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Abstract
The improvements in high throughput sequencing technologies (HTS) made clinical

sequencing projects such as ClinSeq and Genomics England feasible. Although there are

significant improvements in accuracy and reproducibility of HTS based analyses, the usabil-

ity of these types of data for diagnostic and prognostic applications necessitates a near per-

fect data generation. To assess the usability of a widely used HTS platform for accurate and

reproducible clinical applications in terms of robustness, we generated whole genome shot-

gun (WGS) sequence data from the genomes of two human individuals in two different

genome sequencing centers. After analyzing the data to characterize SNPs and indels

using the same tools (BWA, SAMtools, and GATK), we observed significant number of dis-

crepancies in the call sets. As expected, the most of the disagreements between the call

sets were found within genomic regions containing common repeats and segmental dupli-

cations, albeit only a small fraction of the discordant variants were within the exons and

other functionally relevant regions such as promoters. We conclude that although HTS plat-

forms are sufficiently powerful for providing data for first-pass clinical tests, the variant pre-

dictions still need to be confirmed using orthogonal methods before using in clinical

applications.

Introduction
The robustness and the reproducibility are the sine qua non of every data intended to be used
for clinical applications. These factors have been the main issue hindering large scale applica-
bility of array-based technologies for clinics. High throughput sequencing (HTS) offers alterna-
tive solutions to array based technologies with respect to genotyping, and HTS data are
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considered to be more robust and comprehensive. The performance of HTS platforms has
been tested in various studies [1–3], but the robustness of HTS platforms still need to be sys-
tematically assessed. More specifically, it is of crucial importance to obtain accurate single
nucleotide polymorphism (SNP), indel, and structural variation (SV) call sets in the sense that
the calls made for specific SNPs or SVs should be solely dependent on the actual genotypes of
sequenced individuals but not the location, time, or the platform of choice of the study.

Here we investigate the robustness of the Illumina HiSeq platform, currently the most
widely used HTS technology in genome sequencing. In order to achieve this, we resequenced
the genomes of two individuals from the Turkish Genome Project [4] twice. The two genomes
were previously sequenced once [4], using the Illumina HiSeq 2000 platform in BGI Shenzhen,
and a second time through the same platform set up at the Turkish Advanced Genomics and
Bioinformatics Research Group (TÜBİTAK İGBAM). Although the same model sequencing
machines were used, roughly the same level of coverage was achieved, and identical tools were
used with identical parameters, independent analysis of the SNP and indel calls revealed signif-
icant number of differences between the two trials. In particular, we noticed that roughly 280
thousand of the 3 million SNPs genotyped by the GATK [5] tool in one trial (e.g. BGI) or the
other (e.g. TÜBİTAK) are unique to only one callset—implying that the reproducibility rate of
SNP calls is* 92%. Interestingly, the multisample calling option of GATK that jointly ana-
lyzes two WGS datasets simultaneously does not seem to substantially improve the reproduc-
ibility and thus accuracy of the results. In this study, we explore the “sources” of this loss of
accuracy as a function of both quality scores and coverage levels in each of the samples.
Although increase in coverage levels in each sample typically decreases the differences between
the GATK calls for specific loci on the two samples, there are still some cases in which differ-
ences can not be attributed to low coverage or quality score differences.

Our main contribution in this paper is a detailed investigation of the types and causes of
exclusive variants within the call sets that are expected to be substantially the same. In addition,
we try to identify strategies to handle such discrepancies when there is a second WGS dataset
generated from the genome of the same donor. With further technological advancements and
the cost improvements, sequencing a sample many times can be expected to be prevalent, as
storing the data may become more expensive than resequencing the same sample. Here the
same donor sample is sequenced twice, to evaluate the outcome of this highly possible situation
in the future. For such cases, when there are more than one WGS sequence of the same donor,
we state our remarks on how to exploit all the data fruitfully. In Section 1, we describe the
methods used in the study. In Section 2, we present the results of the study and show the shared
and exclusive sets of different SNP groups. And finally, in Section 3, we provide our remarks
on the results and conclude.

1 Methods

1.1 DNA Samples and Ethics Statement
Genomic DNA from two individuals were collected and purified in 2011, only once from the
blood of two volunteers for a previously published study [4]. The source (i.e. blood), DNA
extraction time and location are the identical. As indicated in [4], institutional review board
permission was obtained from INAREK (Committee on Ethical Conduct in Studies Involving
Human Subjects at the Boğaziçi University) before data collection, and all participants includ-
ing those that are included in this study provided informed consent.
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1.2 Sequencing
The genomes of the two individuals were already sequenced using Illumina HiSeq2000 in 2011
at BGI Shenzhen [4]. The same samples were resequenced for a second time using another Illu-
mina HiSeq2000 in 2012 at the TÜBİTAK İGBAM located in Kocaeli, Turkey. For the first
sequencing data set, DNA samples were fragmented to 500bp, and paired-end sequencing data
were generated with a read length of 90bp. For the second sequencing experiment at TÜBİ-
TAK, we used the same protocols and sheared the DNA to 500bp fragments, and sequenced
104bp paired-end reads. In the remainder of the paper, we refer to the data generated at BGI as
S1B (first individual) and S2B (second individual), and the data generated at TÜBİTAK for the
same individuals as S1T and S2T.

1.3 Alignment, coverage, GC content
To discover SNPs and short indels, we mapped the reads to the human reference genome
(NCBI GRCh37) using the BWA aligner (version 0.6.2) [6], in paired-end mode (“sampe”) and
default options. We converted the mapping output to sorted, duplicate-removed, and indexed
BAM files using SAMtools [7]. We calculate the expected coverage as:

num mapped reads� read length
2; 897; 310; 462 ðnumber of non� N bases in GRCh37Þ

Next, SAMtools and BEDtools [8] were used to calculate the effective coverage:

Xnum bases

i¼1

Coveragei

 !

num bases

Finally, we used the FASTQC tool (version 0.10.1) [9] to collect basic statistics of the genomic
sequence data (Table 1).

1.4 Variant calling
SNP and indel detection. After the initial alignment and the PCR-duplicate removal, we

realigned the indel-containing reads to the reference genome using GATK Realigner tool. We
then used the GATK UnifiedGenotyper tool to generate the SNP and indel call sets. We also
used the GATK HaplotypeCaller as an alternative approach for variant calling. Next, we elimi-
nated likely false positives using the GATK Variant Quality Score Recalibration (VQSR) tool
with GATK resource bundle v2.5. Finally, we further filtered the call sets using the GATK

Table 1. Summary of the sequence datasets.

Dataset Number of
reads

Read
length

Expected
Coverage

Number of mapped
reads

Effective
Coverage

GC
%

S1T 1,401,819,290 104 45.6X 1,366,858,600 42.3X 42%

S1B 1,394,524,622 90 41.5X 1,272,512,132 37.6X 39%

S2T 934,050,130 104 31.3X 914,763,337 29.56X 43%

S2B 1,793,560,406 90 53.4X 1,688,991,592 49.2X 41%

Basic statistics of the two samples (S1, S2) sequenced at two different centers. S1T refers to sample S1

sequenced at TÜBİTAK, where the dataset S1B was generated from the same sample at BGI. Similarly,

datasets from sample S2 are denoted as S2T and S2B.

doi:10.1371/journal.pone.0138259.t001
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VariantFiltration to remove low confidence calls (SnpCluster filter to remove SNPs if there are
more than 3 SNPs in a 10 bp window). We applied the same variant calling pipeline to each of
the four datasets separately: S1B, S1T, S2B and S2T.

Pooled SNP and indel calling. As a second experiment, we tested whether pooling data
from multiple sequencing runs for the same samples improve callset reproducibility. Our main
question here was to understand if the slight differences in the coverage and depth of the data-
sets could be ameliorated by merging data for discovery, and if this would improve genotyping
accuracy. For this purpose, we applied the SNP/indel detection pipeline to both samples by
pooling two sequencing datasets (i.e. S1BT, and S2BT) generated at BGI and TÜBİTAK.

However, we named the two datasets from the same sample as if they were generated from
different genomes. In the remainder of the paper, we denote the SNP/indels genotyped within
the BGI data from S1 as B1, and the SNP/indels genotyped within the TÜBİTAK data from S1
as T1 for this experiment. Similarly, we have B2 and T2 for the sample S2.

1.5 Variant annotation
We used the ANNOVAR [10] tool (version 2013-02-21) to annotate SNPs and indels.

1.6 Data Availability
We had previously deposited the sequence reads obtained from BGI to the SRA read archive
(SRP021510). Primary run IDs relevant to this study are: SRR839600 for S1B and SRR849493
for S2B. Datasets generated at TÜBİTAK are also available as “secondary sequencing” data sets
with sample IDs SRR2128004 and SRR2128088 respectively within the same SRA archive. We
also released our scripts we used to map the reads and call the variants at https://github.com/
pinarkavak/robust, and the VCF files for the call sets are available at http://alkanlab.org/paper-
data/Kavak_RobustNGS/.

2 Results

2.1 Read length, coverage, GC content
We provide the basic analysis of the input data sets in Table 1. Briefly, we generated a total of
more than 5.5 billion reads, equivalent to* 530 Gbps, where the effective sequence coverage
per data set ranged from 29.5X to 49.2X. The reads sequenced at TÜBİTAK (S1T and S2T) were
14bp longer than the reads sequenced at BGI (S1B and S2B), and the GC contents were similar
(Table 1).

2.2 Call Sets and comparisons
SNP and indel discovery. We generated SNP call sets for each sample and for pooled data

sets (Methods). 4 SNP call sets: S1T, S1B, S2T, S2B; and 2 pooled call sets for S1 and S2, denoted as
S1BT, S2BT were generated. 3 call sets per sample (i.e., S1T, S1B, and S1BT for S1 and S2T, S2B, and
S2BT for S2) were compared with each other to quantify and characterize any differences. The
SNP and indel statistics are summarized in Table 2. The SNP and indel statistics that were
obtained by HaplotypeCaller are also shown in Table 3.

Separately generated call sets. Briefly, after potential false positive removal (Methods), we
observed approximately 95% agreement between the pairs of SNP call sets generated from both
genomes (Table 4). The indel call sets showed a larger discrepancy, where only 18%-68% of
each callset were shared with the other two call sets (Table 4). The number of shared and dis-
crepant SNP and indels of HaplotypeCaller are shown in Table 5.

Robustness of Massively Parallel Sequencing Platforms

PLOS ONE | DOI:10.1371/journal.pone.0138259 September 18, 2015 4 / 11

https://github.com/pinarkavak/robust
https://github.com/pinarkavak/robust
http://alkanlab.org/paper-data/Kavak_RobustNGS/
http://alkanlab.org/paper-data/Kavak_RobustNGS/


Table 2. SNPs and indels discovered using UnifiedGenotyper.

SNPs Indels

Total Novel1 Total Novel1

S1T 3,320,545 40,936 34,407 430

S1B 3,356,829 60,596 132,144 2,076

S1BT 3,340,498 55,408 80,950 1,227

S2T 3,277,433 46,448 56,189 756

S2B 3,346,221 55,753 54,229 529

S2BT 3,393,037 98,383 32,743 502

1Compared to dbSNP138

doi:10.1371/journal.pone.0138259.t002

Table 3. SNPs and indels discovered using HaplotypeCaller.

SNPs Indels

Total Novel1 Total Novel1

S1T 3,540,735 57,905 614,241 35,624

S1B 3,504,854 58,578 668,779 41,558

S1BT 3,569,295 59,510 739,347 50,617

S2T 3,463,094 60,344 589,891 34,249

S2B 3,539,933 79,869 718,734 44,571

S2BT 3,613,663 72,099 217,365 57,056

1Compared to dbSNP138

doi:10.1371/journal.pone.0138259.t003

Table 4. Comparisons of total and novel SNP and indel call sets generated from the genomes of S1

and S2. S1B, S1T, S1BT: S1 calls from BGI, TÜBİTAK, and pooled datasets using UnifiedGenotyper; S2B,
S2T, S2BT: S2 calls from BGI, TÜBİTAK, and pooled datasets, respectively.

SNPs Indels

Total Novel Total Novel

S1B\S1T\S1BT 3,167,254 36,273 23,293 232

S1B \ S1T \ S1BT 75,839 16,073 67,478 1,239

S1T \ S1B \ S1BT 56,906 1,444 3,525 56

S1BT \ S1B \ S1T 22,737 8,896 11,647 300

(S1B\S1T) \ S1BT 29,807 615 1,476 26

(S1B\S1BT) \ S1T 83,929 7,635 39,897 579

(S1T\S1BT) \ S1B 66,578 2,604 6,113 116

S2B\S2T\S2BT 3,164,900 42,518 12,823 93

S2B \ S2T \ S2BT 40,492 4,899 22,599 258

S2T \ S2B \ S2BT 62,748 46,415 34,980 581

S2BT \ S2B \ S2T 62,029 2,314 3,567 219

(S2B\S2T) \ S2BT 12,972 251 5,420 35

(S2B\S2BT) \ S2T 127,857 8,085 13,387 143

(S2T\S2BT) \ S2B 37,532 1,365 2,966 47

doi:10.1371/journal.pone.0138259.t004
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To understand the causes of different calls from the same genomes, we investigated the
underlying sequence content of the discrepancies of novel SNP and indel calls in detail. First,
we downloaded the human reference genome annotations (segmental duplications and com-
mon repeats) from the UCSC genome browser (http://genome.ucsc.edu), CNV call sets from
the 1000 Genomes Project [11]. We then calculated and annotated the number of novel SNPs
and indels (Fig 1, Fig 1A and 1C, Fig 1B and 1D). We found that 46%-59% of discrepant novel
SNP calls intersected with common repeats, and 5%-28% intersected with segmental duplica-
tions. In addition, a 3%-5% of the discrepant calls were found within the CNV regions reported
in the 1000 Genomes Project [11], and 0.3%-0.8% were discovered in low coverage areas
(< 5X). Analysis of the discrepant indel calls yielded similar results (Fig 1B and 1D). Next, we
investigated the types of common repeats for the discrepancies. The majority of discrepant
calls were found to be within Alu and L1 repeats (Tables 6 and 7). The incongruent calls within
satellites and low complexity repeats were negligible. In addition, a close look to Alu and L1
subfamilies revealed that the number of discrepant calls peaked at* 10% sequence divergence
from consensus sequences, also showing negligible differences at recent and distant mobile ele-
ment insertion loci (data not shown). Both of these observations can be explained by low map-
ping quality within these regions, causing the GATK VQSR algorithm to filter out such calls.

The significance of the discrepant SNP and indels in terms of predicted functionality was
more closely investigated (Table 8). We found that 88%-95% of the discrepant SNP calls
mapped to intergenic and intronic regions, where a 3.5%-4.5%- were predicted to be within
coding exons, and ncRNAs. Indels showed similar properties, where only 0–3 of them were
predicted to incur frameshifts.

Pooled BGI vs Pooled TÜBİTAK. The number of shared and discrepant SNP and indel
calls are shown on Table 9. This strategy showed a better correspondence between the two
datasets, reducing the contradicting call rate to 0.1%-0.8%. The number of shared and discrep-
ant SNP and indel calls of pooled HaplotypeCaller are also shown on Table 10.

Table 5. Comparisons of total and novel SNP and indel call sets generated from the genomes of S1

and S2. S1B, S1T, S1BT: S1 calls from BGI, TÜBİTAK, and pooled datasets using HaplotypeCaller; S2B,
S2T, S2BT: S2 calls from BGI, TÜBİTAK, and pooled datasets, respectively.

SNPs Indels

Total Novel Total Novel

S1B\S1T\S1BT 3,373,868 43,693 552,114 22,090

S1B \ S1T \ S1BT 36,182 7,005 7,863 6,189

S1T \ S1B \ S1BT 55,145 6,663 9,729 3,735

S1BT \ S1B \ S1T 25,347 2,418 27,621 5,919

(S1B\S1T) \ S1BT 18,223 1,015 794 235

(S1B\S1BT) \ S1T 76,581 6,865 108,008 13,044

(S1T\S1BT) \ S1B 93,499 6,534 51,604 9,564

S2B\S2T\S2BT 3,334,025 46,783 543,893 22,332

S2B \ S2T \ S2BT 35,153 18,073 4,807 1,762

S2T \ S2B \ S2BT 52,188 8,034 16,981 6,611

S2BT \ S2B \ S2T 43,596 10,903 54,639 9,291

(S2B\S2T) \ S2BT 5,797 600 687 175

(S2B\S2BT) \ S2T 164,958 14,413 169,347 20,302

(S2T\S2BT) \ S2B 71,084 4,927 28,330 5,131

doi:10.1371/journal.pone.0138259.t005
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Fig 1. Underlying sequence content of novel SNP and indel calls. A) SNPs and B) indels in the genome of S1. C) SNPs and D) indels in the genome of
S2.

doi:10.1371/journal.pone.0138259.g001

Table 6. Detailed view of novel SNP and indel distributions of S1 that map to common repeats.

SNPs Indels

All S1 S1B only S1T only All S1 S1B only S1T only

Total 31,226 13,279 1,840 1,081 897 89

SINE/Alu 8,911 4,175 706 204 196 5

LINE/L1 8,779 3,581 332 415 330 33

LTR/ERV 5,370 2,022 263 84 74 4

Low compl. 429 196 55 63 41 11

Satellite 237 89 14 9 7 0

Simple rep. 1,605 1,011 312 151 118 27

Other 5,895 2,205 158 155 131 9

doi:10.1371/journal.pone.0138259.t006
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3 Discussion and Conclusion
With the improvements in cost efficiency, speed, and analysis algorithms, HTS platforms are
now being considered to be used routinely as part of health care. This assumption prompted a
pilot project called ClinSeq [12] that aims to investigate the strength and potential pitfalls of
using HTS data in the clinic. However, the HTS technologies continue to evolve and new plat-
forms are introduced almost every month. This, coupled with changes and updates of

Table 7. Detailed view of novel SNP and indel distributions of S2 that map to common repeats.

SNPs Indels

All S2 S2B only S2T only All S2 S2B only S2T only

Total 28,483 7,597 1,907 517 204 265

SINE/Alu 9,499 4,048 507 71 45 24

LINE/L1 7,396 1,331 511 208 71 112

LTR/ERV 4,360 434 221 66 20 38

Low compl. 653 399 59 32 17 12

Satellite 260 61 29 0 0 0

Simple rep. 1,489 784 410 54 26 27

Other 4,826 540 170 86 25 52

doi:10.1371/journal.pone.0138259.t007

Table 8. Distribution of discrepant novel SNP-indels of S1 and S2 over gene regions.

Novel discrepant SNP-Indels of S1 Novel discrepant SNPs-Indels of S2

S1T S1B S2T S2 B

SNP Indel SNP Indel SNP Indel SNP Indel

Total 4,048 172 23,708 1,818 3,679 628 12,984 401

intergenic 2,191 107 13,451 1,029 2,261 358 6,470 249

intronic 1,506 50 8,899 694 1,196 233 5,016 126

upstream 62 2 139 10 34 2 467 4

downstream 44 1 144 8 28 2 89 3

UTR5 33 0 36 1 5 1 228 1

UTR3 29 3 199 17 21 5 96 5

exonic nonsyn 26 0 129 0 5 0 131 0

exonic syn 24 0 47 0 7 0 42 0

exonic stopgain 0 0 5 0 0 0 0 0

exonic unknown 0 0 1 0 0 0 4 0

exonic 0 0 1 0 0 0 0 0

ex. frmshift del1 0 0 0 1 0 1 0 0

ex. nonfrmshift del 0 0 0 1 0 0 0 0

ex. nonfrmshift ins 0 0 0 1 0 0 0 0

splicing 1 0 13 1 2 0 31 0

ncRNA intronic 114 9 609 55 116 26 357 12

ncRNA exonic 17 0 33 0 4 0 39 1

ncRNA UTR5 1 0 1 0 0 0 8 0

ncRNA UTR3 0 0 0 0 0 0 6 0

ncRNA splicing 0 0 1 0 0 0 0 0

1ex. frmshift del: exonic frameshift deletion

doi:10.1371/journal.pone.0138259.t008
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algorithms to analyze HTS data raises questions about the maturity and robustness of HTS
platforms for accurate discovery and genotyping of genomic variants.

In an effort to answer this question, we analyzed the genomes of two individuals, each
sequenced twice using the same technology, albeit at different locations. Since our aim was to
investigate the maturity of sequencing platforms in this study, we used the same tools to char-
acterize both single nucleotide and short indel variants. Under the assumption of 100% robust-
ness, one would expect to characterize the same set of variants in both sequencing datasets
from the same genomes, however, this is not what we found.

We believe multiple factors contribute to this effect. First, since the library preparation is
different, one may expect difference in GC% bias, as clearly seen in Table 1 of the manuscript.
This leads to differences in read depth over different regions of the genome, which in turn
causes discrepancies in variation calls. The GC% effect can also explain the over-representation
of repeats and segmental duplications in terms of SNP discrepancies, as common repeats are
high in GC content (41.45% GC within common repeats vs 40.33% GC in unique regions),
together with difficulties in mapping to repeats and duplications. Second, although the make
and model of the sequencing instruments are the same, they are individually different
machines, which may account for slight differences in base calling errors. Third, mapping
biases against repeats and duplications incur additional problems in terms of mapping and
calling. We note that we used the same mapping and calling tools with the same parameters for
all datasets in this study, therefore the tools should not be the reason for discrepancies.
Although orthogonal methods are needed for definitive validations, we suggest that when there
are more than one data set, one should use all the available data for higher accuracy.

Table 9. Comparisons of total and novel SNP and indel intersections ofB1 vs. T1 andB2 vs. T2. B1, T1:
pooled S1 calls from BGI and TÜBİTAK datasets;B2, T2:pooled S2 calls from BGI and TÜBİTAK data-
sets, respectively.

SNPs Indels

Total Novel Total Novel

B1\T1 3,308,870 41,289 79,948 1,195

B1 \ T1 25,857 13,536 651 17

T1 \ B1 5,771 483 351 15

B2\T2 3,321,318 51,526 32,391 468

B2 \ T2 70,068 46,592 121 11

T2 \ B2 1,651 265 231 23

doi:10.1371/journal.pone.0138259.t009

Table 10. Comparisons of total and novel SNP and indel intersections ofB1 vs. T1 and B2 vs. T2. B1, T1:
pooled S1 calls from BGI and TÜBİTAK datasets using HaplotypeCaller;B2, T2:pooled S2 calls from
BGI and TÜBİTAK datasets, respectively.

SNPs Indels

Total Novel Total Novel

B1\T1 3,551,861 57,010 735,208 49,637

B1 \ T1 5,653 1,164 1,396 346

T1 \ B1 11,781 1,336 2,743 634

B2\T2 3,595,114 69,416 789,834 55,740

B2 \ T2 11,140 1,722 3,687 719

T2 \ B2 7,409 961 2,688 597

doi:10.1371/journal.pone.0138259.t010
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Sequencing machines, alignment and genomic variant discovery and genotyping algorithms
change rapidly, and one must be careful when interpreting results. Here we demonstrated
potential problems that may arise within HTS-based studies. Discrepancies between call sets
generated from the same genomes may be complementary false positives and false negatives in
each callset, in addition to common genotyping errors. Luckily, much of the differences were
found within non-genic regions and common repeats, which are of less importance for most
studies.
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