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Abstract. De novo assembly using short reads generated by next generation sequencing
technologies is still an open problem. Although there are several assembly algorithms
developed for data generated with different sequencing technologies, and some that can
make use of hybrid data, the assemblies are still far from being perfect. There is still
a need for computational approaches to improve draft assemblies. Here we propose a
new method to correct assembly mistakes when there are multiple types of data obtained
using different sequencing technologies that have different strengths and biases. We
apply our method to Illumina, 454, and Ion Torrent data, and also compare our results
with existing hybrid assemblers, Celera and Masurca.

1 Scientific Background
Since the introduction of high throughput next generation sequencing (NGS) tech-

nologies, traditional Sanger sequencing is being abandoned especially for large-scale
sequencing projects. Although cost effective for data production, NGS also imposes in-
creased cost for data processing and computational burden. In addition, the data quality
is in fact lower, with greater error rates, and short read lengths for most platforms. One
of the main algorithmic problems to analyze NGS data is the de novo assembly: i.e.
“stitching” billions of short DNA strings into a collection of larger sequences, ideally
the size of chromosomes. However, “perfect” assemblies with no gaps and no errors
are still lacking due to many factors, including the short read and fragment (paired-
end) lengths, sequencing errors in basepair level, and the complex and repetitive nature
of most genomes. Some of these problems in de novo assembly can be ameliorated
through using data generated by different sequencing platforms, where each technology
has “strengths” that may be used to fix biases introduced by others.

Overlap-layout-consensus graph based assemblers work well on the long read as-
sembly. De-bruijn graph based assemblers are designed for the assembly of short reads.
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Table 1: Properties of the data

Technology Length range Mean length Mean seq.
qual

Paired

Illumina 101bp 101bp 38 paired
Roche/454 40bp-1027bp 650bp 28 single-end
Ion-Torrent 5bp-201bp 127bp 24 single-end

There are also hybrid assemblers which use multiple read libraries. Pre-processing and
post-processing operations before and after the assembly takes an important role on the
assembly quality.

In this work, we propose a method to improve draft assemblies (i.e. produced us-
ing a single data source, and/or single algorithm) by incorporating data generated by
different NGS technologies, and applying novel correction methods. To achieve better
improvements, we exploit the advantages of both short but low-error and long but erro-
neous reads. We show that correcting the contigs built by assembling long reads through
mapping short (and high quality) read contigs produce the best results, compared to the
assemblies generated by algorithms that use hybrid data.

2 Materials and Methods
We first cloned a bacterial artificial chromosome (BAC) from human chromosome

13. We then sequenced this BAC separately using Illumina, Roche/454, and Ion-Torrent
platforms. Data properties are shown in Table 1. We also obtained a “gold standard” ref-
erence assembly using template-based assembly with Mira [7] with Roche/454, which is
then corrected with the Illumina reads. Since Roche/454 and Ion Torrent platforms have
similar sequencing biases (i.e. problematic homopolymers), we worked on two separate
groups: Illumina & 454 and Illumina & Ion-Torrent, which gives us an opportunity to
compare Roche/454 and Ion-Torrent.

Pre-processing: We first discarded the reads that has low average quality value
(phred score 17, i.e. ≥2% error rate). Next, we removed the reads with high N-density
(with >10% of the read consisting of Ns). We then trimmed groups of bases that seem
to be non-uniform according to sequence base content. We also inevitably applied each
assembler’s pre-processing operations.

Assembly: We used several assembly tools: Velvet[3], a de Bruijn graph based as-
sembler to assemble the short reads; and two different overlap-layout-consensus (OLC)
assemblers: Celera [1], and SGA [2] to assemble the long read data sets (Roche/454 and
Ion Torrent) separately. Finally, we also used a de Bruijn based assembler, SPAdes[4]
on the long read data. We then mapped all draft assemblies to the E. coli reference se-
quence to identify and discard E. coli contamination due to the cloning process. At the
end, we obtained one short read, and three long read assemblies.

Correction: We mapped the contigs obtained with the short reads onto the con-
tigs generated by assembling long reads using BLAST[8]. Since BLAST may report
multiple mapping locations due to repeats, we accepted only the “best” map locations.
Reasoning from the fact that the short reads show less sequencing errors, we opted for
the sequence reported by the short read based contigs over the long read contigs assem-
blies when there are disagreements between the pair, and patched the “less fragmented”
long read assemblies. We repeated this process for each of the three long read assembly
data sets. Correction algorithm is shown in Algorithm 1.
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Evaluation: We mapped each of the final corrected assemblies onto the reference
genome we constructed, calculated various statistics based on the comparisons, and
estimated assembly qualities (Table 2). We also used two hybrid assemblers, Celera-
CABOG [5] and Masurca [6] on the same data to compare our correction methodology
with those of hybrid assembly algorithms.

Algorithm 1 Assemble the query (short reads contig) and the subject (long reads contig)
according to mapping information
Require: mapping query and subject

if the map does not start at the beginning of the subject then
add the unmapping beginning of the subject

end if
if the map does not start at the beginning of the query then

add the first part of the query to the result with lowercase letters
end if
add the mapping part of the query
if the map does not end at the end of the query then

add the last part of the query to the result with lowercase letters
end if
if the map does not end at the end of the subject then

add the unmapping end of the subject
end if

3 Results
We present a summary of the results in Table 2. Briefly, the Velvet assembly using

only the Illumina reads showed better coverage (99%) and high average identity (97.5%)
rates compared to Celera assembly using long reads. Correcting the Celera assembly
with our method improves both coverage and average identity rates, which are then
further improved by reiterative application of our method.

The coverage of 454 assembly increases up to 99.7% and the average identity rate
increases up to 94.4% on the first correction cycle. The repetitive correction cycles
increase the coverage and average identity rates. We see that correcting the long read
assembly with the short read contigs works well with all kind of assemblers. Corrected
SGA assembly has the highest coverage rate among all.

Assembling short and long reads separately with de Bruijn and OLC assemblers and
correcting them give better results than assembling short and long reads together with a
hybrid assembler such as Masurca or Celera.

4 Conclusion
Assembly correction by using advantages of different technologies improves the re-

sulting assembly. In this paper, we presented a new method to improve draft assemblies
by correcting high contiguity assemblies using high quality short read contigs.

Our results show that our method is useful and gives better results than using all
data for once with a hybrid assembler. However, the need to develop new methods that
exploit different data properties of different NGS technologies remains.
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Table 2: Results of assembly correction method on BAC data.

Name Length # of
Contigs

# of
Mapped
Contigs

# of
Covered
bases

Coverage Avg.
Identity

# of
Gaps

Size of Gaps

Reference 176.843

Velvet
Ill. Velvet 197,040 455 437 175,172 0.99055 0.97523 39 1,671

Celera
454 Celera 908,008 735 735 172,563 0.97580 0.92599 18 4,280
Ion Celera 39,347 27 27 47,638 0.26938 0.96932 47 129,205

Corrected Celera
Ill-454 Celera 4,945,785 895 270 176,368 0.99731 0.94370 5 475

Ill-454 Celera2* 5,078,059 890 265 176,640 0.998852 0.944527 4 203
Ill-454 Celera3 5,086,627 890 265 176,640 0.998852 0.944560 4 203
Ill-Ion Celera 93,909 30 28 81,819 0.46267 0.96327 36 95,024

Ill-Ion Celera2 145,262 30 28 91,962 0.52002 0.97412 33 84,881
Ill-Ion Celera2 216,167 30 28 99,645 0.56347 0.98066 34 77,198

SGA
454 SGA 62,909,254 108,095 101,514 176,546 0.99832 0.97439 1 297
Ion SGA 842,997 6,417 6,122 153,092 0.86569 0.99124 197 23.751

Corrected SGA
Ill-454 SGA 295,009 335 335 176,757 0.99951 0.96823 5 86

Ill-454 SGA2 279,034 305 305 176,757 0.99951 0.96769 5 86
Ill-Ion SGA 197,509 291 291 175,052 0.98987 0.97501 45 1,791

Ill-Ion SGA2 203,064 291 291 175,676 0.99340 0.97413 34 1,167
Ill-Ion SGA2 204,524 291 291 175,677 0.99341 0.97405 34 1,166

SPADES
454 SPADES 12,307,761 49,824 49,691 176,843 1.0 0.98053 0 0
Ion SPADES 176,561 110 107 167,890 0.94937 0.92909 9 8,953

Corrected SPADES
Ill-454 SPADES 290,702 298 298 176,454 0.99780 0.96538 5 389

Ill-454 SPADES2 290,917 297 297 176,454 0.99780 0.96530 5 389
Ill-Ion SPADES 198,665 52 52 171,977 0.97248 0.94215 4 4,866

Ill-Ion SPADES2 200,307 52 52 172,101 0.97319 0.94230 2 4,742

Masurca
Ill-454 Masurca 380 1 0 0 0 0 0 0
Ill-Ion Masurca 2,640 8 8 1,952 0.01104 0.98223 9 174,891

Celera-CABOG
Ill-454 Celera 1,101,716 891 891 174,330 0.98579 0.92452 12 2,513
Ill-Ion Celera 0 0 0 0 0.0 0.0 0 0.0

Name: the name of the data group that constitute the assembly; # of contigs: the number of contigs that belong to the resulting assembly; # of Mapped Contigs: the

number of contigs that successfully mapped onto the reference sequence; # of Covered bases: the number of bases on the reference sequence that are covered by the

assembly; Coverage: percentage of covered reference; Avg. identity: percentage of the correctly predicted reference bases; # of Gaps: The number of gaps that cannot

be covered on the reference genome; Size of Gaps: total number of bases on the gaps.
*

“2” represents the results of the second cycle of correction, “3” represents the third cycle.


