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Abstract

This paper presents a method for rescoring the speech recog-
nition lattices on-the-fly to increase the word accuracy while
preserving low latency of a real-time speech recognition sys-
tem. In large vocabulary speech recognition systems, pruned
and/or lower order n-gram language models are often used in
the first-pass of the speech decoder due to the computational
complexity. The output word lattices are rescored offline with
a better language model to improve the accuracy. For real-time
speech recognition systems, offline lattice rescoring increases
the latency of the system and may not be appropriate. We pro-
pose a method for on-the-fly lattice rescoring and generation,
and evaluate it on a broadcast speech recognition task. This
first-pass lattice rescoring method can generate rescored lattices
with less than 20% increased computation over standard lattice
generation without increasing the latency of the system.

Index Terms: on-the-fly lattice rescoring, automatic speech
recognition, low latency ASR

1. Introduction

A speech recognition lattice is a weighted directed acyclic graph
where each path from the start state to a final state represents an
alternative transcription hypothesis, weighted by its recognition
score for a given utterance [1]. For large vocabulary speech
recognition, the n-gram language models are often pruned or
the order of the language model is lowered for computational
reasons when building the optimized search networks of the
first-pass recognition. Then the output word lattices from the
first-pass are rescored offline with unpruned language models or
higher order n-grams. However, the real-time speech recogni-
tion systems such as the automatic closed captioning system by
Saraclar et al. [2] that require low-latency cannot benefit from
the lattice rescoring as the latency increases with the size of the
output lattice [3].

In this paper, we propose an algorithmic framework for
rescoring lattices on-the-fly. The lattice generation method we
employ is based on the lattice generation algorithm of Ljolje et
al. [1]. Although the algorithm we use for rescoring recognition
hypotheses is similar to the on-the-fly hypothesis rescoring al-
gorithm of Hori et al. [4], there are major differences. First of
all, two methods concentrate on different problems. While we
employ a hypotheses rescoring method for producing rescored
lattices on-the-fly, Hori et al. [4] uses a similar method in an
on-the-fly composition algorithm setting to achieve fast and
memory-efficient decoding in extremely large vocabulary con-
tinuous speech recognition. They decompose the search net-
work into two transducer groups and a Viterbi search is per-
formed based on the first transducer, whereas the second trans-
ducer is used to rescore the hypotheses and the updated scores

are used in the Viterbi search. Second, we propose a more gen-
eral lattice rescoring framework in terms of enabling more gen-
eral rescoring models rather than setting it up as a composition
of two finite-state models as in [4].

2. WFST-based Speech Decoding

The weighted finite-state transducers (WFSTs) are weighted di-
rected graphs in which each arc a has a source state S(a), a des-
tination state D(a), an input label I(a), an output label O(a),
and a weight P(a). The WFSTs provide a unified framework
for representing different knowledge sources in ASR systems,
e.g., hidden Markov models (HMMs), context-dependent de-
pendency networks, pronunciation lexicons, and n-gram lan-
guage models [5].

In the WEST framework, the speech recognition problem is
treated as a transduction from input speech signal to a word se-
quence. The various knowledge sources are represented as WF-
STs. A typical set of knowledge sources consists of a context-
dependency network C' transducing context-dependent phones
to context-independent phones, a lexicon L mapping context-
independent phone sequences to words, and an n-gram lan-
guage model G assigning probabilities to word sequences. The
composition of these models C o L o G results in an all-in-
one search network that directly maps context-dependent phone
(corresponding to an HMM) sequences to weighted word se-
quences, where weights can be combinations of pronunciation
and language model probabilities. The WFST also offers finite-
state operations such as composition, determinization and min-
imization to combine all these knowledge sources into an opti-
mized all-in-one search network.

The decoding for the best path in the resulting network is
a single-pass Viterbi search. In this work, we implemented a
WEFST-based Viterbi speech decoder to experiment with the on-
the-fly lattice rescoring using the OpenFst library [6].

2.1. One-Best Decoding

The decoding for the best path of arcs a = a;...a, from the
initial state to a final state in a search network I" given acoustic
feature vectors Z for a utterance can be formulated as in [1]:

max P(Z[0,7],a) =

op X P(Z[ti—1,t:] | I(a;))P(as)
i=1
The probability P(Z[t;—1,t] | I(as) represents the likeli-
hood assigned by the acoustic model for the context-dependent
phone 7 (a;) when applied to the feature vectors Z for the time
interval t;_1,¢;. The probability P(a;) is the language model
probability for the arc a; in 7.



We can formulate this equation in terms of the best scoring
path to each state of 7" at a given time instant for the Viterbi
algorithm. Let B(s) be the set of all paths a1...ax in T from
the initial state to state s and define that best scoring path as:

afs, t) = max HP(f[ti,l,ti] | I(a:))P(as)

a€B(s),t1,...,

Then:
max P(Z[0,t],a) =

max a(s,t) =

max P(a) {max P(E[t, 1] | I(a))a(S(a),t) (1)
D(a)=s t' <t

In Equation (1), the Viterbi decoding of the best scoring path at
a time instant is expressed as two nested (max) loops: the outer
loop considers each possible active arc a ending in state s, and
the inner loop finds the optimal start time ¢’ for a by combining
the acoustic likelihood of @ between ¢ and ¢ with the best path
score from the start to state S(a) at time ¢'.

2.2. Lattice Generation

The lattice generation method for on-the-fly lattice rescoring
algorithm that we propose is based on the the lattice genera-
tion algorithm of Ljolje et al. [1], which is repeated here briefly.
Their lattice generation algorithm involves no extra computa-
tion over the normal Viterbi algorithm other than the negligible
time needed to add states and arcs into the transducer lattice
as it is being constructed. Each state of a phone-to-word trans-
ducer lattice L corresponds to a pair (¢, s) of a time frame in the
recognition and a state from the recognition transducer 1'. The
initial state is the pair of utterance start time O and the start state
of T'. The final states are the pairs consisting the utterance end
time 7 and a final state from 7'. If, during the Viterbi recursion
of Equation (1), we have identified the optimal start time ¢ for
arc a ending in state D(a) at time ¢, then a corresponding arc is
added to L from state (¢, S(a)) to state (¢, D(a)). If necessary,
state (¢, D(a)) was first created ; state (¢', S(a)) must already
have been in L by induction. The new arc has input label I(a),
output label O(a), and weight P(Z[t;—1, ;] | a)P(a). All this
information is readily available from the Viterbi recursion. We
store the index for the pair (¢, D(a)) in the decoder active state
data structure for D(a) at the current time, and we store the
index for the pair (¢', S(a)) in the decoder active arc data struc-
ture for a. The generated phone-to-word transducer lattice can
also be converted to a word lattice and pruned relative to the
best scoring path through the entire lattice as explained in [1].

3. Lattice Rescoring
3.1. Lattice Rescoring with Composition

The word lattices output from a speech recognizer generally
contain both the acoustic model and the language model scores
for the hypotheses as explained in the previous section. For
rescoring the lattices offline, the scores from the language
model of the first-pass for a transcription hypothesis is sub-
tracted from that hypothesis’ lattice score and the resulting
weighted finite-state automaton is intersected with the rescoring
language model automata. However, with a simple modification
to the lattice generation algorithm of [1] given in section 2.2 -
by assigning only the acoustic model score P(Z[t;—1,t;] | a) to
a new lattice arc and omitting the language model score P(a)

- we can get rid of the score subtraction step. Then we can
just intersect the output lattice with the better language model
for rescoring. For short utterances, this method of rescoring
is very effective and has a very small latency. However, for
real-time speech recognition systems that require decoding long
utterances as in Saraglar et al. [2], this method is not feasible
since the memory for generating and storing the lattice increases
rapidly and the composition with large lattices leads to signifi-
cant latency. This method also requires that the rescoring model
could be represented as weighted finite-state automata, which
may not be the case, for instance, for the discriminative lan-
guage models with complex feature sets.

In the ASR experiments, we implemented this method as a
baseline to compare with the on-the-fly rescoring method.

3.2. On-the-fly Lattice Rescoring

For on-the-fly lattice rescoring, we need an algorithm for lattice
generation and rescoring recognition hypotheses. The lattice
generation algorithm is based on the algorithm given in sec-
tion 2.2. The recognition hypothesis rescoring methodology is
conceptually similar to the on-the-fly hypothesis rescoring al-
gorithm of Hori et al. [4], however the motivation and imple-
mentation of hypothesis rescoring is different.

Each state of a phone-to-word rescored transducer lattice R
corresponds to a tuple (¢, s, h) of a time frame in the recogni-
tion, a state from the recognition transducer 7, and an n-gram
history for a path arriving to state s at time instant ¢. Since
there may be multiple paths arriving at a state at the same time
during decoding with possibly different n-gram histories, we
need to keep track of n-gram word histories for active arcs and
states. The initial state is the tuple of utterance start time 0,
the start state of 7", and the sentence start symbol <s>. The
final states are the tuples consisting the utterance end time T,
a final state from 7', and the sentence end symbol </s>. If,
during the Viterbi recursion of Equation (1), we have identified
the optimal start time ¢’ for arc a ending in state D(a) with an
n-gram history h at time ¢, then a corresponding arc is added
to R from state (¢', S(a), h) to state (¢, D(a), k') with updated
history h’. If the output label O(a) of that arc a is €, b’ is
the same with h. If not, then the new history A’ is formed by
dropping the oldest word and appending the output label O(a)
to the history. If necessary, state (¢, D(a),h’) was first cre-
ated ; state (¢', S(a), h) must already have been in L by induc-
tion. The new arc has input label I(a), output label O(a), and
weight P(Z[t;—1,t;] | a)P(O(a)|h). P(O(a)|h) is the lan-
guage model score assigned by the rescoring language model to
the current n-gram. If the output symbol is e, it is taken as 1
to use the acoustic model score. All this information is readily
available from the Viterbi recursion. We store the index for the
tuple (¢, D(a), h') in the decoder active state data structure for
D(a) at the current time, and we store the index for the pair
(t',S(a), h) in the decoder active arc data structure for a.

Figure 1 shows a partial decoding process of the Viterbi
search progressing in time. The upper part of the figure shows
the states activated at a time instant ¢;. Each active state stores
a pointer to a list of rescoring tokens as shown above each state.
In the rescoring token list, we store the forward acoustic score
of an active state at the creation time of the list. This score
is used to update the rescoring token scores with the accumu-
lated acoustic score. During the Viterbi decoding, we store a
list of maximum NV rescoring tokens in each active state, where
each token represents a word trace (path) from the rescoring
language model. A rescoring token contains the current n-gram
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Figure 1: Hypotheses and associated lattice rescoring information during decoding.

history, the score for the current rescoring state, and a pointer to
a lattice state that is being generated on-the-fly. When two hy-
potheses meet at the same active state, the rescoring token lists
are merged and the maximum N tokens with the /NV-best scores
are kept.

During decoding, each active arc has an associated HMM
with a number of active HMM states. In Figure 1, the active
HMM states are not shown for clarity, but the decoding process
is very similar in the internal HMM states. When two hypothe-
ses meet at the same HMM state in an active arc, only the rescor-
ing token list having the token with the best score is retained.
The pointers to the rescoring token lists are shared pointers with
reference counting. Therefore in the internal Viterbi decoding
of HMM states within an active arc, we can just propagate the
pointers without copying the lists.

Each rescoring token in a rescoring token list stores a
unique n-gram history to keep track of the state information
in the rescoring language model. In Figure 1, we use a 3-gram
rescoring language model, therefore we only need to store bi-
gram word histories. This way of implementation provides a
more general framework for rescoring, since we can also use
rescoring models that cannot be represented as finite-state trans-
ducers. In the experiments, we used a 3-gram language model
and used the SRILM toolkit [7] to train language models and
assign probabilities to n-grams on-the-fly. However, it is also
possible to use other language models such as a discriminative
language model to assign scores. Note that we can also use dis-
criminative models with acoustic, duration and language model
based features such as [8] in the first pass by simple modifica-
tions to the proposed lattice rescoring algorithm.

As indicated above, we generate the word lattices as in
Ljolje et al. [1], however one can also use the method by Saon et
al. [9]. The lower part of Figure 1 shows the rescored lattice be-
ing generated on-the-fly. Each rescoring token has a pointer to a
lattice state as shown by dashed arcs from decoding network to
the lattice network. When an active arc in the decoding network

is expanded to a new state, that state is activated and the rescor-
ing token list propagated from the active arc is updated with the
new lattice pointers while adding new lattice arcs and states.

4. Experiments

We evaluated the performance of the rescoring algorithms on a
Turkish broadcast news transcription task. The acoustic model
uses hidden Markov models (HMMs) trained on 188 hours of
broadcast news speech data [10]. In the acoustic model, there
are 10843 triphone HMM states and 11 Gaussians per state with
the exception of the 23 Gaussians for the silence HMM. The
test set contains 3.1 hours of speech data that has been pre-
segmented into short utterances (2,410 utterances and 23,038
words). We used the geometric duration modeling in the de-
coder.

The speech decoder is our implementation of a WFST-
based decoder using the OpenFst library for finite-state opera-
tions and model representations [6]. We implemented the lattice
generation algorithm of Ljolje et al. [1] to produce the lattices.
The proposed algorithm for on-the-fly lattice rescoring has also
been implemented in the decoder.

The text corpora that we used for building n-gram lan-
guage models are composed of about 200 million-words BOUN
NewsCor corpus collected from news portals in Turkish and 1.3
million-words text corpus (BN Corpus) obtained from the tran-
scriptions of the Turkish Broadcast News speech database [10].
The language model of the decoding network is a 3-gram lan-
guage model with a vocabulary size of 200K words. This
model is estimated by linearly interpolating two language mod-
els trained over the BOUN NewsCor corpus and the BN corpus
to reduce the effect of out-of-domain data. The language model
trained on the BOUN NewsCor corpus is pruned due to high
memory requirements while building the optimized search net-
work using the SRILM toolkit [7]. The language model used for
lattice rescoring experiments use the unpruned language models
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Figure 2: Word error rate versus real-time factor obtained by
changing the pruning beam width

with the same n-gram order of 3.

We give speech recognition results for three systems. All
the systems are single-pass systems. In the first system, the de-
coder generates a lattice using the pruned search network with-
out any rescoring. The second system uses the pruned search
network to generate a lattice containing only acoustic model
scores and the resulting lattice is composed with the unpruned
language model to rescore it as soon as the recognition for each
utterance ends. The third system uses our proposed on-the-fly
lattice rescoring method.

Figure 2 shows the word error rate versus run-time factor
obtained by varying prune beam widths from 9 to 12 for three
systems. As expected rescoring with unpruned language mod-
els improves the accuracy. Since the utterances in our test set
are short, the baseline rescoring method has not a significant ef-
fect on run-time for small beam-widths. The on-the-fly rescor-
ing method achieves about the same accuracy with the baseline
rescoring method. The proposed lattice rescoring method can
generate rescored lattices with less than 20% increased compu-
tation over standard lattice generation. However, the accuracy
improvement for a real-time system (i.e. the real-time factor
1 in the graph) is very significant for the on-the-fly rescoring
method without increasing the latency of the baseline system
without rescoring.

5. Discussion and Conclusions

We presented a general algorithmic framework for on-the-fly
lattice rescoring. Applications such as real-time closed caption-
ing of news broadcasts require low-latency. In such applica-
tions, offline lattice rescoring may not be used due to added
latency of the rescoring, which increases with the size of the
output lattice. The proposed on-the-fly lattice rescoring brings
accuracy improvement of lattice rescoring without increasing
the latency of the system.

As a general framework, the language model for rescoring
can be any model that can assign scores to n-grams. For in-
stance, it is possible to use a discriminative language model [11]
to rescore the lattices in this framework. This is important since
the discriminative models with complex feature sets cannot be
represented as finite-state automata. The lattices can even be
rescored with multiple models. The implementation can also be

easily modified to enable on-the-fly rescoring with more com-
plex models such as [8].

The resulting speech decoder can also be easily tweaked to
do parameter estimation for discriminative language modeling
using the simple perceptron algorithm. This has the advantage
that the parameter estimation is done over dynamically gener-
ated lattices rather than static lattices.
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