dim vectors. Increasing the dimensions may provide an
advantage to capture more subtle information about a word.
To have a fair comparison between the proposed method
of using the subword contextual embeddings and the other
embedding methods, we pretrained both the FastText and
the Word2vec embeddings to have matching 768-dim with
the mBERT vectors. For all languages, we used the latest
Wikipedia dumps 2 as the training dataset, and applied the
same preprocessing scripts to prepare the datasets. We share
all the necessary code to obtain and process the datasets,
and pretrain both embeddings. As the baseline for word
embeddings, we randomly initialized 768-dim vectors for each
word in the training set, and learned the vector representations
during the training process. For token-based methods, a special
‘UNK’ token is used to represent all the words that do not
occur inside the training sets.

2) Hyperparameter optimization: In deep-learning based
MTL settings, there are various hyperparameters regarding
the architecture and the training regime. An eager attempt
to exhaustively search over the entire hyperparameter space
is almost always infeasible. To find a good hyperparameter
configuration, we used a Bayesian optimization based hyper-
parameter optimizer [33]. We ran the optimizer for 50 trials

2https://dumps.wikimedia.org/backup-index.html



TABLE I
RESULTS FOR USING DIFFERENT EMBEDDING TYPES IN THE SINGLE-TASK

LEARNING (STL) (TOP) AND MULTI-TASK LEARNING (MTL) (BOTTOM)

Model Language Embedding type NER Results DEP Results
Precision Recall F-1 LAS UAS

STL

Czech

Baseline 56.40 53.57 54.95 72.43 78.91
Word2vec 63.46 48.65 55.07 78.09 82.72
FastText 62.11 51.40 56.25 77.96 84.10
mBERT 77.30 75.63 76.46 88.28 91.17

Hungarian

Baseline 86.44 78.33 82.19 59.51 70.85
Word2vec 90.08 88.96 89.52 59.76 70.03
FastText 90.24 84.10 87.06 61.85 72.66
mBERT 95.16 95.56 95.36 69.19 75.34

Finnish

Baseline 77.04 63.55 69.65 61.25 69.19
Word2vec 74.78 60.92 67.14 64.61 72.90
FastText 76.68 61.44 68.22 72.51 78.74
mBERT 82.92 84.95 83.92 83.78 86.65

Turkish

Baseline 73.75 80.28 76.88 55.91 64.57
Word2vec 91.04 78.10 84.07 57.41 65.94
FastText 89.17 80.93 84.85 60.14 67.54
mBERT 90.09 90.36 90.22 64.28 70.54

MTL

Czech

Baseline 66.63 52.98 59.02 76.32 82.20
Word2vec 63.36 49.73 55.72 75.24 80.98
FastText 64.09 52.29 57.59 75.31 80.43
mBERT 76.23 76.12 76.18 84.98 89.05

Hungarian

Baseline 87.48 78.12 82.54 57.91 68.36
Word2vec 93.48 83.68 88.31 58.48 69.84
FastText 93.00 86.67 89.72 62.21 71.61
mBERT 95.00 94.93 94.96 70.46 76.41

Finnish

Baseline 69.94 59.49 64.29 61.26 68.78
Word2vec 73.88 59.38 65.84 65.07 72.94
FastText 72.01 60.16 65.55 64.39 71.30
mBERT 81.64 83.71 82.66 83.78 86.67

Turkish

Baseline 91.06 78.68 84.42 57.16 65.76
Word2vec 90.80 79.04 84.51 58.47 66.32
FastText 92.14 79.95 85.61 59.92 67.68
mBERT 88.79 90.46 89.62 63.85 69.97

for each task-specific component separately. The objective
function of the optimizer to minimize is the negative of the
evaluation metric for each task. For each such configuration,
training is done until at most 40 epochs, and the configuration
with the highest F-1 score is used. For all training settings,
we used learning rate patience and early stopping (see Ap-
pendix C1 for all details about the hyperparameters).

III. RESULTS

A. Comparison of word embedding types

We started our experiments by verifying our initial claim
on using subword contextual embeddings for languages with
rich morphology. We trained and tested the task-specific
components separately for all languages (single-task learning).
Table I shows the results of using different word embeddings
as input to the neural networks. ‘Baseline’ refers to using
randomly initialized trainable vectors for each word inside the
training sets.

mBERT embeddings outperformed other approaches signif-
icantly, for both tasks and for all languages. Using Word2Vec
and FastText word embeddings brought improvement over
using randomly initialized vectors except for the NER task
for the Finnish language. Moreover, subword-based FastText
embeddings outperformed the token-level Word2vec embed-
dings on all configurations except for the NER task for the
Hungarian.

These results verified our initial claim on using subword-
based embeddings for languages with rich morphology. We

observed that the performance improvement is more significant
for the Czech and Finnish languages, especially for the NER
task (20.21 and 15.70 absolute F-1 score increase, respec-
tively).

B. Factors that make mBERT standout
To better understand where the improvements for mBERT

come from, we analyzed the results on the NER test sets in
the single-task learning setting. We first examined the test
sentences for which other approaches failed, and mBERT
succeeded, for all languages. Upper part of Table II shows
the results of this analysis. The last column (Overall) gives
the statistics for all the test set sentences, for comparison.

Unknown entities. These are the entities that appear in the
test sets, and do not appear in the training sets. We observed
that these sentences, except for the Word2Vec-Finnish combi-
nation, have a higher unknown entity frequency than the whole
test sets of each language. This observation supports our initial
claim that unknown words pose a challenge to the compared
models, and mBERT is a better alternative to cope with them.

Rare entities. We define rare words as words that only
occur 1-3 times inside the training datasets of each lan-
guage. Similar to the unknown words, in most cases (all
languages except Finnish, and Baseline-Turkish combination)
these sentences have higher rare word frequencies. These
results support our claim that mBERT is better at handling
rare words compared to the other approaches.

The results above also showed that the Finnish and Czech
test sets have much higher unknown-rare entity frequencies in
comparison to the Hungarian and Turkish languages. This may
explain why the best results for the NER task are significantly
lower for these languages (76.46 and 83.92 for the Czech and
Finnish languages, and 95.36 and 90.22 for the Hungarian
and Turkish languages, respectively). Besides, this may also
explain why the performance improvement is more significant
for these languages.

Long entities. We observed that for all languages and all
the compared embedding methods, these sentences contained
longer entities. For languages with rich morphology, word
length is a good estimator for suffixation. This analysis sup-
ports that some of the improvements attained by mBERT over
others is because of its syntactic capabilities [34].

Long sentences. Except for the Czech language, the results
showed that, for all models, these sentences are longer than
the average. For the Turkish language, the average lengths of
these sentences are roughly 25% higher than the overall value.
This increase suggests that the contextuality of mBERT helps
the model to perform better on instances that contain more
contextual information.

Entities with suffixation. In the Turkish language, suffixes
to a proper noun are separated with the ’ sign e.g., -de
suffix denoting locative case in ‘Türkiye’de’ which means ‘in
Turkey’. Using this fact, we further analyzed the performance
over the Turkish entities containing at least one suffix (has
’ sign inside the token). We observed that the frequency of
entities with suffixes are much higher among the examples that



TABLE II
ANALYSIS OF THE RESULTS ON THE NER TEST SETS IN THE SINGLE-TASK LEARNING SETTING, FOR ALL LANGUAGES

Czech Hungarian Finnish Turkish
Baseline Word2Vec FastText Overall Baseline Word2Vec FastText Overall Baseline Word2Vec FastText Overall Baseline Word2Vec FastText Overall

mBERT succeded, and others failed.
Number of sentences 154 164 154 889 182 95 136 933 746 813 760 3506 385 274 254 2729
Number of entities 659 691 659 2473 629 326 504 1161 1544 1611 1568 3174 638 652 611 1667

Unknown entity frequency 0.551 0.553 0.568 0.550 0.501 0.525 0.530 0.411 0.552 0.549 0.561 0.552 0.379 0.445 0.453 0.369
Rare entity frequency 0.739 0.738 0.751 0.736 0.628 0.653 0.645 0.597 0.683 0.689 0.689 0.701 0.514 0.557 0.563 0.525
Average entity length 5.62 5.64 5.76 5.44 6.90 6.87 6.96 6.81 7.89 7.91 7.93 7.57 7.16 7.31 7.21 6.91

Average sentence length 22.1 22.3 22.1 22.5 28.5 27.6 28.6 24.1 14.6 14.6 14.7 13.4 17.0 17.8 18.2 13.2
mBERT failed, and others succeded.

Number of sentences 26 27 25 889 10 13 14 933 144 115 139 3506 79 85 95 2729
Number of entities 77 80 69 2473 26 50 50 1161 284 217 254 3174 168 175 240 1667

Unknown entity frequency 0.519 0.412 0.507 0.550 0.346 0.4 0.34 0.411 0.352 0.341 0.319 0.552 0.304 0.309 0.312 0.369
Rare entity frequency 0.636 0.625 0.667 0.736 0.423 0.580 0.500 0.597 0.433 0.424 0.409 0.701 0.423 0.429 0.450 0.525
Average entity length 5.07 5.28 5.20 5.44 5.59 6.66 7.26 6.81 7.73 7.85 7.69 7.57 6.97 6.56 6.69 6.91

Average sentence length 24.4 24.9 23.8 22.5 29.5 31.4 27.6 24.1 13.9 13.2 13.2 13.4 17.6 16.5 18.6 13.2

other embedding approaches failed. Only 30.8% of all named
entities contain a suffix in the Turkish NER dataset. This value
increases to 56.7% when we only consider the entities that all
other embedding-based models failed to detect correctly. This
significant increase in frequency suggests that these models
struggle with languages with high suffixation.

We repeated the same analysis for the opposite cases
(sentences that mBERT failed, and other methods succeeded.).
This analysis is necessary to validate that the findings men-
tioned above are not just characteristics of any ‘difficult’ sen-
tences. Lower part of Table II shows that similar observations
can not be made on these sentences. These sentences have
lower unknown-rare entity frequencies. Besides, the entity and
sentence lengths do not follow a clear trend.

C. Effects of multi-task learning
Next, we trained the task-specific components jointly in a

multi-task learning setting. We used the hard-sharing based
‘flat’ model as the multi-task learning architecture, where the
input layer is shared between task-specific components. For
all experiments, the architecture of the joint model is kept
the same as those of the individual models. Bottom part of
Table I shows the results for the multi-task learning for all
languages and both tasks. Similar to the single-task learning
setting, mBERT based multi-task learning model significantly
outperformed other models. Yet, we observed that the pro-
posed mBERT based model did not benefit from learning
these tasks jointly except for the DEP task for the Hungarian
language (+1.27 absolute LAS score). Overall, the benefits of
hard-sharing based multi-task learning were unclear for these
tasks.

D. Effects of hyperparameter optimization
The above findings and observations motivated us to ap-

ply the Bayesian hyperparameter optimization, explained in
Section II-B2, to get the final performance on both tasks for
the Turkish language. Table III shows the results for each
task, along with the previous state-of-the-art results on the
same datasets. On top, we give the results obtained by the
proposed mBERT based models. These are followed by the
previous results on the DEP and the NER datasets for the
Turkish language, respectively. All results given in Table III
are obtained on the same splits for both datasets. The results
show that the proposed mBERT based model outperformed

TABLE III
RESULTS FOR BOTH TASKS FOR THE TURKISH LANGUAGE AFTER

HYPERPARAMETER OPTIMIZATION

Model NER F-1 DEP LAS
mBERT 93.82 67.88

mBERT + MTL (flat) 92.80 68.52
mBERT + MTL (hier repr) 93.72 68.07
mBERT + MTL (hier pred) 93.17 68.87

Akdemir et al. [35] 89.21 50.01
Dozat et al. [26] - 64.86
Che et al. [16] - 66.44

Yeniterzi et al. [11] 88.94 -
Demir et al. [6] 91.96 -
Seker et al. [36] 91.94 -
Gungor et al. [3] 93.59 -
Gunes et al. [37] 93.69 -

state-of-the-art models on both tasks. Finally, we analyzed
the effect of using different multi-task learning architectures
explained in Section I-E, in this same setting. All multi-
task learning architectures brought additional improvement
for the DEP task. Yet, the performance on the NER task
degraded when we incorporated multi-task learning. Besides,
except for ‘hier repr’ for the DEP task, hierarchical settings
outperformed the ‘flat’ model, which is in line with the
observations made by Hashimoto et al. [13]. We obtained
+2.43% absolute LAS score for the DEP task and +0.13%
absolute F-1 score for the NER task over the state-of-the-art
results. The models achieved this by using minimal features
(pos tags and casing features) compared to the competitive
models. In addition, compared to the multi-task learner in
the same setting [35], we obtained significant improvements
for both tasks (+18.86% absolute LAS for the DEP task and
+4.61% absolute F-1 for the NER task).

IV. CONCLUSION

In this study, we claimed that using subword contextual
embeddings improves performance for languages with rich
morphology. We implemented two neural network models
following the state-of-the-art approaches for the DEP and the
NER tasks. The empirical results showed that using subword
contextual embeddings outperforms other approaches. The
error analysis revealed that improvements for mBERT came
from its ability to handle rare-unknown entities, and long



words and sentences, for the NER task. We also analyzed the
effect of incorporating multi-task learning. We observed that
the hierarchical settings consistently outperformed the ‘flat’
model. Finally, after applying hyperparameter optimization,
the proposed model outperformed the state-of-the-art models
for both DEP and NER for the Turkish language.

Further gains may be possible by incorporating character-
level embeddings, and through extending the multi-task frame-
work to include more tasks. To promote future research, we
make all the source-code publicly available. 3

V. ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant Num-
ber 17H01693, 20K21827, and CREST Grant Number JP-
MJCR1402.

REFERENCES

[1] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of Machine Learning Research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[2] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.
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[6] H. Demir and A. Özgür, “Improving named entity recognition for
morphologically rich languages using word embeddings.” in ICMLA,
2014, pp. 117–122.

[7] D. Nadeau and S. Sekine, “A survey of named entity recognition and
classification,” Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26,
2007.
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contextual embeddings: Pos tagging, lemmatization, parsing and ner,”
in International Conference on Text, Speech, and Dialogue. Springer,
2019, pp. 137–150.

[20] A. Akbik, D. Blythe, and R. Vollgraf, “Contextual string embeddings for
sequence labeling,” in Proceedings of the 27th International Conference
on Computational Linguistics, 2018, pp. 1638–1649.

[21] S. Wu and M. Dredze, “Beto, bentz, becas: The surprising cross-lingual
effectiveness of bert,” in Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
2019, pp. 833–844.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.
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“Hungarian dependency treebank,” 2010.

[47] U. Sulubacak, M. Gökırmak, F. Tyers, Ç. Çöltekin, J. Nivre, and
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