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Boğaziçi University, Istanbul, Turkey

gungort@boun.edu.tr

Abstract

Previous studies have shown that linguistic features of a word such as possession, genitive or
other grammatical cases can be employed in word representations of a named entity recognition
(NER) tagger to improve the performance for morphologically rich languages. However, these
taggers require external morphological disambiguation (MD) tools to function which are hard
to obtain or non-existent for many languages. In this work, we propose a model which alle-
viates the need for such disambiguators by jointly learning NER and MD taggers in languages
for which one can provide a list of candidate morphological analyses. We show that this can
be done independent of the morphological annotation schemes, which differ among languages.
Our experiments employing three different model architectures that join these two tasks show
that joint learning improves NER performance. Furthermore, the morphological disambiguator’s
performance is shown to be competitive.

Title and Abstract in Turkish

Biçimbilimsel Etiketleri Ayrıştırmayı Birlikte Öğrenerek Varlık İsmi Tanıma Başarısını Artırmak

Daha önceki çalışmalar, biçimbilimsel olarak zengin dillerdeki varlık ismi tanıma (VAT)
başarısını artırmak için sözcüklerin iyelik, genitif ve benzeri hâllerinin kullanılabileceğini
göstermiştir. Ancak, bu türden varlık ismi tanıma işaretleyicilerinin çalışabilmesi için elde
edilmesi zor veya bazı diller için imkansız olan dışsal biçimbilimsel ayrıştırıcılara (BA)
ihtiyaç vardır. Bu çalışmada, bu tür ayrıştırıcılara olan ihtiyacı ortadan kaldırmak için
VAT ve BA görevlerini aynı anda çözen ve aday biçimbilimsel çözümlemelerin sunulabildiği
dillere uygulanabilen bir model önerilmektedir. Bunun dillere göre değişen biçimbilimsel
işaretleme şemalarından bağımsız olarak yapılabildiği gösterilmiştir. Bu iki görevi aynı anda
gerçekleştiren üç farklı model mimarisi kullanarak yaptığımız deneyler birlikte öğrenmenin VAT
başarısını artırdığını göstermiştir. Buna ek olarak, biçimbilimsel ayrıştırıcının başarısının önceki
çalışmalarla karşılaştırılabilir olduğu görülmüştür.

1 Introduction

Named entity recognition (NER) is the task of selecting the portions of text which refer to an entity that
designate a person, location or organization. This makes it a basic natural language processing (NLP)
task closely related to relation extraction, knowledge base population, and entity linking.

Works that represent the current state of the art in NER generally start by representing words with
pretrained word embeddings, embeddings which rely on surface form characters (Lample et al., 2016;
Ma and Hovy, 2016). These architectures feed the word representations to a bidirectional long short-
term memory layer (Bi-LSTM) to represent the context where the disambiguation between the possible
entities is undertaken by decoding on trellis provided by a conditional random field (CRF) model.
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When these models are trained and evaluated for morphologically rich languages (MRLs), it has been
shown that using embeddings based on characters or linguistic properties of the word such as morpholog-
ical features indicating a grammatical case improves the performance compared to using only pretrained
word embeddings (Gungor et al., 2017). Even though they provide a better approach for MRLs, they
require an external morphological disambiguator for every language of interest, a requirement which
can be hard or even impossible for some languages to satisfy. This is especially true for agglutinative
languages where there can be many roots and morphological tag sequences for a single word. Although
there is an effort to provide a tool for POS tagging and lemmatization for many languages in a single
format (Straka and Straková, 2017), it has been shown that there is a better approach for morphological
tagging in terms of performance which can utilize the information in the context of the target word (Shen
et al., 2016).

In this paper, we propose a model to jointly learn the NER and morphological disambiguation (MD)
tasks to offer a solution to this problem. We design our model so that any language with a mechanism
which can provide a number of candidate morphological analyses for a word can utilize our joint model.
This is easier compared to providing disambiguated morphological analyses because systems that dis-
ambiguate morphological analyses are harder to build. Furthermore, we do not require the labels of each
task to be present in the same dataset. One can easily train the part of the model which is responsible for
the MD task in another -preferably larger- dataset and start with the pretrained model. Our main contri-
bution is to show that jointly disambiguating morphological tags and predicting the NER tags results in
an equivalent level of performance compared to using externally provided morphological tags.

We give a survey of related work on the subject in Section 2. We explain our basic models and
the proposed joint models in Section 3. In Section 4, we describe our dataset which is derived from
a frequently used database in the literature. After running the experiments described in Section 5, we
observe that jointly training our model for NER and MD results in an increase in the NER performance.

2 Related Work

Early approaches to NER typically use several hand-crafted features such as capitalization, word length,
gazetteer based features, and syntactic features (part-of-speech tags, chunk tags, etc.) (McCallum and
Li, 2003; Finkel et al., 2005; Humphreys et al., 1998; Appelt et al., 1995). Some of them are data-driven
approaches such as conditional random fields (CRF) (McCallum and Li, 2003; Finkel et al., 2005),
maximum entropy (Borthwick, 1999), bootstrapping (Jiang and Zhai, 2007; Wu et al., 2009), latent
semantic association (Guo et al., 2009), and decision trees (Szarvas et al., 2006).

Recently, RNN based sequence taggers have dominated the state of the art in NER (Lample et al.,
2016; Ma and Hovy, 2016; Huang et al., 2015; Yang et al., 2016). These approaches model the words
as fixed length vectors and employ Bi-LSTM or GRU layers to obtain a characterization of the relevant
context of the word to be labeled. These context vectors are then transferred to a CRF module after
transforming into score vectors. However, in these studies, the morphological information present in the
surface form of the word is handled only through the use of character based embeddings. Although this is
not a limiting factor for languages which are not morphologically rich, it has been shown that employing
morphologically disambiguated tags when representing words in a neural architecture improves the NER
performance (Gungor et al., 2017; Straková et al., 2016).

There has been other approaches to the NER task for morphologically rich languages (Demir and
Özgür, 2014; Seker and Eryiğit, 2012; Yeniterzi, 2011; Tür et al., 2003; Hasan et al., 2009). A study
which can be considered as one of the first attempts in tackling NER for morphologically rich languages
uses a hidden Markov model and takes the morphological tag sequence as input along with others like
the surface form, capitalization features and similar features (Tür et al., 2003). In a study which basically
depends on handcrafted features given to a CRF-based sequence tagger system, the word morphology
was captured using the first and last three characters of the word as a feature resulting in an improvement
in the NER tagging performance for Bengali (Hasan et al., 2009). In another study (Yeniterzi, 2011), a
similar approach is taken with features generated using the output of an external morphological disam-
biguator and also shown to improve the performance. Another study (Seker and Eryiğit, 2012) uses the



same method but with a different approach for extracting morphological information, where they show
an improvement over the previous state of the art results of Yeniterzi (2011). The first study focusing
on morphologically rich languages to employ neural networks (Demir and Özgür, 2014) contains a reg-
ularized averaged perceptron (Freund and Schapire, 1999) and relies on handcrafted rules along with
pretrained word embeddings. However, they refrain from using output from external morphological dis-
ambiguators and only rely on the first and last few characters of a word as features. Our work in this
paper differs from these studies as it does not rely on handcrafted features. We represent words as fixed
length vectors, employ morphological information to disambiguate the correct morphological analysis,
and then combine them in such a way to obtain a context vector to label with NER tags.

In a recent study on morphological disambiguation (Yildiz et al., 2016), the authors propose a two-
layer network for prediction. In the first layer, they process the candidate morphological analyses along
with the correctly predicted analyses of previous words and obtain a vector to be processed in the second
layer. The second layer takes all vectors propagated from the previous words and computes a softmax
function over positive and negative classes. They predict the correct morphological analysis starting
from the first word and use this prediction in the next word positions. The model is evaluated on a
dataset manually labeled by the authors and considered as the state of the art for Turkish and competitive
for French and German. Our proposed model for morphological disambiguation relies on scoring the
candidate morphological analyses to predict the correct one for a word in a sentence. We borrow this
idea from Shen et al. (2016). In their study, they feed the word representations to a Bi-LSTM and obtain
context embeddings for each position. Using these embeddings, they score each morphological analysis
by calculating a similarity function reaching the state of the art or competitive results for Turkish, Russian
and Arabic.

Most of the work in morphological disambiguation or tagging strictly depend on their chosen spe-
cific output format for morphological analysis. This is due to the fragmented nature of computational
approaches to morphological analysis for every language in the literature. However, we argue that our ap-
proach is immune to this problem as all of these output formats can be treated as a sequence. An example
from Finnish is ‘raha+[POS=NOUN]+[NUM=SG]+[CASE=ADE]’ (Silfverberg et al., 2016), another
from Turkish is ‘Ankara+Noun+Prop+A3sg+Pnon+Loc’ (Oflazer, 1994), and one for Hungarian
is ‘hı́r+NOUN+Case=Nom+Number=Plur’ (Trón et al., 2005). All of these can be split by the ‘+’
symbol and transformed into a root and tag sequence. Moreover, there is an attempt in the area to unify
the morphological annotation along with syntax annotation across many languages which will contribute
more towards a solution (Nivre et al., 2016).

Many models targeting NLP tasks are designed to work independently although they usually employ
linguistic information related with other tasks. Given that there are state of the art models which are
similar in the sense that they all employ a sentence level Bi-LSTM, it is reasonable to hypothesize that
jointly learning several tasks will improve the performance as shown in the literature (Hashimoto et al.,
2017; Luong et al., 2015). In a recent study, it has been suggested that using separate layers for separate
tasks is better rather than using the same (or usually top) layer for all the tasks (Søgaard and Goldberg,
2016).

3 Models

We test our hypothesis by training a number of models where we choose to enable or disable the selected
components and features1. We start by explaining two basic models for each task: (i) a Bi-LSTM based
sequence tagger where we predict the correct NER tags with a CRF (Section 3.1), (ii) a Bi-LSTM tagger
which is used to represent the context for selecting the correct morphological analysis at the given posi-
tion (Section 3.2). The joint models are combinations of these two basic models in various ways (Section
3.3).

1The code to replicate the experiment environment and the actual source code is published at https://github.com/
onurgu/joint-ner-and-md-tagger



3.1 NER Model
We formally define an input sentence as X = (x1, x2, . . . , xn) where each xi is a vector of size l and
the corresponding NER labels as yNER = (yNER,1, yNER,2, . . . , yNER,n). xi are then fed to a Bi-LSTM
which is composed of two LSTMs (Hochreiter and Schmidhuber, 1997) treating the input forwards and
backwards. The output of this Bi-LSTM at position i, hi, is a vector of size 2p where p is the size of the
LSTM cell. Further, we transform hi through a fully connected layer FClast with tanh activations at the
output to combine the left and right contexts into a vector of size p. This is followed by another fully
connected layer to obtain a vector si of size K, where K is the number of the NER tags.

We follow a conditional random field (CRF) based approach to model the dependencies between the
consequent tokens (Lafferty et al., 2001). To do this, we take the vector si at each position i as the score
vector of the corresponding word and aim to minimize the following loss function lossNER(X, yNER)
for a single sample sentence X:

−
n∑

i=0

Ayi,yi+1 −
n∑

i=1

si,yi + logZ(X)

where Ai,j represents the score of a transition from tag i to j, Z(X) =∑
y′∈Y exp

(∑n
i=0Ayi,y

′
i+1

+
∑n

i=1 si,y′i

)
where Y is the set of all possible label sequences. Using this

model, we decode the most probable tagging sequence y∗NER as argmaxỹNER
lossNER(X, ỹNER). We

call this basic model the NER model (Lample et al., 2016) (see Figure 2).
In the remaining part of the section, we explain the details of the word representations used in this

study.
Representing words. As the default setting, we obtain word and character based embeddings as

described below and combine them by concatenation. For the first component, we allocate a word em-
bedding vector of size wd for every word in our dataset. This can be loaded from a pretrained word
embeddings database as is done frequently in the literature, but we chose to learn the word embeddings
during training. The second component is generated from the surface forms. We feed the character se-
quence of the word into a Bi-LSTM as described at the beginning of this section. However, instead of
using the outputs of LSTM cells at each position, we just take the last and the first cell outputs of the for-
ward and backward LSTMs and concatenate them (Figure 1). The resulting representation is two times
the length of one character embedding length, 2chd. This second component is in turn concatenated
with the first component to obtain a word representation vector xi of size wd + 2chd.

Figure 1: The basic model to generate representations for surface forms, roots, and morphological tag
sequences. The input sequence (e1, e2, · · · , en−1, en) can either be the characters of the surface form,
the characters of the root of the word, or the tags in the morphological tag sequence. RELU unit is active
only for root and morphological tag sequences.

External morphological features. In order to compare our models with a previous method (Gun-
gor et al., 2017), we utilize the golden morphological analysis provided with the dataset in addi-



Figure 2: Our basic models: NER and MD. The portions of the model which are only active either for
NER or MD models are indicated with dashed lines. The symbol � represents the selection of maij∗ .

tion to the word and character based embeddings and call this model EXT M FEAT. The best ap-
proach reported by Gungor et al. (2017) treats the string form of a morphological analysis as a
sequence of characters and apply the process depicted in Figure 1. For example, a morpholog-
ical analysis in Hungarian is ‘Magyar+PROPN+Case=Nom+Number=Sing’ in string form and
can be split into a list of characters as (M,a,g,y,a,r,+,P,R,O,P,N,+,C,a,s,e,=,N,
o,m,+,N,u,m,b,e,r,=,S,i,n,g). Using the sequence of characters of the morphological anal-
ysis instead of the sequence of morphemes might seem counterintuitive at first glance. However it has
been argued that a benefit of treating morphological analyses as sequences of characters is the informa-
tion conveyed by the characters within the tags. For example, in Turkish, the tags ‘A3sg’ and ‘A3pl’
indicate third person singular and third person plural where the leading two characters ‘A3’ indicate third
person agreement. This allows the model to represent the fragments of the tags which may improve the
training performance. In this case, ‘A3’ would represent the third person agreement independent of the
singular or plural case. The resulting vector representation is thus of length 2mtd which is added to word
and character based embeddings to obtain a word representation of wd + 2chd + 2mtd.

3.2 MD Model

In this section, we describe our model for morphological disambiguation which is based on (Shen et
al., 2016). In this model, we are given a sentence X in the same form as in the NER task, however we
optimize the model to predict yMD where yMD,i represents the correct morphological analysis out of the
candidate morphological analyses for word i. Like in the NER model, the MD model also employs a Bi-
LSTM layer to obtain context representations when fed with the word representations xi (Figure 2). We
define the candidate morphological analyses for word i as mai = {mai,1,mai,2, · · · ,mai,j , · · · ,mai,K}.
To determine the correct morphological analysis, we examine each morphological analysis output form
to extract the root surface form and the morpheme sequence and generate the representation maij which
we explain below.

We design this approach to be generalizable to many morphological analysis output forms described
in Section 2. We give an example from Turkish here: the unique analysis of the Turkish word “Moda’da”
is “Moda+Noun+Prop+A3sg+Pnon+Loc”. The word literally means ‘in Moda’ (which is a district
in Istanbul) and a common morpheme naming convention is used (Oflazer, 1994). So, we determine the
root as ‘Moda’ and the morpheme sequence as ‘(Noun, Prop, A3sg, Pnon, Loc)’. The root



and the morpheme sequence are used to generate a representation as depicted in Figure 1. Except in this
case the RELU activation function (Nair and Hinton, 2010) is also applied to the concatenation of the
root and morpheme sequence representations. We choose the resulting representations rij and msij to
be of two times the length of a morpheme embedding mtd. Furthermore, we add the root representation
vector rij and the morpheme sequence representation vector msij and apply hyperbolic tangent function
(tanh), thus the morphological analysis representation maij is defined as follows tanh(rij + msij).

We then select the morphological analysis maij∗ by performing a dot product with the context vector
hi: maij∗ = argmaxj hi · maij when decoding. During training, the loss lossMD(X, yMD) is calculated
as

−
n∑

i=1

log softmax(mscorei)

over a score vector mscorei such that mscoreij = {hi · maij}.

3.3 Joint model for NER and MD
We have experimented with three approaches for jointly learning NER and MD tasks. In this section, we
explain the details of each approach.

Integration mode 1 - In this scheme, we employ a Bi-LSTM layer which is fed with word represen-
tations as in the basic models, NER and MD. We then use the same context hi to calculate the losses
separately for NER and MD as explained in Sections 3.1 and 3.2. We call this joint model JOINT1 and
show in Figure 3a. We then learn the model parameters to optimize lossJOINT1

lossNER(X, yNER) + lossMD(X, yMD).

Integration mode 2 - As in the JOINT1 model, this model also calculates separate losses for each task
and sums them to obtain a single loss to optimize. However, we additionally concatenate the selected
morphological analysis representation maij∗ to hi before feeding it into the fully connected network with
tanh outputs as described in Section 3.1. The model is shown in Figure 3a. The rationale of this con-
catenation is to facilitate information flow from the disambiguated morphological analysis. We call this
model JOINT2. The loss function lossJOINT2 of this model is then calculated similar to lossJOINT1.

Multilayer and Shortcut Connections. Our most complicated model is employing three Bi-LSTM
layers instead of only one. We basically feed the output of the first layer h1i to layer 2, the output of the
second layer h2i to layer 3. In addition to this, we transfer the word representation xi to all layer inputs
and concatenate with hleveli to obtain h

level
i . When processing to obtain the third layer’s output h

3
i , we

also concatenate the selected morphological analysis representation maij∗ to h3i in addition to xi. This
is done to propagate the information gained from the disambiguated morphological analysis to the last
layer of the network. We use the first layer’s output h1i when calculating mscorei as shown to be better
for a variety of tasks (Hashimoto et al., 2017). We call this model J MULTI and depict in Figure 3b.

4 Data

To test our proposed model, we derived a new dataset based on a dataset commonly used in the liter-
ature for the NER task for Turkish (Tür et al., 2003). This dataset contains sentences from the online
edition of a Turkish national newspaper with NER labels. The creators of the dataset also provide a
golden morphological analysis along with each word. However, golden morphological analyses in this
dataset are sometimes erroneous. For example, words which are inflections of foreign words are usually
problematic. An example is “Hillary’nin” which is the genitive case for the word “Hillary”. It has been
incorrectly labeled as if it is in nominal case. Also, when the surface form is a number in some noun case,
like “98’e” which is the dative case for the number ninety eight, the morphological analysis is almost
always nominal. We believe the reason for this is the incorrect handling of the quote character when
preparing the original version.

In our study, we have first divided the training portion of the original dataset into training and devel-
opment sets. We then augmented these portions using candidate morphological analyses for each word



(a) (i) Model JOINT1: two losses for two tasks sharing a Bi-LSTM. (ii)
Model JOINT2: We concatenate the selected morphological analysis’ vec-
tor representation to the last layer’s context vector.

(b) Model J MULTI: We employ shortcut connections and two more Bi-
LSTM layers.

Figure 3: Our joint models: (a) JOINT1 and JOINT2 models (b) J MULTI model. The symbol � represents
the selection of maij∗ .

with a commonly used morphological analyzer (Oflazer, 1994). Unfortunately, the golden morpholog-
ical analyses in about 5% of the word tokens were not found in these candidate analyses. To mitigate
this issue, we listed the most frequent contexts where a specific mismatch happens, selected the most
suitable morphological analysis out of the candidates for each context, thus providing a solution to the
mismatch. We then automatically corrected all contexts with a mismatch which has a solution in our
solution database. Although we tried to give the utmost attention to selecting the best solution, some of
our solutions might be problematic. Thus, we share the data, the scripts and the tool which helps the user
to select a solution as described for academic use and examination2. Unfortunately, there were still left
a few hundred mismatches. As providing a solution for them required a lot of manual work and would
only save 1-2 sentences for each, we just removed any sentence that contains any of these mismatches.
This way, we have retained 25511 out of 28835 sentences in the original dataset for training, 2953 of
3336 for development and 2913 of 3328 for test. By this process, despite losing some of the sentences,

2The data can be found at https://github.com/onurgu/joint-ner-and-md-tagger



we have built a new dataset with both the NER labels and the candidate morphological analyses which
have correct golden labels.

4.1 Training

We implemented the model using the DyNet Neural Network Toolkit in Python. The model parameters
are basically the word embeddings, the parameters of Bi-LSTMs, the weights of the fully connected
layer FClast, and the CRF transition matrix A. We trained by calculating the gradients of the loss for a
batch of five sentences consisting of surface forms and its associated NER and/or MD labels and updated
the parameters with Adam (Kingma and Ba, 2014) for 50 epochs and reported the performance on test
set of the model with the highest development set performance. We applied dropout (Srivastava et al.,
2014) with probability 0.5 to the word representations xi. To facilitate the reproducibility of our work,
we also provide our system as a virtual environment3 that provides the same environment on which we
evaluated our system in an open manner.

5 Results

To test our approach, we train and evaluate every model for 10 times and report the mean F1-measure
value for named entity recognition and accuracy for morphological disambiguation. This is done to
decrease the potential negative effects of random initialization of model parameters as shown in the
literature (Reimers and Gurevych, 2017). To accomplish this given our limited computing resources, we
set the parameter dimension sizes to 10 and do not employ pretrained word embeddings.

The results are shown in Table 1. We see that the mean NER performance increases in joint models.
We see that the JOINT2 model is performing better than just calculating two losses at the last layer as
we did in the JOINT1 model. However, applying the Welch’s t-test between the JOINT1 and JOINT2
runs does not strongly imply this difference (p = .24). Adding multiple Bi-LSTM layers to JOINT2 and
obtaining J MULTI also helped and achieved the best score among our joint models4. Employing Welch’s
t-test confirms the significance of this difference with other joint models, p < .05 for each pair.

This work
Model Mean F1-measure
NER 81.07
JOINT1 81.28
JOINT2 81.84
J MULTI 83.21
Previous work
EXT M FEAT 83.47

Table 1: Evaluation of our models for NER performance with our dataset. We report F1-measure results
over the test portion of our dataset averaged over 10 replications of the training with the same hyper
parameters.

To make a comparison with a previous method (Gungor et al., 2017), we also evaluated a model where
the golden morphological analysis in the corpus is represented as a vector and included in the word
representation xi, namely EXT M FEAT (see Section 3.1). As one can see from the table, it achieved
the best results compared to our joint models. However, we cannot confirm the difference between
EXT M FEAT and J MULTI models as the calculated p is well above .05. Thus our best performing
model J MULTI is performing at a competitive level with an additional advantage of disambiguating
the morphological tags while predicting the NER tags. This also serves as another confirmation to the

3You can obtain our implementation and find more information about how to use our virtual environment at https:
//github.com/onurgu/joint-ner-and-md-tagger.

4One can wonder whether this performance improvement could be due to an increase in the total number of parameters of
the model. We saw that the increase is negligible as it only accounted for a 2% increase.



hypothesis that employing linguistic information such as morphological features leads to an increase in
the NER performance.

This work
Model Mean

Accuracy
MD 88.61
JOINT1 88.17
JOINT2 86.86
J MULTI 88.05
Previous work
Yuret and Türe (2006) 89.55
Shen et al. (2016) 91.03

Table 2: Evaluation of our models for MD performance. As in the NER evaluation, we report accuracies
over the test dataset averaged over 10 replications of the training.

To evaluate the performance of morphological disambiguation, we have tested the MD performance of
our models, which are trained with the training portion of our dataset, on the test portion of a frequently
used dataset (Yuret and Türe, 2006). As can be seen from Table 2, we are very close to the state of the
art MD performance even if we only trained with a low number of parameters as stated in the beginning
of this section. We have to also note that in contrast with the NER task, the MD task did not enjoy a per-
formance increase from joint learning. The mean morphological disambiguation accuracies for the test
portion of our dataset also suggests the same, all hovering around 77% without much change. This might
be due to the fact that NER can utilize the disambiguated morphological analysis of a word to predict the
correct label, however a correctly predicted NER label does not contribute to the disambiguation of the
word’s morphology.

6 Conclusions

In this work, we propose a joint model of NER and MD tasks that removes the need for external mor-
phological disambiguators. The method is applicable to every language given that one can provide the
candidate morphological analyses for a word, making this approach portable to many languages. We
have also shown that joint learning leads to an increase in the NER tagging performance. However, there
is more work to do as we are still bound to language specific tools in obtaining the list of candidate mor-
phological analyses. Generating the list of candidate analyses within the model, testing our hypothesis on
other morphologically rich languages, and testing with models which have higher number of parameters
are left for future work.
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György Szarvas, Richárd Farkas, and András Kocsor. 2006. A multilingual named entity recognition system using
boosting and C4.5 decision tree learning algorithms. In International Conference on Discovery Science, pages
267–278. Springer.

Viktor Trón, András Kornai, György Gyepesi, László Németh, Péter Halácsy, and Dániel Varga. 2005. Hun-
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