
THEORETICAL ADVANCES

Optimization of dependency and pruning usage in text
classification

Levent Özgür • Tunga Güngör

Received: 17 November 2009 / Accepted: 29 November 2010 / Published online: 23 December 2010

� Springer-Verlag London Limited 2010

Abstract In this study, a comprehensive analysis of the

lexical dependency and pruning concepts for the text

classification problem is presented. Dependencies are

included in the feature vector as an extension to the stan-

dard bag-of-words approach. The pruning process filters

features with low frequencies so that fewer but more

informative features remain in the solution vector. The

pruning levels for words, dependencies, and dependency

combinations for different datasets are analyzed in detail.

The main motivation in this work is to make use of

dependencies and pruning efficiently in text classification

and to achieve more successful results using much smaller

feature vector sizes. Three different datasets were used in

the experiments and statistically significant improvements

for most of the proposed approaches were obtained.

Keywords Text classification � Lexical dependency �
Pruning analysis � Stanford parser

1 Originality and contribution

The motivation of this paper is to extend the standard

bag-of-words (bow) method used in the text classification

problem. The main contributions are twofold. On one hand,

an analysis for the optimal level of pruning implementation

of the features was performed by testing ten different

levels. On the other hand, experiments with 36 lexical

dependencies were performed independently and the final

test was conducted using the combination of the leading

dependencies in addition to all the words in the documents.

Besides the benchmark bow method, three new methods

concerning these subjects were proposed.

Three significance tests have been implemented to test for

the robustness of the results and the significance of the

improvements. Besides the classical micro and macro sign

tests, an extended version of the micro sign test was derived

in this study. The results showed that for each extension in

the methods, a corresponding significant improvement was

observed in the success rates and pruning levels higher than

the previously used standard level in the literature (i.e. two)

were observed in almost all the experiments with the three

datasets. In parallel with these results, the most advanced

method combining the leading dependencies with optimal

pruning levels outperformed all the other methods in terms of

success rates with reasonable feature sizes.

As another contribution, the optimal feature numbers

showed a consistent behavior (between 2,400 and 4,200) in

all the optimal results of the proposed methods for all three

datasets. From the dataset perspective, an important out-

come is about the formality level of the datasets. The

pruning process improved the success rates of the informal

MiniNg20 dataset much more than the other two formal

datasets (Reuters and NSF). In addition, the formal datasets

resulted in common dependencies in the leading depen-

dency analysis, while the informal MiniNg20 benefited

from different and simpler dependency types.

2 Introduction

Document patterns are domain specific and structured

information which are extracted from unstructured

L. Özgür (&) � T. Güngör

Department of Computer Engineering, Boğaziçi University,

Bebek 34342, Istanbul, Turkey

e-mail: ozgurlev@boun.edu.tr

T. Güngör

e-mail: gungort@boun.edu.tr

123

Pattern Anal Applic (2012) 15:45–58

DOI 10.1007/s10044-010-0195-5

machine readable documents [1]. Different pattern types

(predicate-argument model, chains, linked chains, subtrees,

etc.) have been studied in the literature using alternative

ways of linguistic analysis [2]. The aim in building a model

based on document patterns is, in general, to extract suf-

ficiently expressive patterns from the documents without

causing too much additional complexity.

Lexical dependency is an extended model of document

patterns in which sentence structure is represented using

the grammatical relations (object-verb, conjunctive, prep-

ositional modifier, etc.) between the words in a sentence

[3]. A dependency is simply formed as the combination of

any two words holding one of these grammatical relations.

For example, three sample dependencies extracted from a

sample sentence ‘‘We use combination of dependencies in

text classification.’’ may be listed as we-use (subject–verb),

classification-text (noun compound modifier), and depen-

dencies-classification (prepositional modifier). Here, we is

the subject and use is the main verb of the sentence and the

combined pattern forms the subject–verb dependency. Text

and classification are both nouns and the preceding one

affects the meaning of the other, so this dependency couple

is named as noun compound modifier. For the last pattern,

dependency is modified by the noun classification through

the in preposition which forms the prepositional modifier

dependency.

The concept of lexical dependency was previously used in

many information retrieval applications such as syntactic

tagging of words [4], parse disambiguation [5], text com-

pression [6], machine translation [7], and textual entailment

[8]. It was also employed as a framework for interactive and

multilingual information retrieval problems that also include

text classification implementation [9]. In this study, the aim

is to perform a comprehensive analysis of dependency usage

in the text classification (TC) domain. Basically, TC is a

learning task in which documents are matched with category

labels based on the likelihood suggested by a training set of

labeled documents. Bag-of-words (bow) form is accepted as

the simplest and the most successful approach used in the TC

problem. In this standard approach, only the words in the

documents are considered as the features of the solution

vector used for classification. As an alternative to the stan-

dard bow approach, some semantic and syntactic-oriented

solutions that utilize the WordNet system [10] were also

proposed, but most of these solutions did not yield successful

results due to the disambiguation problem [11]. There are

also particular studies that aim to increase the success rate of

the standard bow approach, but they either include semi-

automatic processes [12] or significantly increase the com-

plexity of the overall system [13] at the expense of more

successful results.

There are some studies that specifically focus on depen-

dencies for text classification. The pioneering studies in this

topic include noun phrases and main argument dependencies

(subject–verb, object–verb, etc.) in the document represen-

tation; however, no significant improvement was achieved

[14, 15]. In a more recent study, dependencies (extracted by

n-gram rules) were used in the solution vector in addition to

words and significantly more successful results were

obtained; however, only the leading dependencies were used

and the selection process benefited from human interaction

(performed by human annotators) [16]. In another recent

study, many linguistic features (e.g. part-of-speech infor-

mation, word senses, proper nouns, etc.) were experimented

in addition to the words, but no significant improvements

were observed mostly due to the ambiguity problem [17].

Another related study reported the ineffectiveness of lin-

guistic support in text classification by also pointing out

the negative effect of a specific dependency: subject–object–

verb [18]. There also exist studies based on dependen-

cies that yielded successful results by using rule-based

algorithms, but on a specific and not widely used dataset

[19].

In almost all of these works, all dependency types were

included in the solution vector together without any further

analysis. Another drawback arises from the feature selec-

tion implementation which tries to filter unimportant and

uninformative features based on some statistical ranking

rules in order to reach more scalable and accurate solu-

tions. Pruning, which is the simplest and one of the most

efficient selection method, was mostly performed during

the tests but with a predefined static level (e.g. two or

three). A recent study increased the success rates of the

classifier by considering noun-modifier dependencies and

word senses in addition to the bow approach with also a

fixed level of pruning implementation [20]. In another

study which performed a distinct analysis of dependencies,

a slight improvement over the baseline of the standard bow

approach was achieved [21]. However, due to the lack of

pruning, most of the dependency types used in this work

yielded many instances (distinct word pairs), which resul-

ted in an excessive number of features and a highly sparse

solution set in the machine learning algorithm. Besides

pruning, there exist various types of feature selection

metrics for filtering methods such as Chi-square, informa-

tion gain, tf-idf, document frequency, etc. [22, 23]. Con-

cerning these metrics, there are many studies analyzing and

comparing the metrics [23, 24], combining them based on

specific measurements [25], and providing unsupervised

selection algorithms [26]. We chose pruning as the feature

reduction approach in this work for its simplicity, effi-

ciency, and success performance. In the initial tests, we

also experimented with tf-idf as an alternative method. The

success rate of the tf-idf approach when only the words

were used as features was similar to that of the pruning

implementation, but the results were not satisfactory when

46 Pattern Anal Applic (2012) 15:45–58

123

the dependencies were included in the feature vector. Thus,

we decided to continue with the pruning technique.

In this paper, we extend the dependency-oriented text

classification studies with two main improvements: pruning

analysis and combination of dependencies. The pruning

implementation filters features having low frequencies in

the datasets in order to arrive at fewer but more informative

features. By this implementation, the aim is to solve the

sparse solution vector problem caused by the excessive

number of dependency features. Pruning is implemented

incrementally in three main stages: pruning of words,

pruning of dependencies, and pruning of dependency

combinations. For the combination of dependencies, the

leading dependencies that yield the most successful results

for each dataset are combined and included in the solution

vector as an extension to the standard bow approach.

The rest of the paper is organized as follows: Sect. 3

explains the system tools and environmental variables. The

details of the proposed infrastructure are discussed in

Sect. 4. The analysis of the results of the experiments are

detailed in Sect. 5. The paper is concluded in Sect. 6.

3 System tools and environmental variables

In this section, the resources and the modules used in the

proposed system are explained, which are the main build-

ing blocks of the system infrastructure. Such modules and

resources are also used as standard tools in many other

TC-related tasks.

3.1 Datasets

In this study, three datasets are used from the UCI machine

learning repository: Reuters-21578 (Reuters), National

Science Foundation research award abstracts (NSF), and

mini 20 newsgroups (MiniNg20) [27]. Datasets with dif-

ferent characteristics were chosen in order to be able to

analyze the effect of the methods on different types of data

and to make comparisons between them.

Reuters is one of the most experimented datasets in TC

studies [22, 28]. The standard Mod-Apte split is used which

splits the dataset into 9,603 training documents and 3,299

test documents [22]. The dataset consists of 90 classes and

is highly skewed. For instance, most of the classes have

less than ten documents while seven classes have only one

document in the training set. Also, the dataset allows

multiple topics so that documents in the corpus may belong

to more than one topic.

The NSF dataset consists of 129,000 abstracts describ-

ing NSF awards for basic research between the years 1990

and 2003 [27]. Five sections from the year 2001 were

picked out randomly (four sections for training and one

section for test). Five different groups were built, all the

tests were repeated with these five cross folds, and their

average was taken as the final result.

The MiniNg20 dataset consists of 2,000 messages with

1,600 training messages and 400 test messages that belong

to a collection of 20 different usenet newsgroups. Unlike

the other two datasets, this dataset is web-driven and

informal with many misspellings, non-standard abbrevia-

tions, and many other text errors. It allows only one topic

per message and is a balanced dataset having equal number

of messages for each topic.

3.2 Preprocessing

Preprocessing is the initial step of text processing and it

consists of standard routines such as removal of non-alpha-

betic characters and mark-up tags, case folding, elimination

of stopwords, and stemming. Stoplists are used for automatic

removal of uninformative words which causes a significant

reduction in the number of features that have to be stored. In

this work, the list of 571 stopwords of the Smart system was

used for this purpose [22, 29]. Stemming was implemented

using the Porter stemmer which is one of the most experi-

enced stemmers for word forms [30]. Finally, term weighting

was performed to assess the relative importance of the terms

in the documents, which is fed to the machine learning

component. As a common term weighting approach, the

tf-idf metric is a simple and direct measure that takes the term

frequency (tf) and the term’s presence in the entire dataset

(df) into account as shown in Eq. 1.

tf � idf ¼ tft;d � log
N

dft
: ð1Þ

An alternative metric is Boolean weighting that checks

only the occurrence of a term and does not consider the

occurrence frequency. Thus, it is simpler than tf-idf and

was outperformed by tf-idf in related studies [29, 31].

Another version of tf-idf, log(tf)-idf, was reported not to be

significantly more successful than the original version [28],

so the standard tf-idf metric was used in the proposed

methods [22]. This standard formulation is used to

calculate the weight of a term t in a document d, where

tf is the frequency of term t in document d (each document

vector is normalized to unit length to account for

documents of different lengths), N is the total number of

documents, and dft is the number of documents in the

dataset that include t.

3.3 Machine learning tool

In text classification, we have a document space X, a

description of each document d [X, and a set of classes

C = c1, c2, …, cm, where m is the number of classes.

Pattern Anal Applic (2012) 15:45–58 47

123

Using machine learning algorithms, a classification func-

tion f is learned that maps documents to classes [22]:

f : X ! C: ð2Þ

The main machine learning approaches used in the TC

domain may be classified as supervised vs. semi-supervised

methods, parametric versus non-parametric methods, linear

versus non-linear classifiers, vector space versus probabi-

listic classification, and decision tree modeling. Clustering

(e.g. k-means, which is unsupervised and semi-parametric)

may also be employed in the case of the existence of a

dataset without labeled training data.

Support vector machine (SVM) with linear kernel is the

machine learning module which is used as the classification

algorithm in this work. This is a supervised, linear and

parametric vector space classification algorithm. Several

studies have compared the performances of various clas-

sification algorithms including SVM with different kernels,

k-nearest neighbor, and Naive Bayes in the text classifi-

cation domain [23, 28, 32, 33]. Among these alternatives,

SVM with linear kernel was shown to yield the best results.

In the experiments, we use the SVM{light system which is an

efficient SVM implementation [33] that has been com-

monly used in previous studies. The one-versus-all mode is

selected for dataset topics for SVM classification [23].

3.4 Syntactic tool

Stanford Parser is known to be one of the most powerful

and efficient parsers having the least error rate [2]. Given a

sentence, the parser identifies the dependencies in the

sentence in two phases. In the first phase, the sentence is

parsed using a statistical phrase structure parser based on a

probabilistic context-free grammar (PCFG), which was

trained on the Penn Wall Street Journal treebank [34]. The

part-of-speech tags of the tokens, the semantic heads in the

sentence, and the dependents of the heads (auxiliaries,

complement, etc.) are determined. Below the parse tree of

the example sentence ‘‘We use combination of dependen-

cies in text classification.’’ is shown:

In the second phase, the dependencies extracted are

labeled with grammatical relations using the tree-expres-

sion syntax defined by the tregex tool [35]. Below the

dependencies obtained for the example sentence are listed

(details of the dependencies will be explained in Sect. 4.2):

– Subject–verb (We, use)

– Object–verb (combination, use)

– Prepositional modifier-of (combination, dependencies)

– Noun compound modifier (classification, text)

– Prepositional modifier-in (dependencies, classification)

In the tests with the Stanford Parser, we observed that

the parser averts syntactic ambiguities in the sentences

successfully and gives the first probable parse as the result.

3.5 Evaluation criteria

3.5.1 F-Measure

In this work, to evaluate the performance of the proposed

approaches, the commonly used F-measure metric is used,

which is equal to the harmonic mean of precision (p) and

recall (q) [22]. p and q are formulated as follows:

pi ¼
TPi

TPi þ FPi
; qi ¼

TPi

TPi þ FNi
ð3Þ

Here, TPi (true positives) is the number of documents

assigned correctly to class i; FPi (false positives) is the

number of documents that do not belong to class i, but are

assigned to this class incorrectly; FNi (false negatives) is

the number of documents that are not assigned to class i by

the classifier but which actually belong to this class.

The F-measure values are in the interval (0,1) and larger

F-measure values correspond to higher classification

quality. The overall F-measure score of the entire classi-

fication problem can be computed by two different types of

average, micro-average and macro-average [22].

In micro-averaging, F-measure is computed globally

over all category decisions:

Fðmicro-averagedÞ ¼ 2� p� q
pþ q

ð4Þ

Micro-averaged F-measure (MicroF) gives equal weight to

each document and is therefore considered as an average

over all the document/category pairs. It tends to be domi-

nated by the classifier’s performance on common

categories.

In macro-averaging, F-measure is computed locally over

each category i first and then the average over all catego-

ries is taken:

Fi ¼
2� pi � qi

pi þ qi

; Fðmacro-averagedÞ ¼
PM

i¼1 Fi

M
; ð5Þ

48 Pattern Anal Applic (2012) 15:45–58

123

where M is the total number of categories. Macro-averaged

F-measure (MacroF) gives equal weight to each category,

regardless of its frequency. It is influenced more by the

classifier’s performance on rare categories. Both mea-

surement scores are provided in the experiments to be more

informative.

3.5.2 Significance tests

A set of three significance tests was designed to compare

the proposed methods and to give an extensive and robust

analysis of the results:

– Micro sign test. This is an instance-based test that

compares the system based on the micro perspective of

the results. A document-category pair is the basic unit

to decide whether the document belongs to the category

(positive instance, 1) or not (negative instance, 0). In

this significance test, two systems are compared based

on their binary decisions on all the document-category

pairs. The correctness of the decisions are compared for

each pair [28]. Standard z values are calculated and the

corresponding confidence levels are determined accord-

ing to the standard normal distribution [36, 37].

– Micro sign test with positive instances. The document-

category matrix in the micro sign test is a highly sparse

matrix with a large number of negative instances (0).

This is not surprising because each document belongs to

usually three or four categories at most and has a negative

value for the remaining categories. The micro sign test

takes all the positive and negative instances between the

compared systems into consideration, which in fact

favors the negative ones since they occur much more

frequently. Based on this observation, an extension of the

micro sign test was derived by redesigning the test

considering only the positive instances. In this way, the

test focuses only on the instances in which the document

belongs to that category. The rest of the test (comparison

algorithm, z value calculation, confidence level determi-

nation, etc.) is the same as in the micro sign test. In

specific situations that we want to consider only the

positive matches of document-category matrix for per-

formance comparison, the outcome of this extended

version of micro sign test should be analyzed.

– Macro sign test: This is a category-based test that

compares the two systems based on their F-scores on

each category of the dataset. The test considers the

number of times that the two systems yield different

scores and the number of times that the score of one of

the systems is larger than the score of the other system

[28]. The z value calculation and confidence level

determination processes are the same as in the micro

sign test.

4 Main infrastructure and experimental design

In this section, the details of the proposed approach are

discussed. The main contributions in this research are the

pruning implementation and the dependency usage, and

they will be explained in Sects. 4.1 and 4.2, respectively.

Alternative scenarios based on these concepts will be

analyzed in Sect. 4.3.

4.1 Pruning implementation

Pruning is used in order to filter low-frequency features so

that fewer but more informative features remain in the final

solution vector. This process is implemented by eliminat-

ing the terms that occur less than a certain threshold value

in the whole training set. This threshold is named the

pruning level (PL). The pruning levels are analyzed for

words, dependencies, and dependency combinations sepa-

rately. PL = nðn� 1Þ indicates that features occurring less

than n times in the training set are filtered, thus only the

features with at least n occurrences are used in the solution

vector. Note that PL = 1 means that no pruning is imple-

mented for that feature type.

The pruning concept is especially useful for dependency

features. As mentioned in Sect. 2, a dependency is formed

by combining any two dependent words. Most of the

dependency types (see Table 1) yield many instances

(distinct word pairs) for a dataset. This causes an excessive

number of features. Moreover, for a dependency feature to

reoccur in the dataset, both of the words in the word pair

must be repeated with the same pattern. This indicates that

the majority of these features have zero or quite low fre-

quencies in most of the documents [21]. This makes the

solution vectors used in the machine learning algorithms

highly sparse. As will be seen later, pruning such features

has a significant effect on both the accuracy and the effi-

ciency of the methods.

One of the main contributions of this study is that

parameter tuning is performed by analyzing different val-

ues for each method and dataset to reach the optimal PL

values. These methods and the details of the pruning

analysis will be explained in Sect. 4.3.

4.2 Dependency analysis

36 dependency types are used in the tests. Table 1 shows

the complete list of dependency types accompanied with

their definitions and some examples. Dependency types

formed of numeric tokens (i.e. numeric modifier) were

eliminated because they did not improve the accuracy of

the system in the experiments. Some of the similar

dependency types were combined in order to sum up their

frequencies and thus increase the discriminative power of

Pattern Anal Applic (2012) 15:45–58 49

123

the classifier. For instance, the types dobj (direct object),

iobj (indirect object), and pobj (prepositional object) that

denote dependencies formed of the indicated object and the

main verb of a sentence yield many overlapping instances

and thus they were considered as a single dependency type

(obj).

4.3 Experimental design

An incremental framework is designed for the analysis of

the dependency and pruning concepts in the TC domain.

As can be seen in Fig. 1, the framework consists of four

main stages. At each stage, the method of the preceding

stage is improved by adding a new property in order to

increase the overall performance of the system. The details

of the stages are explained in the following subsections.

In the methods where pruning is applied, the experi-

ments are repeated with incremental PL values. We stop

incrementing the PL value when success rates start to drop

consistently. Pruning for words and dependencies were

analyzed separately since the optimal pruning levels will be

different in each case. Since dependencies are formed as

Table 1 Dependency types used in the experiments

Symbol Type Examples

acomp Adjectival complement Turn-bad, make-clear

adv Adverbal clause modifier modifier Quickly-open, also-plan

agent Agent Approve-bank, approach-vector

amod Adjectival modifier Scientific-study, principal-investigator

app Appositional modifier Monitoring-detection, eigenvalues-separation

attr Attributive complement Remain-year, payable-april

aux Auxiliary passive Expected-are, study-to

cls Clause modifier Use-determine, determine-interact

comp Complement Decline-disclose, plan-study

complm Complementizer Is-that, make-that

conj Conjunctive Energy-chemical, variables-observations

infmod Infinitival modifier Way-invest, project-study

mark Mark Account-while, although-beginning

nn Noun compound modifier Source-laser, detection-problem

obj Object–verb Glass-break, study-questions

part Participle modifier Costs-related, measurements-needed

poss Possession modifier Asia-nations, their-regulations

prep-along Prepositional modifier-along Moves-chromosomes, come-way

prep-as Prepositional modifier-as Farming-strategy, treat-human

prep-at Prepositional modifier-at Available-institution, glass-table

prep-btwn Prepositional modifier-between Relation-algebra, black-white

prep-by Prepositional modifier-by Displayed-species, performed-actor

prep-for Prepositional modifier-for Use-study, hunt-food

prep-from Prepositional modifier-from Show-studies, come-home

prep-in Prepositional modifier-in Low-cost, holiday-june

prep-into Prepositional modifier-into Extend-regions, divide-parts

prep-none Prepositional modifier-generic Clarify-by, prevent-from

prep-of Prepositional modifier-of Modeling-behavior, problems-students

prep-on Prepositional modifier-on Work-project, put-table

prep-over Prepositional modifier-over Stayed-time, talk-subjects

prep-to Prepositional modifier-to Similar-theory, seem-me

prep-with Prepositional modifier-with Vary-depth, gone-wind

prt Phrasal verb participle Cover-up, pointed-out

rcmod Relative clause modifier modifier Begins-season, type-large

rel Relative modifier Which-allows, numbers-large

subj Subject–verb They-break, student-studies

50 Pattern Anal Applic (2012) 15:45–58

123

pairs of words, they occur with much less frequencies than

words and thus they are expected to be optimized at smaller

PL values.

The effect of pruning is observed to diminish at higher

pruning levels since most of the features have already been

pruned at earlier levels. For instance, while pruning the

dependencies on the MiniNg20 dataset, increasing the PL

value from PL = 1 to 2 eliminates about 75% of the

dependencies, indicating that most of the dependency pairs

occur only once in the whole dataset. On the other hand,

when the PL value is incremented, for instance, from

PL = 20 to 30, only one dependency is pruned among the

dependencies in the solution vector with PL = 20. The

same situation occurs during word pruning and on the other

datasets too. Based on this observation, the pruning anal-

ysis is performed with small increments in initial pruning

levels (e.g. PL = 1, 2, 3) and larger increments in higher

levels (e.g. PL = 20, 30, 50).

4.3.1 AW

AW (all words) is the benchmark method that uses the

standard bow approach with all the words in the feature

vector. It is implemented once for each dataset without any

variation. The main motivation in this study is to extend

this approach by the proposed solutions and outperform it

in terms of success rate and feature vector size.

4.3.2 AWP

The AWP (all words with pruning) method considers all

the words in the document collection, but filters them by

the pruning process. Algorithms that are similar to AWP

have already been experimented in TC, but they lack a

detailed analysis of alternative pruning levels and usually

the pruning level is arbitrarily fixed to a small value such as

two [20]. In this work, this method is implemented with

several pruning levels (2, 3, 5, 8, 13, 20, and 30) to

determine the optimal word PL value for each dataset.

4.3.3 AWDP

The AWDP (all words and dependencies with pruning)

method extends both the AW and the AWP approaches

using dependencies in addition to words and also by

pruning both feature types to obtain the final feature set.

The PL values for words are fixed at the optimal values

found by the AWP method. The dependencies corre-

sponding to a dependency type are generated and they are

filtered using varying pruning levels. Then the classifica-

tion algorithm is executed using the pruned feature vector.

This process is repeated separately for each dependency

type. The main motivation of this method is to perform

pruning level analysis for dependencies. The PL values

(2, 3, 5, 8, 13, 20, and 30) are used in this stage.

4.3.4 AWDCP

The AWDCP (all words and dependency combinations

with pruning) method extends the AWDP method using the

combination of the leading dependencies instead of using

them individually. For this purpose, the five most suc-

cessful dependency types are selected and used together for

each dataset. Pruning level analysis is performed using ten

different pruning levels: 2, 3, 5, 8, 13, 20, 30, 50, 80, 120.

Different from the previous methods, the PL value was

increased up to PL = 120 since the success rates continued

to improve past PL = 30 for some of the experiments.

Fig. 1 General system architecture with the proposed methods

Pattern Anal Applic (2012) 15:45–58 51

123

To the best of our knowledge, this is the first study that

considers the successful dependency types and uses them

as an extension to the bow approach in the TC problem.

5 Analysis of results

In this section, first the optimal values of the pruning level

parameter used in the methods are explained. Then the

results of the experiments with these parameter values are

discussed. Following this, we focus on some specific

aspects of the methods and the experiments and comment

on these: pruning level analysis, optimal feature number,

significance of the improvements, and dataset comparison.

5.1 Optimal parameter decisions

The AW method uses the standard bow approach and does

not involve any pruning. For the AWP method, the optimal

word pruning level was found as 13 among the experi-

mented values for all the three datasets. As stated previ-

ously, words and dependencies are pruned independent of

each other in the AWDP method. The PL value for words

was fixed as 13 (as determined in the previous stage) and

among the PL values analyzed, optimal dependency

pruning levels were found as 8, 8, and 2 for Reuters, NSF,

and MiniNg20, respectively. These dependency PL values

are the optimal values corresponding to the dependency

type that gave the best success rate in each dataset (e.g.

prep-in in Reuters). However, most of the successful

dependency types are observed to converge to similar

optimal pruning levels.

For the AWDCP method, the five leading dependency

types determined by AWDP for each dataset (see Table 3)

were considered. All the dependencies formed of these five

dependency types were included in the feature vector and

the method was tested with varying pruning levels. The

optimal PL values for dependency combinations were

determined as 50, 8, and 8 for Reuters, NSF, and Min-

iNg20, respectively. The success ratios of the methods as a

function of the PL values will be compared and analyzed in

Sect. 5.3.

5.2 Performance of the methods

Table 2 shows the success rates of the methods in terms of

their MicroF and MacroF scores. The results shown rep-

resent the most successful result obtained for each method

under the optimal PL value. The AW method that is used as

the benchmark method for comparing with other methods

yields the worst results. The AWP method outperforms the

baseline performance when applied with the optimal word

PL values. Similarly, the performance of AWP is exceeded

by the AWDP method. The success rates shown in the table

for AWDP correspond to the results obtained using the

optimal dependency PL values and the most successful

dependency type (see Table 3). In fact, as can be seen from

the tables, using any one of the five best dependency types

gives more successful results than using only words.

Table 3 shows the performance of AWDP for the best

dependency types for each dataset. The AWDCP method,

which is the most sophisticated approach proposed in this

study, incorporates all the dependencies formed of these

dependency types as features in the feature vector. As a

result, it outperforms all the other methods with the optimal

pruning levels for dependency combinations.

5.3 Pruning level analysis

Figures 2 and 3 show, respectively, the MicroF and

MacroF scores as a function of PL (AWP with PL = 1

corresponds to AW). The horizontal axes in the figures

correspond to the word PL values for AWP, dependency

PL values for AWDP (word PL value is fixed to the opti-

mal value), and dependency combination PL values for

AWDCP (word PL value is fixed to the optimal value).

With both MicroF and MacroF measures and in almost all

PL values, AWDP improves the success rate of AWP and

AWDCP gives the best results for all the datasets. This

result is consistent with the analysis discussed in Sect. 5.2.

The curves in the figures are observed to follow a similar

pattern with respect to the PL improvement. Although the

optimal pruning level varies depending on the method and

the dataset, each performance curve is bell-shaped and the

success scores first increase up to the optimal PL value and

then decrease. This analysis reveals the fact that the

pruning process arrives at fewer but more informative

features for TC at some PL value and after this optimal

level the process starts to eliminate rare but informative

features which causes the performance to fall. Despite the

previous related studies fixing the pruning level to a small

value (e.g. two) [20], the results reveal that the optimal

value is generally much higher than that value with almost

all the proposed methods in the three datasets. A detailed

analysis about the pruning levels with respect to the dataset

properties will be given in Sect. 5.6.2.

5.4 Optimal feature numbers

Table 2 shows the number of keywords for each method

and dataset. Since it does not involve any pruning process,

the AW method uses all the words in the dataset in the

feature vector. For the other approaches, the keyword

numbers are seen to be between 2,400 and 4,200.

In different studies related to feature selection in the

literature, several feature number levels (500, 1,000, 2,000,

52 Pattern Anal Applic (2012) 15:45–58

123

5,000, 10,000, etc.) were reported to give successful results

with different machine learning algorithms [28, 29, 33].

The optimal feature number range that was obtained in this

work (2,400–4,200) can be said to be consistent with these

stated results.

5.5 Significance of the improvements

Table 4 compares the methods used in this work and shows

the statistical improvement results. Three significance tests

that have been defined in Sect. 3.5.2 were applied. The

micro sign test measures the improvement over the whole

document-category matrix. An extended version of this

measure (micro sign test with positive instances) has been

derived in order to avoid sparsity, which focuses on only

the positive samples in this matrix. The macro sign test is

category oriented and it considers the F-scores of the two

systems for each category of the datasets. The methods

were compared according to the z values and the corre-

sponding confidence areas were looked up in the z-table.

The following symbols and terminology are used to denote

the result of a comparison:

�: Significantly outperform (more successful with at

least 99% confidence level)

[: Significantly better (more successful within 95–99%

confidence level)

*: Similar, not significantly better or worse (success

confidence level is less than 95% and more than 5%)

From the table, it can be seen that in most cases there is

a significant improvement between a method and its

predecessor. The results of the AWDCP method are always

statistically better than the benchmark (AW) method in all

the datasets. The last part of the table shows the overall

results by taking into account all the instances from the

three datasets. Each method is observed to significantly

outperform its predecessor method (AWDCP� AWDP�
AWP � AW) and AWDCP (the most advanced method

proposed in the study) is significantly the best method.

5.6 Dataset comparison

As discussed in Sect. 3.1, all the experiments were per-

formed with three different datasets. Reuters and NSF can

be regarded as alike with many mutual characteristics,

while MiniNg20 differs from them in terms of formality,

skewness, and other related issues. In this section, the

results are analyzed from the dataset perspective and the

datasets are compared according to these characteristics

and results.

5.6.1 Skewness factor

A point that is worth noting is the difference between the

MicroF and MacroF scores in a dataset. As can be seen in

Table 2, the MicroF score of Reuters is about 1.9 times of

its MacroF score and this ratio is about 1.4 in NSF. On the

other hand, the MiniNg20 dataset yields similar MicroF

and MacroF scores in almost all experiments. As explained

in Sect. 3.5.1, the MicroF measure gives equal weight to

each document. In the case of the MacroF measure, equal

weight is given to each category, which favors the

Table 2 Success scores of the proposed methods

Reuters NSF MiniNg20

Key# MicroF MacroF Key# MicroF MacroF Key# MicroF MacroF

AWDCP 4,138 86.03 45.26 3,908 66.01 47.68 2,914 54.23 51.65

AWDP 4,198 85.96 45.07 2,829 65.07 47.10 3,114 54.13 51.53

AWP 3,976 85.84 44.85 2,478 64.58 46.49 2,863 53.62 51.02

AW 20,292 85.58 43.83 13,424 64.46 46.11 30,970 46.42 43.44

Table 3 Success scores of the leading dependencies in AWDP with the optimal PL values

Reuters PL Word: 13

PL Dep.: 8

NSF PL Word: 13

PL Dep.: 8

MiniNg20 PL Word: 13

PL Dep.: 2

MicroF MacroF MicroF MacroF MicroF MacroF

1 prep-in 85.96 45.07 nn 65.07 47.10 prt 54.13 51.53

2 prep-from 85.87 45.14 amod 65.03 47.09 rel 54.04 51.45

3 amod 85.93 45.04 subj 64.97 46.83 app 53.97 51.33

4 part 85.93 45.04 obj 64.79 46.82 infmod 53.97 51.33

5 comp 85.99 44.94 comp 64.78 46.76 prep-btwn 53.87 51.34

Pattern Anal Applic (2012) 15:45–58 53

123

documents in rare categories (categories including a small

number of documents). Based on this fact, the category-

document distribution (skewness factor) becomes an

important factor for MicroF-MacroF comparison.

In skewed datasets, there does not exist available suffi-

cient number of documents in some of the classes, which

causes the MacroF measure to drop significantly. Reuters is

a highly skewed dataset; NSF is also skewed but its

skewness is less than Reuters. On the other hand,

MiniNg20 is a balanced dataset and similar MicroF and

MacroF values can be obtained.

5.6.2 Optimal PL values

The optimal PL value shows variation as a function of the

applied method and the dataset. When the pruning levels

are compared with respect to the methods, an expected

pattern is observed. The PL values of AWDP are less than

those of AWP. Since dependencies are formed of pairs of

words, their frequencies in the dataset are lower than the

frequencies of words, which, in turn, requires a lower

dependency PL value to eliminate the irrelevant depen-

dencies. A similar behavior exists between the AWDP and

Fig. 2 Pruning level analysis

with the proposed methods

(MicroF)

54 Pattern Anal Applic (2012) 15:45–58

123

AWDCP methods. AWDCP includes in the feature vector

all the dependencies corresponding to five leading depen-

dency types rather than dependencies of a single type as in

the case of AWDP. Increasing the number of dependency

types causes more dependencies (features) in the solution

vector. Thus, higher pruning levels are needed to eliminate

the irrelevant dependencies and reach the optimal feature

number.

The dataset type also has an effect on the pruning levels.

The word PL values for the three datasets reach their

maxima at similar points and the optimal values were fixed

as PL = 13. For dependencies, the optimal PL value of

MiniNg20 is much less than the values of Reuters and NSF.

This is due to the informal writing style and misspellings in

this dataset, which makes it difficult to find lots of repeated

occurrences of a word pair. Thus, a low PL value is suf-

ficient to filter most of the irrelevant dependencies. When

the AWDCP method is applied, the PL values of Reuters

and MiniNg20 increase significantly (from 8 to 50 and

from 2 to 8, respectively), while it stays the same (8) for

NSF. This is in fact understandable because in the AWDP

tests with NSF, PL value may have been selected as 3 or 5

Fig. 3 Pruning level analysis

with the proposed methods

(MacroF)

Pattern Anal Applic (2012) 15:45–58 55

123

(which, in the next stage, would yield the improvement of

AWDCP) but the larger value was preferred (PL = 8,

which gave a success rate similar to PL = 3 and PL = 5)

to decrease complexity. This shows that the NSF results are

compatible with the other datasets in terms of PL opti-

mality. Higher PL values in the AWDCP method is closely

related with the idea of the optimal feature number that has

been mentioned in the above paragraph. There are more

possible feature types (so more features) with AWDCP so

more pruning implementation is needed to reach the opti-

mal feature number that gives the most successful results.

5.6.3 Formality level

The Reuters and NSF datasets can be stated to have a

formal style, whereas MiniNg20 is mostly informal. Since

the efficiency of parsing is directly affected by the gram-

matical level of a document, less accurate parse results are

achieved in MiniNg20 due to morphological and syntactic

errors. There are many misspellings and related text errors

in MiniNg20 which decreases the success rate of classifi-

cation: about 60% of the words and 70% of the depen-

dencies occur only once in the whole dataset and are

eliminated when PL = 2. As can be seen by a comparison

of AW and AWP in Table 2, this initial pruning process

increases the success rates in MiniNg20 much more than

Reuters and NSF, which shows the success of pruning

especially in informal datasets.

5.6.4 Common successful dependencies

Table 3 shows that Reuters and NSF have two common

dependencies (shown in bold) in the five leading depen-

dencies, while MiniNg20 has no common dependencies.

One of the common dependencies is comp which is a

structurally complicated dependency formed by integrating

two verbs that have the same subject in the adjacent

clauses. However, in the informal MiniNg20 dataset, this

complex dependency does not improve the performance of

the classifier due to the simple and ungrammatical sentence

structures in the dataset. Instead of this dependency, prt

(phrasal verb participle, e.g. write down) which is one of

the simplest dependencies yields the most successful

results with MiniNg20. Although much more tests with

different dataset types are needed to perform automatic

detection of the most useful dependencies, it seems that

dependency complexity is positively correlated with the

dataset formality level: the more formal a dataset is, the

more complicated dependencies it benefits from.

6 Conclusion

The main motivation of this paper was to extend the

standard bow method used in TC by extracting fewer but

informative features, so that more successful results can be

achieved with much less features. For this purpose, the

concepts of lexical dependencies and pruning were incor-

porated into the algorithms and the optimal parameter

values were determined for each.

36 dependencies and 10 PL values were experimented in

four main methods (AW, AWP, AWDP, AWDCP). AW is

named the standard bow approach and each of the other

three methods is an extended version of its predecessor,

improved by dependency and pruning support under the

optimal parameter settings. SVM was used for the machine

learning component, which is a state-of-the-art classifier in

TC, and the Stanford Parser was used as the syntactic tool.

All the experiments were repeated in three different data-

sets (Reuters, NSF, and MiniNg20).

Three significance tests have been implemented

including the extended version of the micro sign test that

Table 4 Statistical comparison of the proposed methods

Micro sign, all Micro sign, ? Macro sign

Reuters

AWP over AW * [�
AWDP over AWP * * *

AWDP over AW [� [
AWDCP over AW [� �
AWDCP over AWP [* *

AWDCP over AWDP * * *

NSF

AWP over AW * [*

AWDP over AWP � � [
AWDP over AW * � [
AWDCP over AW � � �
AWDCP over AWP � � �
AWDCP over AWDP � � �
MiniNg20

AWP over AW � � �
AWDP over AWP * * *

AWDP over AW � � �
AWDCP over AW � � �
AWDCP over AWP * * *

AWDCP over AWDP * * *

All datasets

AWP over AW * � �
AWDP over AWP � � �
AWDP over AW � � �
AWDCP over AW � � �
AWDCP over AWP � � �
AWDCP over AWDP � � [

56 Pattern Anal Applic (2012) 15:45–58

123

has been derived for this study. Using these three tests, the

approaches have been compared and analyzed with respect

to several perspectives providing robust results. The results

showed that for each extension in the methods, a corre-

sponding significant improvement was observed in the

success rates. In parallel with this result, the most advanced

method which combines the leading dependencies (AW-

DCP) outperformed all the other methods in terms of

success rates with reasonable feature sizes. According to

the results, that optimal pruning level was generally found

to be much more than PL = 2 (the standard fixed value for

pruning in related studies) with almost all the proposed

methods in the three datasets. The optimal feature numbers

have been observed to show a consistent behavior (between

2,400 and 4,200) in all the optimal results of the proposed

methods (AWP, AWDP, and AWDCP) for all three

datasets.

From the dataset perspective, an important outcome is

about the formality level of the datasets. The pruning

process improved the success rates of the informal Min-

iNg20 dataset much more than the other two formal data-

sets (Reuters and NSF). In addition, the formal datasets

resulted in common dependencies (adjectival modifier and

complement) in the leading dependency analysis, while the

informal MiniNg20 had different and simpler dependency

types as the leading ones.

As future work, one possible direction is incorporating

feature selection algorithms into the proposed methods. In

this study, pruning implementation was implemented for

feature filtering but feature selection is different from this

filtering process using specific methods such as information

gain, tf-idf, etc. These algorithms will be implemented in

accordance with the pruning implementation and depen-

dency usage for text classification in the future studies.

Another possible related study is to apply the same tests to

more datasets with different skewness and formality levels

in order to develop robust algorithms for automatic

detection of optimal pruning levels and most useful

dependencies according to dataset properties.

Acknowledgments This work was supported by the Boğaziçi

University Research Fund under the Grant Number 05A103D and the

Turkish State Planning Organization (DPT) under the TAM Project,

number 2007K120610.

References

1. Stevenson M, Greenwood M (2005) A semantic approach to IE

pattern induction. In: Proceedings of the 43rd annual meeting of

the ACL, Ann Arbor

2. Stevenson M, Greenwood M (2006) Comparing information

extraction pattern models. In: Proceedings of the workshop

on information extraction beyond the document, Sydney,

pp 12–19

3. Marneffe MC, MacCartney B, Manning C (2006) Generating

typed dependency parses from phrase structure parses.

LREC2006

4. Finch A, Black A, Hwang YS, Sumita E (2006) Using lexical

dependency and ontological knowledge to improve a detailed

syntactic and semantic tagger of English. In: Proceedings of the

COLING/ACL on main conference poster sessions, Sydney,

pp 215–222

5. Cahill A, Heid U, Rohrer C, Weller M (2009) Using tri-lexical

dependencies in LFG parse disambiguation. In: The 14th inter-

national LFG conference, July 2009. Trinity College, Cambridge

6. Bach J, Witten IH (1999) Lexical attraction for text compression.

In: Proceedings of the conference on data compression, DCC

1999

7. Charniak E et al. (2003) Syntax-based language models for sta-

tistical machine translation. In: Proceedings of the MT summit

2003

8. Herrera J, Penas A, Verdejo F (2006) Textual entailment recog-

nition based on dependency analysis and WordNet. In: Lecture

notes in computer science, vol 3944/2006. Springer, Berlin

9. Basili R, Pazienza MT, Mazzucchelli L (2000) An adaptive and

distributed framework for advanced IR. RIAO 2000, pp 908–922

10. Miller G (1995) WordNet: a lexical database for English. com-

munications of the ACM, vol 38, no 11, pp 39–41

11. Mansuy T, Hilderman R (2006) A characterization of WordNet

features in Boolean models for text classification. In: Proceedings

of the 5th Australasian data mining conference (AusDM’06),

Sydney, November, pp 103–109

12. Hidalgo JMG, Rodriguez MB (1997) Integrating a lexical data-

base and a training collection for text categorization. In: ACL/

EACL workshop on automatic extraction and building of lexical

semantic resources for natural language applications

13. Bloehdorn S, Moschitti A (2007) Combined syntactic and

semantic kernels for text classification. ECIR 2007, pp 307–318

14. Lewis DD (1992) An evaluation of phrasal and clustered repre-

sentations on a text categorization task. In: Proceedings of SI-

GIR-92, Copenhagen, pp 37–50

15. Furnkranz J, Mitchell T, Rilof E (1998) A case study in using

linguistic phrases for text categorization on the WWW. AAAI-98

workshop on learning for text categorization

16. KÖnig AC, Brill E (2006) Reducing the human overhead in text

categorization. In: Proceedings of KDD 2006, Association for

Computing Machinery Inc

17. Moschitti A, Basili R (2004) Complex linguistic features for text

classification. In: A comprehensive study. ECIR 2004,

pp 181–196

18. Moschitti A (2008) Kernel methods, syntax and semantics for

relational text categorization. In: Proceeding of ACM 17th con-

ference on information and knowledge management (CIKM),

Napa Valley

19. Ghanem M, Guo Y, Lodhi H, Zhang Y (2002) Automatic sci-

entific text classification using local patterns. In: KDD CUP 2002

(Task1), SIGKDD Explorations, vol 4, no 2, pp 95–96

20. Nastase V, Shirabad JS, Caropreso MF (2006) Using dependency

relations for text classification. In: AI 2006, the nineteenth

Canadian conference on artificial intelligence, Quebec City

21. Özgür L, Güngör T (2009) Analysis of stemming alternatives and

ddependency pattern support in text classification. In: CICLing

2009, the tenth international conference on intelligent text pro-

cessing and computational linguistics. Research in computing

science, vol 41, Mexico City, Mexico.

22. Manning C.D, Raghavan P, Schütze H (2008) Introduction to

information retrieval. Cambridge University Press, Cambridge

23. Forman G (2003) An extensive empirical study of feature

selection metrics for text classification. J Mach Learn Res

3:1289–1305

Pattern Anal Applic (2012) 15:45–58 57

123

24. Yang Y, Pedersen JO (1997) A comparative study on feature

selection in text categorization. In: Proceedings of the 14th

international conference on machine learning, pp 412–420

25. Shoushan L, Rui X, Chengqing Z, Huang CR (2009) A frame-

work of feature selection methods for text categorization. In:

Proceedings of the 47th annual meeting of the ACL and the 4t

IJCNLP of the AFNLP, Suntec, pp 692–700

26. Dasgupta A, Drineas P, Harb B, Josifovski V, Mahoney MW

(2007) Feature selection methods for text classification. In: Pro-

ceedings of 13th annual SIGKDD, pp 230–239

27. Asuncion A, Newman D (2007) UCI machine learning reposi-

tory. University of California, School of Information and

Computer Science, Irvine. http://www.ics.uci.edu/mlearn/ML

Repository.html

28. Yang Y, Liu X (1999) A Re-examination of text categorization

methods. In: Proceedings of SIGIR-99. 22nd ACM international

conference on research and development in information retrieval,

Berkeley

29. Özgür A, Özgür L and Güngör T (2005) Text categorization with

class-based and corpus-based keyword selection. Lecture notes in

computer science, vol 3733. Springer, Berlin, pp 606–615

30. Porter M (1980) An algorithm for suffix stripping. In: Program

14, pp 130–137

31. Salton G, Buckley C (1988) Term weighting approaches in

automatic text retrieval. Inf Process Manage 24(5):513–523

32. Joachims T (1999) Advances in kernel methods-support vector

learning. Making large-scale SVM learning practical. MIT Press,

Cambridge

33. Joachims T (1998) Text categorization with support vector

machines: learning with many relevant features. In: European

conference on machine learning (ECML). Springer, Berlin,

pp 137–142

34. Klein D, Manning C (2003) Fast exact inference with a factored

model for natural language parsing, vol 15, NIPS. MIT Press,

Cambridge

35. Levy R, Andrew G (2006) Tregex and Tsurgeon: tools for que-

rying and manipulating tree data structures. 5th international

conference on language resources and evaluation (LREC 2006)

36. Larson R, Farber B (2000) Elementary statistics: picturing the

World. Prentice Hall, Englewood Cliffs

37. Montgomery DC (2001) Design and analysis of experiments.

Wiley, New York

58 Pattern Anal Applic (2012) 15:45–58

123

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html

	Optimization of dependency and pruning usage in text classification
	Abstract
	Originality and contribution
	Introduction
	System tools and environmental variables
	Datasets
	Preprocessing
	Machine learning tool
	Syntactic tool
	Evaluation criteria
	F-Measure
	Significance tests

	Main infrastructure and experimental design
	Pruning implementation
	Dependency analysis
	Experimental design
	AW
	AWP
	AWDP
	AWDCP

	Analysis of results
	Optimal parameter decisions
	Performance of the methods
	Pruning level analysis
	Optimal feature numbers
	Significance of the improvements
	Dataset comparison
	Skewness factor
	Optimal PL values
	Formality level
	Common successful dependencies

	Conclusion
	Acknowledgments
	References

