
Findings of the Association for Computational Linguistics: NAACL 2022, pages 1159 - 1171
July 10-15, 2022 ©2022 Association for Computational Linguistics

Improving Code-Switching Dependency Parsing with Semi-Supervised
Auxiliary Tasks

Şaziye Betül Özateş1,2, Arzucan Özgür1, Tunga Gungor1, Özlem Çetinoğlu2

1 Computer Engineering, Boğaziçi University, Turkey
2 IMS, University of Stuttgart, Germany

{saziye.bilgin,arzucan.ozgur,gungort}@boun.edu.tr
ozlem@ims.uni-stuttart.de

Abstract

Code-switching dependency parsing stands as
a challenging task due to both the scarcity of
necessary resources and the structural difficul-
ties embedded in code-switched languages. In
this study, we introduce novel sequence label-
ing models to be used as auxiliary tasks for
dependency parsing of code-switched text in a
semi-supervised scheme. We show that using
auxiliary tasks enhances the performance of an
LSTM-based dependency parsing model and
leads to better results compared to an XLM-R-
based model with significantly less computa-
tional and space complexity. As the first study
that focuses on multiple code-switching lan-
guage pairs for dependency parsing, we acquire
state-of-the-art scores on all of the studied lan-
guages. Our best models outperform the previ-
ous work by 7.4 LAS points on average.

1 Introduction

Code-switching (CS) is the producing of utterances
by combining phrases and word forms from mul-
tiple languages. This is a phenomenon observed
frequently in utterances of bilingual speakers (Auer
and Wei, 2007). Figure 1 shows an example to this
type of utterance formation. Although much work
has been done on the syntactic parsing of mono-
lingual languages, CS language pairs are quite un-
derstudied in this regard. There have been only a
few studies on CS dependency parsing (Bhat et al.,
2017; Partanen et al., 2018b; Braggaar and van der
Goot, 2021), each focusing only on a single CS lan-
guage pair. Although CS dependency parsing also
benefited from the recent rise of multilingual and
cross-lingual natural language processing (NLP)
models as shown by van der Goot et al. (2021),
these models, which are usually trained on mono-
lingual corpora, are insufficient on CS parsing. The
poor performance on CS language pairs is not only
due to the lack or scarcity of the training data but
also because of the shortage on resources required

Realschule’den sonra Gymnasium yaptım .
MIXED TR DE TR OTHER

Secondary school after high school made .

ROOT

OBL

CASE OBJ PUNCT

‘After secondary school I went to high school.’

Figure 1: Dependency tree of a code-switched sentence
from the Turkish-German SAGT Treebank. Language
ID of each token is located below the token. TR stands
for Turkish, DE for German, MIXED for tokens with
intra-word code-switching, OTHER is for punctuation.
German tokens and token parts are shown in bold.

by deep neural models such as pretrained embed-
dings, language models, or even raw data. In ad-
dition, each language composing a CS language
pair inherits its own structural difficulties which
contributes a good deal to the problem.

Recently, a small number of CS treebanks were
manually annotated within Universal Dependen-
cies (UD) (Nivre et al., 2016). Even though these
treebanks have little to no training data, their exis-
tence provides an opportunity to study dependency
parsing also on CS language pairs.

In such low-resource scenarios, utilizing raw
data can be helpful in boosting the performance. A
common method to benefit from raw data is self-
training (McClosky et al., 2006), a semi-supervised
approach where a small number of labeled data is
used to train a model that is later used to predict
labels for unlabeled data. This pseudo-labeled data
is then combined with the initial data to re-train the
model. This method is usually found successful in
low-resource scenarios (Rybak and Wróblewska,
2018; Yu et al., 2020), although error propagation
is a known problem when pseudo-labels are noisy.

With very restricted resources, we hypothesize
that CS dependency parsing can also benefit from
unlabeled data. Based on this hypothesis, we form
our first research question: is using pseudo-labeled
data directly beneficial for CS dependency pars-

1159



ing or can we find better ways of integrating the
knowledge from pseudo-labeled data?

Starting from this question, we follow a deep
contextualized self-training approach (Rotman and
Reichart, 2019) and integrate semi-supervised aux-
iliary tasks to the parsing architecture to enhance
CS dependency parsing. Our method enhances
a widely-used BiLSTM-based parser (Dozat and
Manning, 2017) by training parsing-related auxil-
iary sequence labeling tasks on automatically la-
beled data and combining these trained auxiliary
task models with the base parser through a gating
mechanism. We introduce new sequence labeling
tasks that are shown to be beneficial in improv-
ing the parsing performance. Seeing the success
of our semi-supervised enhancement method on
the BiLSTM-based parser, we form our second re-
search question: can we reach even better parsing
scores if we combine this enhancement method
with XLM-R (Conneau et al., 2020), a state-of-the-
art (SOTA) transformer-based language model that
shows superior performance on many NLP tasks?
Our experimental results demonstrate notable suc-
cess of our proposed models over the previous state-
of-the-art on these treebanks. Our contributions are
as follows:

• We employ a semi-supervised learning ap-
proach based on auxiliary tasks for CS de-
pendency parsing. We present the first study
with a focus on parsing all CS UD treebanks
and achieve SOTA results on all of them.

• We introduce novel sequence labeling tasks
including a CS-specific one, that capture syn-
tactic information better and hence improve
dependency parsing.

• We adapt this method to the powerful XLM-R
model and elaborate the effectiveness of this
approach when combined with XLM-R-based
word representation for dependency parsing.
We demonstrate that the mighty transformer
model remains inadequate for the case of low-
resource CS parsing.

2 Related Work

Code-switching dependency parsing is a newly-
studied research area. The first CS UD treebank
was created by Bhat et al. (2017) which included
only a test set of Hindi-English sentences. In the
absence of CS training data, the test set was split
to monolingual fragments and existing Hindi and

English monolingual treebanks in UD were used to
parse these fragments. Bhat et al. (2018) extended
this dataset with a CS training set. They trained
a BiLSTM architecture on this additional training
data by also integrating syntactic knowledge ex-
tracted from monolingual treebanks.

Partanen et al. (2018b) laid the first foundations
of a Komi-Russian UD treebank with 25 CS sen-
tences. They adopted a multilingual parsing ap-
proach (Lim and Poibeau, 2017) and used Russian
and Komi monolingual training data with bilingual
Komi-Russian word embeddings. Later, this tree-
bank expanded into the Komi-Zyrian IKDP tree-
bank (Partanen et al., 2018a).

Çetinoğlu and Çöltekin (2019) created a Turkish-
German UD treebank from a Turkish-German spo-
ken corpus. Seddah et al. (2020) introduced the
Maghrebi Arabic-French treebank and performed
parsing experiments on the treebank using UDPipe
(Straka and Straková, 2017). This treebank is yet
to be included in the UD. A Frisian-Dutch UD tree-
bank which includes only test data was introduced
by Braggaar and van der Goot (2021). The authors
performed data selection from eight related mono-
lingual treebanks using Latent Dirichlet Allocation
(Blei et al., 2003) to create a training set. Their
experiments performed using a deep biaffine parser
(van der Goot et al., 2021) demonstrated no signifi-
cant performance difference between training the
parser on the selected training set and only on a
Dutch monolingual treebank.

Lately, multilingual and cross-lingual parsing
studies have begun to include CS treebanks in their
experimental setups. van der Goot et al. (2021)
presented a multi-task learning tool that utilizes
multilingual BERT (Devlin et al., 2019) to perform
several NLP tasks, including dependency parsing.
Evaluation was done on all available UD treebanks
which include CS UD treebanks mentioned above.
The model was fine-tuned on training set of each
treebank, which is also the case for Hindi-English
and Turkish-German CS treebanks. For Frisian-
Dutch and Komi-Russian CS treebanks with no
training data, they used Dutch Alpino and Rus-
sian SynTagRus treebanks, respectively. Müller-
Eberstein et al. (2021) applied a sentence level
genre-based data selection from UD treebanks in
a cross-lingual setup. They trained a multilingual
BERT-based biaffine parser (van der Goot et al.,
2021) for 12 low-resource UD treebanks including
Hindi-English and Turkish-German CS treebanks.

1160



Figure 2: The parser architecture with semi-supervised auxiliary task enhancement. Ep is the parser encoder, EAT

is the sequence labeler encoder trained on one of the auxiliary tasks. For a given token pair, the model calculates a
weighted average of each token’s hidden representation from EP and EAT . The resulting vectors are given to two
multi-layer perceptrons (MLP) to produce an arc score Sarc and a label score Slabel for the given token pair. The
input tokens are taken from the Frisian-Dutch Fame Treebank.

Our study on CS dependency parsing differs
from the previous work in the sense that none of
the previous work utilized raw CS data to improve
parsing in a semi-supervised scheme.

3 Methodology

3.1 Base Parsing Model

Our base parser is a neural graph-based parser by
Dozat and Manning (2017) that uses two biaffine
classifiers, one to predict the head of a given token
and the other to predict the resulting arc’s label.
For input representation, the model uses BiLSTM
modules to compute learned word embeddings and
add them to their corresponding pretrained word
embeddings that are later concatenated with cor-
responding part-of-speech (POS) embeddings. To
ensure a well-formed tree at test time, the maxi-
mum spanning tree (MST) algorithm is used.

3.2 Semi-supervised Enhancement through
Auxiliary Sequence Labeling Tasks

We follow Rotman and Reichart (2019) to exploit
unlabeled data for CS dependency parsing. Rather
than directly using pseudo-labeled data as an addi-
tional source in training, the main idea is to extract
and utilize parsing-related knowledge from auto-
matically parsed data. This is achieved by training
contextualized embedding models on a number of
auxiliary sequence labeling tasks derived from the
raw data parsed by the base parser and then com-

bining encoders of these trained models with that
of the base parser through a gating procedure (Sato
et al., 2017) as described in Section 3.3. Figure 2
depicts this enhanced parser. The combined model
is then re-trained on the gold labeled data.

For their experimental setup, Rotman and Re-
ichart (2019) consider three token-level sequence
labeling schemes to extract the structural informa-
tion encoded in the parsed sentences. These are:

(i) Number of Children (NOC) The task is to
predict the number of children each token has in a
dependency tree.

(ii) Distance to the Root (DTR) Each token is
tagged with its minimum distance to the root token
of the dependency tree.

(iii) Relative POS-based Encoding (RPE) Each
token in a sentence is tagged with its head’s POS
tag in a simplified form and its distance from the
head. The distance calculation considers only the
intermediate tokens that share the same POS tag
with its head.

Although these three auxiliary tasks offer a com-
prehensive scheme in terms of extracting parsing-
related knowledge from automatically parsed data,
we search ways of channeling the embedded knowl-
edge in parsed trees more thoroughly to the trained
word embedding layers of the parser. We come up
with three additional sequence labeling tasks:

1161



Figure 3: The dependency tree of an example sentence from Hindi-English HIENCS Treebank. Each node in the
tree is tagged with the five auxiliary task schemes depicted in Section 3.2. Tags for the case of the SMH scheme are
not shown for this example since the HIENCS Treebank does not include morphology.

(iv) Language ID of Head (LIH) We start with
CS-specific features of parsed trees. The most
prominent of them is the language ID (LID) fea-
tures of the tokens in CS treebanks. Considering
the positive impact of LIDs in various other NLP
tasks (Jamatia et al., 2015; Aguilar and Solorio,
2020; Özateş and Çetinoğlu, 2021), we design a
simple auxiliary sequence labeling task that makes
use of LIDs. Unlike previous work using token
LIDs, LIH tags each token with the LID of its head.
This way, information about the language of tokens
with which each token tends to relate in terms of
dependencies is conveyed to the learning model.

(v) Simplified Morphology of Head (SMH)
Morphological features are found to be beneficial in
parsing morphologically-rich languages (Dehouck
and Denis, 2018). This was our motivation to cre-
ate a new auxiliary task based on morphology. In
the SMH scheme, each token is assigned its head’s
morphological features. To reduce the number of
labels, we use only a subset of the morphological
features set, selected by considering the inclusive-
ness and the prevalence of the features across the
data.1 The main idea of SMH is to provide mor-
phological clues to the parser while also giving
information about the structure of the tree.

A similar approach is also tried by Sandhan et al.
(2021). They define a sequential task to predict the
full set of morphological features for a given token.

1The selected UD features are Aspect, Case, Foreign,
Mood, NumType, Person, and VerbForm.

In our preliminary experiments, we observed that
using the full set of morphological features does
not improve the accuracy. In CS treebanks the
unique number of features is increased due to the
combination of language-specific feature sets of the
language pair, making the task more complex. To
reduce the complexity, we design SMH as utilizing
only a subset of the morphological features of (not
the token itself, but) the head of the token.

(vi) Punctuation Count (PC) Lastly, we design
the PC task that only needs root tokens unlike all
other tasks that need parsed trees to function. PC
is also not dependent on morphological, POS, or
LID tags as SMH, RPE, and LIH tasks.

PC simply tags each token with the number of
punctuations between that token and the root token
in the sentence. We observe a connection between
the position of punctuation and phrase boundaries
in a sentence which goes in line with previous stud-
ies (Li et al., 2010; Spitkovsky et al., 2011). PC
roughly groups tokens into phrases that usually
constitute sub-trees in a dependency tree.

Figure 3 shows the outputs of these tasks on the
dependency tree of an example CS sentence.

3.3 The Gating Procedure

To create the final parser, the trained auxiliary task
models are combined with the base parser through
a gating mechanism (Sato et al., 2017) which learns
to scale between the encoders of the auxiliary se-
quence labelers and that of the parser (see Fig. 2).

1162



Formally, the combined representation can be
formulated as:
bt = σ(W gate(eparser ⊕ elabeler) + wgate)
gt = bt · eparser + (1− bt) · elabeler

where eparser and elabeler are the outputs of the
parser and sequence labeler encoders, respectively.
⊕ denotes concatenation. W gate and wgate are the
learned parameters of the gating procedure and σ
is the sigmoid function. The final combined vector
gt is then given to the biaffine classifiers.

3.4 Transformer-based Adaptation of the
Model

Our base parser as described in Dozat and Manning
(2017) has some shortcomings in the choice of the
input representation, especially when the target lan-
guage has very little or no training data and there
is no accompanying pretrained word embeddings
to represent the input. This is also the case with
CS language pairs. In that situation, utilizing the
expressive power of transformers can be a good
solution. Pretrained on huge amounts of raw data
in different languages, multilingual transformer-
based language models have proven remarkably
effective (Devlin et al., 2019; Sanh et al., 2019; Liu
et al., 2019). One such model is XLM-R (Con-
neau et al., 2020). Pretrained on text data in 100
languages, XLM-R shows SOTA performance in
many languages including low-resource ones.

To the best of our knowledge, such a deep con-
textualized semi-supervised scheme has not been
incorporated with XLM-R before. So, we re-
implement the auxiliary task modules and the com-
bined parsing approach for an XLM-R-based en-
coding module. For this purpose we follow the
XLM-R-based parsing architecture of Grünewald
et al. (2021) which has the same biaffine parsing
model described in Dozat and Manning (2017).
Our aim is to observe how extracting parsing-
related knowledge from semi-supervised auxiliary
tasks affects a multilingual transformer model.

4 Experiments

4.1 Data
We perform experiments on all CS treebanks2 in
Universal Dependencies (v2.8).3 These are Komi-

2There is also the Maghrebi Arabic-French Treebank (Sed-
dah et al., 2020) but its annotations are not yet compatible with
the UD scheme and it is not included in the UD repository.

3https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-3687.
All UD treebanks used in this paper are licensed with CC

Zyrian IKDP (Kpv-Ru), Hindi-English HIENCS
(Hi-En), Frisian-Dutch Fame (Fy-Nl), and Turkish-
German SAGT (Tr-De) treebanks. All except Hi-
En are based on spoken CS data. Hi-En is con-
structed from bilingual tweets. Table 1 states basic
statistics and related resources for each treebank.

4.2 Training Setup

Due to lack of training data in some CS treebanks,
we have two types of experimental setup. We train
the parser models on in-domain data for Hi-En and
Tr-De. In these experiments we use each treebank’s
own training set. However, Kpv-Ru and Fy-Nl con-
sist of a test set only. Hence, training of the latter
two treebanks are on out-of-domain data. For Kpv-
Ru which includes Komi-Russian code-switching,
we train the models on Komi-Zyrian Lattice UD
Treebank (Partanen et al., 2018a) of monolingual
Komi data. The first 562 sentences in Komi-Zyrian
Lattice are used for training, the remaining 100
are used for development. For Fy-Nl, our training
data is the Dutch Alpino UD Treebank (Van der
Beek et al., 2002). We chose Dutch Alpino over the
other Dutch UD treebank (LassySmall) as Alpino
is found more effective in parsing Fy-Nl (Braggaar
and van der Goot, 2021).

4.2.1 Unlabeled Data
Komi-Russian Komi Social Media Corpus4 is
part of a social media corpora project for minority
Uralic languages (Arkhangelskiy, 2019). The data
is crawled from vkontakte, a social media service
mostly popular in Russia. Collected texts are au-
tomatically separated to monolingual segments of
Komi, Russian, or Unknown via a dictionary-based
method. For our purposes, we extract 3,862 CS
sentences from the corpus by joining consecutive
segments that alternate between Komi and Russian.

Hindi-English We employ the datasets in the
LinCE CS benchmark5 (Aguilar et al., 2020) for
this language pair. The benchmark provides three
different corpora with gold LID and POS labels
for Hindi-English (Mave et al., 2018; Singh et al.,
2018a,b). We combine these three corpora to use
them as unlabeled data. The resulting data consists
of 10,989 sentences.

BY-SA 4.0.
4Available for research purposes. We obtained

the corpus by contacting Timofey Arkhangelskiy
at http://komi-zyrian.web-corpora.net/
index_en.html

5The datasets are publicly available for research purposes.

1163

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3687
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3687
http://komi-zyrian.web-corpora.net/index_en.html
http://komi-zyrian.web-corpora.net/index_en.html


Kpv-Ru Hi-En Fy-Nl Tr-De
(Komi-Russian) (Hindi-English) (Frisian-Dutch) (Turkish-German)

Train − 1, 448 − 578
Dev − 225 150 801
Test 214 225 250 805
CMI 16.97 36.08 17.80 28.78

Morphology yes no no yes
Monolingual treebanks both both only Dutch both
Unlabeled CS data Komi Social Media LinCE FAME! TuGeBiC
XLM-R only Russian both both both
FastText only Russian both both both

Table 1: Some statistics and related resources for the CS treebanks. Fy-Nl is provided as a single test set of 400
utterances. As in Braggaar and van der Goot (2021), we split it into a development set (first 150 utterances) and
a test set (remaining 250 utterances). CMI is the code-mixing index (Das and Gambäck, 2014) that shows how
frequent code-switching happens in the text.

Frisian-Dutch We extract CS sentences from the
FAME! Corpus6 (Yılmaz et al., 2016) which con-
tains radio broadcasts in Frisian-Dutch. From this
corpus, which is also the source of the Fy-Nl tree-
bank, we select 2,170 sentences that include at least
one CS point and are not already in the treebank.

Turkish-German TuGeBiC7 (Treffers-Daller
and Çetinoğlu, 2022) is a set of transciptions, col-
lected from interviews with Turkish-German bilin-
guals in the 90s (Treffers-Daller, 2020). It contains
16,950 sentences. We use the whole corpus, and
only remove the speaker IDs and metadata from
the files.

4.2.2 Sequence Labeler Training
Training auxiliary models on sequence labeling
tasks is done on automatically parsed version of
the corresponding unlabeled data for each treebank.
Some of the sequence labeling tasks need specific
labels on unlabeled data to function. These are POS
tags for RPE, LID labels for LIH, and morphologi-
cal annotation for SMH. In training of these tasks,
we use gold labels when available (POS tags for Hi-
En; LIDs for Kpv-Ru, Hi-En, and Fy-Nl) and train
taggers in the absence of gold labels (POS tags
for Kpv-Ru, Fy-Nl, and Tr-De; LIDs for Tr-De;
morphological features for Kpv-Ru and Tr-De).

4.3 Baselines
As our baseline, we use Ma et al. (2018)’s re-
implementation of the biaffine parser by Dozat and
Manning (2017). We call this model BaseLSTM as
it uses BiLSTMs for contextualized word vectors.

6Available via a license agreement. https://www.ru.
nl/clst/tools-demos/datasets/

7Available at https://github.com/ozlemcek/
TuGeBiC

As a second baseline, we implement the tra-
ditional self-training approach (McClosky et al.,
2006) in which the parser is first trained only on
gold labeled data. Then, labels of unlabeled data
are predicted by the trained parser. Finally the
parser is re-trained on the combination of gold la-
beled data and pseudo-labeled data. We name this
approach as Self-training.

For our experiments with XLM-R, we use
Grünewald et al. (2021)’s implementation of the
biaffine parser with XLM-R-based input represen-
tation. Input word embeddings are calculated as
a weighted sum of all intermediate outputs of the
transformer layers. Coefficients of the weighted
sum are learned during the training phase. Apart
from its multilingual transformer-based contextual-
ized word representation model, it has the same bi-
affine parsing model in Dozat and Manning (2017).
We call this version BaseXLMR.

Hyper-parameters of both parser models and se-
quence labelers can be found in Appendix A.1.

4.4 Semi-supervised Enhancement Models
We provide the list of enhancement models built
on top of BaseLSTM and BaseXLMR where parser
is combined with a sequence labeler trained on:

• +NOC: Number of Children,

• +DTR: Distance to the Root,

• +RPE: Relative POS Encoding,

• +LIH: Language ID of Head,

• +SMH: Simplified Morphology of Head,8

• +PC: Punctuation Count.9

8Note that only Kpv-Ru and Tr-De treebanks have mor-
phological annotation. Hence, +SMH is applied only to them.

9The +PC model is not applied to Fy-Nl since the treebank
does not have punctuation.

1164

https://www.ru.nl/clst/tools-demos/datasets/
https://www.ru.nl/clst/tools-demos/datasets/
https://github.com/ozlemcek/TuGeBiC
https://github.com/ozlemcek/TuGeBiC


Additionally, we perform experiments by ensem-
bling more than one auxiliary task model with the
base parser. We experiment with two configura-
tions. First, we integrate Number of Children,
Distance to the Root, and Relative POS Encod-
ing models together (+NOC,+DTR,+RPE). This
is also the ensemble configuration in Rotman and
Reichart (2019). Since we have additional three
tasks, we also make the combination of three best
performing models for each treebank and name this
ensemble version as +Best Combination.10

For combining encoders of more than one auxiliary
task model with the parser encoder, we use Rot-
man and Reichart (2019)’s extension to the gating
mechanism of Sato et al. (2017).

We perform three runs for each model and report
the average scores. We measure the performance of
all models using the CoNLL 2018 Shared Task eval-
uation script11 and report the unlabeled and labeled
attachment scores (UAS and LAS, respectively).

5 Results and Discussion
Table 2 shows the performance of all LSTM-based
models and of the previous works on the test set of
each treebank in terms of attachment scores. Signif-
icance testing is performed using the approximate
randomization test (Noreen, 1989) on the model
outputs with the number of shuffles set to 5,000.

Comparison to Baselines On all treebanks, the
auxiliary task enhancement methods improve the
scores when compared to BaseLSTM by 4.94 points
in UAS and 3.86 points in LAS on average. The
best performing enhancement model differs across
treebanks. We observe the same pattern for the tra-
ditional self-training method. Self-training
fails to surpass the proposed approach on any of the
treebanks. Its parsing performance even falls below
that of BaseLSTM on Kpv-Ru and Tr-De. It shows
the highest improvement with respect to BaseLSTM
on Fy-Nl. Yet, the best one of the auxiliary task
enhancement methods significantly outperforms
Self-training on each treebank.

New Individual Tasks The +LIH model which
employs LIDs performs best on Kpv-Ru, and sec-
ond best on Hi-En. Its performance on Tr-De and
Fy-Nl is comparable with the other models. It is
also in the Best Combination ensemble for

10Due to high memory consumption of XLM-R-based mod-
els, this ensemble technique cannot be applied to our XLM-R-
based parsing architecture.

11https://universaldependencies.org/
conll18/conll18_ud_eval.py

all treebanks. This indicates the importance of lan-
guage IDs in CS dependency parsing.

The +SMH model which is only applied to Kpv-
Ru and Tr-De is the best performing one on Tr-De.
However, all other tasks outperform +SMH on Kpv-
Ru. This might be due to the quality difference in
morphological taggers trained on these treebanks.
The morphological tagger we trained on the CS
training set of Tr-De has an accuracy of 82% on
its test set. However, to train a tagger for Kpv-Ru
we used monolingual Komi data only. Accuracy of
this tagger on Kpv-Ru test set is 66%. It seems the
Kpv-Ru parser suffers from error propagation.

The simplest enhancement model +PC performs
comparable to others, even outperforming +NOC
and +DTR on Kpv-Ru and Tr-De. Since it only
needs the root position in the sentence to perform,
this model can be an alternative to other models
when gold/predicted POS or morphological tags
are hard to acquire. It can also be preferred when
the error propagated to the auxiliary tasks from the
base parser through predicted trees is high, damag-
ing accuracy of the tasks that rely on these parses.

Individual Tasks vs Ensembles Ensembling
multiple tasks improves UAS and LAS on Hi-En
and Fy-Nl and LAS on Tr-De when compared
with the best performing single task. The +Best
Combination ensemble works better on Fy-Nl
and Tr-De than the +NOC,+DTR,+RPE ensemble
proposed by Rotman and Reichart (2019). Look-
ing at the overall results, we observe that including
+RPE and +LIH together has a favorable effect on
improving CS parsing performance.

Who Benefits Most and Least? Fy-Nl is the
most benefited treebank from the proposed model.
The best performing enhancement model +Best
Combination on Fy-Nl achieves almost 10/7
points increase in UAS/LAS when compared with
BaseLSTM. The least benefited treebank is Kpv-Ru
with 2.5/1.1 points increase in UAS/LAS. Having
similar amount of unlabeled data and no CS train-
ing data, these treebanks differ in their training data
amounts. The Dutch Alpino Treebank used to train
Fy-Nl models has 13,603 sentences whereas the
Komi-Zyrian Lattice Treebank for Kpv-Ru mod-
els includes 662 sentences. So, automatic parsing
of unlabeled data of Kpv-Ru by a model trained
on 662 sentences can be much noisier than that of
Fy-Nl. In Appendix A.2, we show that the perfor-
mance ranking of the systems does not change by
the amount of gold training data.

1165

https://universaldependencies.org/conll18/conll18_ud_eval.py
https://universaldependencies.org/conll18/conll18_ud_eval.py


Kpv-Ru Hi-En Fy-Nl Tr-De
UAS LAS UAS LAS UAS LAS UAS LAS

Baselines
BaseLSTM 62.24 45.10 80.10 71.29 64.97 49.56 67.50 57.88
Self-training 59.55 43.27 80.47 72.88 68.91 53.24 60.86 52.04

Semi-supervised

+NOC 64.83* 46.53* 81.67 72.94 71.80* 53.35 70.86* 60.97*
+DTR 64.80* 45.53 81.94 72.96 71.48* 53.10 70.88* 60.63*
+RPE 64.95* 45.90 82.75* 73.84 72.98* 54.12 71.40* 61.46*

Enhancement +LIH 65.70* 47.13* 82.24* 73.54 72.20* 51.98 71.39* 61.46*
+SMH 64.63* 45.31 - - - - 71.41* 61.50*
+PC 64.67* 46.79* 81.40 72.76 - - 71.25* 61.44*

Ensemble
+NOC,+DTR,+RPE 65.59* 46.86* 82.75* 74.09* 73.97* 56.10* 70.55* 60.95*
+Best Combination† 64.98* 46.22* 82.77* 74.02* 74.69* 56.39* 70.92* 61.65*

Previous Work

Bhat et al. (2018) - - 80.23 71.03 - - - -
Braggaar and van der Goot (2021) - - - - 70.20 55.60 - -
van der Goot et al. (2021) - 22.20 - 65.50 - 54.00 - 60.90
Müller-Eberstein et al. (2021) - - 73.62 62.66 - - 66.75 55.04

Table 2: Attachment scores of baselines, our models, and the previous works on all CS UD treebanks. +SMH
is not applicable to Hi-En and Fy-Nl due to the lack of morphology in these treebanks. +PC cannot be applied
to Fy-Nl since it has no punctuation. †Best combination for each treebank: +NOC,+LIH,+PC for Kpv-Ru,
+DTR,+RPE,+LIH for Hi-En, +NOC,+RPE,+LIH for Fy-Nl, and +RPE,+LIH,+SMH for Tr-De. The best
scores for each dataset are underlined and bold. Scores marked with ∗ significantly outperform both BaseLSTM and
Self-training.

Kpv-Ru Hi-En Fy-Nl Tr-De
UAS LAS UAS LAS UAS LAS UAS LAS

BaseXLMR 57.90 43.12 81.42 71.54 65.75 50.27 75.93 66.30
+NOC 57.09 42.79 81.28 71.58 67.50* 51.64* 75.79 65.98
+DTR 56.65 42.37 82.15* 71.89 66.85* 50.45 75.56 65.73
+RPE 58.77* 43.84 81.79 71.84 67.35* 51.13* 75.49 65.77
+LIH 57.24 43.19 81.92 71.93 66.26 50.10 75.51 65.78
+SMH 56.98 43.25 - - - - 75.53 65.66
+PC 56.81 41.97 81.46 71.89 - - 75.14 65.45

Table 3: Performance of XLM-R-based parser and our XLM-R adaptation of auxiliary task enhancement models.
The best scores for each dataset are underlined and bold. Scores marked with ∗ significantly outperform BaseXLMR.

Comparison to Previous Work The best en-
hancement model always achieves better scores
than previous state-of-the-art on each treebank. In
this respect, the biggest improvement is observed
on Kpv-Ru with more than 24 points increase in
LAS. In addition, it should be noted that model
architectures are not quite comparable as some
of the previous work use a lot more resources
than our models. For instance, Müller-Eberstein
et al. (2021) perform data selection on whole UD
datasets for training and utilize multilingual BERT.

Proposed Method and XLM-R Attachment
scores of BaseXLMR and our XLM-R adaptation
of auxiliary task enhancement models are given in
Table 3. Our first observation is the limited per-
formance of BaseXLMR in parsing CS treebanks.
We see that the enhancement models do not have
the same impact on BaseXLMR as they have on
BaseLSTM. The only significant performance in-
crease is on Fy-Nl where the best performing en-

hancement model +NOC outperforms BaseXLMR
by almost 2/1.5 points in UAS/LAS. For Kpv-Ru,
the only model that surpasses the baseline is +RPE.
The difference is found statistically significant only
in UAS. For Hi-En, all enhancement models except
+NOC perform better than BaseXLMR. Yet, the only
significant improvement is achieved by +DTR in
UAS. None of the enhancement models surpass
BaseXLMR on Tr-De but the difference between the
scores is not found to be significant. Another re-
markable observation is our models built on top of
BaseLSTM outperforming all XLM-R-based mod-
els with the exception of Tr-De. This answers our
second research question: XLM-R is not always
the best option. For powerful models like XLM-R,
multilinguality can harm the performance when the
target language is unknown to the model. Our re-
sults suggest that in such cases it is better to employ
simpler models that are tailored for the exact task.

1166



Comparison of the Proposed Approach with
Baselines in terms of Computational Resources
Table 4 provides time and memory usage of
BaseLSTM, BaseXLMR, and our proposed best
model for each treebank. Labeled attachment
scores (LAS) acquired by these models on each
treebank are also given.

Kpv-Ru Hi-En Fy-Nl Tr-De
Training time
BaseLSTM 0h9m 0h15m 0h45m 0h20m
Our best model 0h25m 0h40m 2h30m 0h55m
BaseXLMR 3h40m 3h15m 11h0m 1h30m
Memory usage (GB)
BaseLSTM 3.6 3.6 3.8 3.5
Our best model 4.5 7.6 7.3 7.4
BaseXLMR 9.9 7.9 9.6 8.4
LAS
BaseLSTM 45.10 71.29 49.56 57.88
Our best model 47.13 74.09 56.39 61.65
BaseXLMR 43.12 71.54 50.27 66.30

Table 4: Comparison of baselines and the proposed
approach according to training time, memory usage
during training, and LAS. Our best model on Kpv-Ru
is the +LIH model. For all other treebanks, our best
model is an ensemble that combines three task models.

From the table, we observe that there is a trade-
off between performance and resource consump-
tion for the three models. The training time of
the BaseLSTM model is the shortest. Yet, our best
model improves the performance significantly at
the expense of a slight increase in training time.
BaseXLMR has the longest training time by a large
margin.

In terms of memory usage, there is a similar pat-
tern to that of training time. BaseLSTM needs ap-
proximately 50% less memory than our best model,
yet there is on average 3.86 points gap between
LAS of the two models. BaseXLMR is again the
least preferable model here due to its highest mem-
ory consumption and low performance on parsing
the treebanks with the exception of Tr-De. Only
for Tr-De it outperforms the other two models and
can be the model of choice for the parsing of Tr-De
data.

Considering the long training time and high re-
source consumption of the XLM-R-based parser
and the success of our LSTM-based enhancement
models, we suggest LSTM-based auxiliary task en-
hancement for low-resource dependency parsing of
CS data.

6 Conclusion

In this paper, we focus on CS dependency pars-
ing. We present a semi-supervised auxiliary task
enhancement to a graph-based neural parser and
create novel sequence labeling tasks that are shown
as useful in improving the parser’s success. Ex-
perimental results show that our enhancement
technique achieves SOTA performance on all CS
UD treebanks and helps better utilization of unla-
beled data for CS dependency parsing. We com-
bine our enhancement models with XLM-R to see
their performance on a multilingual transformer-
based model. Results demonstrate that the power-
ful XLM-R shows limited performance and fails
to surpass our semi-supervised auxiliary task en-
hancement models. Our implementation of the
proposed sequence labeling tasks and the XLM-
R-based enhancement are publicly available for
research purposes at https://github.com/
sb-b/ss-cs-depparser.

Acknowledgements

This work is funded by DFG via project CE 326/1-
1 "Computational Structural Analysis of German-
Turkish Code-Switching (SAGT)". The numerical
calculations reported in this paper were performed
at the computing servers of IMS at University of
Stuttgart and at TUBITAK ULAKBIM (TRUBA
resources). GEBIP Award of the Turkish Academy
of Sciences (to A.Ö.) is gratefully acknowledged.
We thank the anonymous reviewers for their valu-
able comments and feedbacks.

Ethical Considerations

The UD datasets we use in this study are all from
published works and licensed with CC BY-SA 4.0.
All the used unlabeled corpora also have accompa-
nying papers and were made publicly available by
their providers. To utilize TuGeBiC in our experi-
ments, we removed speaker IDs that were already
anonymized.

Code-switching is very understudied computa-
tionally and by employing datasets from multi-
ple language pairs, including minority languages,
we minimize the potential risk of exposure. Our
study asks foundational research questions on code-
switching datasets. Our experiments show that
even within our datasets results vary, hence we be-
lieve the paper avoids possible overgeneralizations.

XLM-R-based models employed in this study
have higher memory consumption than the LSTM-

1167

https://github.com/sb-b/ss-cs-depparser
https://github.com/sb-b/ss-cs-depparser


based models (see Table 4). They also require
longer training time which means higher energy
consumption. To reduce this negative side-effect,
we avoid performing the same experiment many
times and repeated each experiment only three
times. Moreover, we chose not to utilize XLM-
R-large model with 550M parameters but instead
used XLM-R-base model with 270M parameters to
reduce the training time and memory consumption.
All the experiments with XLM-R models in this
study were run on a single NVIDIA RTX A6000
GPU.

References
Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.

2020. LinCE: A centralized benchmark for linguistic
code-switching evaluation. In Proceedings of The
12th Language Resources and Evaluation Confer-
ence, pages 1803–1813, Marseille, France. European
Language Resources Association.

Gustavo Aguilar and Thamar Solorio. 2020. From
English to code-switching: Transfer learning with
strong morphological clues. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 8033–8044, Online. Asso-
ciation for Computational Linguistics.

Timofey Arkhangelskiy. 2019. Corpora of social media
in minority Uralic languages. In Proceedings of the
Fifth International Workshop on Computational Lin-
guistics for Uralic Languages, pages 125–140, Tartu,
Estonia. Association for Computational Linguistics.

Peter Auer and Li Wei. 2007. Handbook of multilin-
gualism and multilingual communication, volume 5.
Walter de Gruyter.

Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava, and
Dipti Sharma. 2017. Joining hands: Exploiting
monolingual treebanks for parsing of code-mixing
data. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers, pages
324–330, Valencia, Spain. Association for Computa-
tional Linguistics.

Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava, and
Dipti Sharma. 2018. Universal Dependency parsing
for Hindi-English code-switching. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 987–998, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022.

Anouck Braggaar and Rob van der Goot. 2021. Chal-
lenges in annotating and parsing spoken, code-
switched, Frisian-Dutch data. In Proceedings of the
Second Workshop on Domain Adaptation for NLP,
pages 50–58, Kyiv, Ukraine. Association for Compu-
tational Linguistics.

Özlem Çetinoğlu and Çağrı Çöltekin. 2019. Chal-
lenges of annotating a code-switching treebank. In
Proceedings of the 18th International Workshop on
Treebanks and Linguistic Theories (TLT, SyntaxFest
2019), pages 82–90, Paris, France. Association for
Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Amitava Das and Björn Gambäck. 2014. Identifying
languages at the word level in code-mixed Indian
social media text. In Proceedings of the 11th Interna-
tional Conference on Natural Language Processing,
pages 378–387, Goa, India. NLP Association of In-
dia.

Mathieu Dehouck and Pascal Denis. 2018. A frame-
work for understanding the role of morphology in
Universal Dependency parsing. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 2864–2870, Brussels,
Belgium. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Stefan Grünewald, Annemarie Friedrich, and Jonas
Kuhn. 2021. Applying Occam’s razor to transformer-
based dependency parsing: What works, what

1168

https://www.aclweb.org/anthology/2020.lrec-1.223
https://www.aclweb.org/anthology/2020.lrec-1.223
https://doi.org/10.18653/v1/2020.acl-main.716
https://doi.org/10.18653/v1/2020.acl-main.716
https://doi.org/10.18653/v1/2020.acl-main.716
https://doi.org/10.18653/v1/W19-0311
https://doi.org/10.18653/v1/W19-0311
https://aclanthology.org/E17-2052
https://aclanthology.org/E17-2052
https://aclanthology.org/E17-2052
https://doi.org/10.18653/v1/N18-1090
https://doi.org/10.18653/v1/N18-1090
https://aclanthology.org/2021.adaptnlp-1.6
https://aclanthology.org/2021.adaptnlp-1.6
https://aclanthology.org/2021.adaptnlp-1.6
https://doi.org/10.18653/v1/W19-7809
https://doi.org/10.18653/v1/W19-7809
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://www.aclweb.org/anthology/W14-5152
https://www.aclweb.org/anthology/W14-5152
https://www.aclweb.org/anthology/W14-5152
https://doi.org/10.18653/v1/D18-1312
https://doi.org/10.18653/v1/D18-1312
https://doi.org/10.18653/v1/D18-1312
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://aclanthology.org/L18-1550
https://aclanthology.org/L18-1550
https://doi.org/10.18653/v1/2021.iwpt-1.13
https://doi.org/10.18653/v1/2021.iwpt-1.13


doesn’t, and what is really necessary. In Proceed-
ings of the 17th International Conference on Pars-
ing Technologies and the IWPT 2021 Shared Task
on Parsing into Enhanced Universal Dependencies
(IWPT 2021), pages 131–144, Online. Association
for Computational Linguistics.

Anupam Jamatia, Björn Gambäck, and Amitava Das.
2015. Part-of-speech tagging for code-mixed
English-Hindi Twitter and Facebook chat messages.
In Proceedings of the International Conference Re-
cent Advances in Natural Language Processing,
pages 239–248, Hissar, Bulgaria. INCOMA Ltd.
Shoumen, BULGARIA.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Zhenghua Li, Wanxiang Che, and Ting Liu. 2010. Im-
proving dependency parsing using punctuation. In
2010 International Conference on Asian Language
Processing, pages 53–56.

KyungTae Lim and Thierry Poibeau. 2017. A system
for multilingual dependency parsing based on bidirec-
tional LSTM feature representations. In Proceedings
of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
63–70, Vancouver, Canada. Association for Compu-
tational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403–1414, Melbourne, Australia. As-
sociation for Computational Linguistics.

Deepthi Mave, Suraj Maharjan, and Thamar Solorio.
2018. Language identification and analysis of code-
switched social media text. In Proceedings of the
Third Workshop on Computational Approaches to
Linguistic Code-Switching, pages 51–61, Melbourne,
Australia. Association for Computational Linguistics.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proceed-
ings of the Human Language Technology Conference
of the NAACL, Main Conference, pages 152–159,

New York City, USA. Association for Computational
Linguistics.

Max Müller-Eberstein, Rob van der Goot, and Barbara
Plank. 2021. Genre as weak supervision for cross-
lingual dependency parsing. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4786–4802, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Eric W Noreen. 1989. Computer-intensive methods for
testing hypotheses. Wiley New York.

Şaziye Betül Özateş and Özlem Çetinoğlu. 2021. A
language-aware approach to code-switched morpho-
logical tagging. In Proceedings of the Fifth Work-
shop on Computational Approaches to Linguistic
Code-Switching, pages 72–83, Online. Association
for Computational Linguistics.

Niko Partanen, Rogier Blokland, KyungTae Lim,
Thierry Poibeau, and Michael Rießler. 2018a. The
first Komi-Zyrian Universal Dependencies treebanks.
In Proceedings of the Second Workshop on Universal
Dependencies (UDW 2018), pages 126–132, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Niko Partanen, Kyungtae Lim, Michael Rießler, and
Thierry Poibeau. 2018b. Dependency parsing of
code-switching data with cross-lingual feature rep-
resentations. In Proceedings of the Fourth Interna-
tional Workshop on Computational Linguistics of
Uralic Languages, pages 1–17, Helsinki, Finland.
Association for Computational Linguistics.

Guy Rotman and Roi Reichart. 2019. Deep contex-
tualized self-training for low resource dependency
parsing. Transactions of the Association for Compu-
tational Linguistics, 7(0):695–713.

Piotr Rybak and Alina Wróblewska. 2018. Semi-
supervised neural system for tagging, parsing and
lematization. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 45–54, Brussels,
Belgium. Association for Computational Linguistics.

Jivnesh Sandhan, Amrith Krishna, Ashim Gupta,
Laxmidhar Behera, and Pawan Goyal. 2021. A lit-
tle pretraining goes a long way: A case study on
dependency parsing task for low-resource morpho-
logically rich languages. In Proceedings of the 16th

1169

https://doi.org/10.18653/v1/2021.iwpt-1.13
https://aclanthology.org/R15-1033
https://aclanthology.org/R15-1033
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/IALP.2010.57
https://doi.org/10.1109/IALP.2010.57
https://doi.org/10.18653/v1/K17-3006
https://doi.org/10.18653/v1/K17-3006
https://doi.org/10.18653/v1/K17-3006
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://www.aclweb.org/anthology/W18-3206
https://www.aclweb.org/anthology/W18-3206
https://aclanthology.org/N06-1020
https://aclanthology.org/2021.emnlp-main.393
https://aclanthology.org/2021.emnlp-main.393
https://www.aclweb.org/anthology/L16-1262
https://www.aclweb.org/anthology/L16-1262
https://doi.org/10.18653/v1/2021.calcs-1.10
https://doi.org/10.18653/v1/2021.calcs-1.10
https://doi.org/10.18653/v1/2021.calcs-1.10
https://doi.org/10.18653/v1/W18-6015
https://doi.org/10.18653/v1/W18-6015
https://doi.org/10.18653/v1/W18-0201
https://doi.org/10.18653/v1/W18-0201
https://doi.org/10.18653/v1/W18-0201
https://transacl.org/index.php/tacl/article/view/1801
https://transacl.org/index.php/tacl/article/view/1801
https://transacl.org/index.php/tacl/article/view/1801
http://www.aclweb.org/anthology/K18-2004
http://www.aclweb.org/anthology/K18-2004
http://www.aclweb.org/anthology/K18-2004
https://doi.org/10.18653/v1/2021.eacl-srw.16
https://doi.org/10.18653/v1/2021.eacl-srw.16
https://doi.org/10.18653/v1/2021.eacl-srw.16
https://doi.org/10.18653/v1/2021.eacl-srw.16


Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Student Research
Workshop, pages 111–120, Online. Association for
Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: Smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Motoki Sato, Hitoshi Manabe, Hiroshi Noji, and Yuji
Matsumoto. 2017. Adversarial training for cross-
domain Universal Dependency parsing. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 71–79, Vancouver, Canada. Association for
Computational Linguistics.

Djamé Seddah, Farah Essaidi, Amal Fethi, Matthieu
Futeral, Benjamin Muller, Pedro Javier Ortiz Suárez,
Benoît Sagot, and Abhishek Srivastava. 2020. Build-
ing a user-generated content North-African Arabizi
treebank: Tackling hell. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 1139–1150, Online. Association
for Computational Linguistics.

Kushagra Singh, Indira Sen, and Ponnurangam Ku-
maraguru. 2018a. Language identification and
named entity recognition in Hinglish code mixed
tweets. In Proceedings of ACL 2018, Student Re-
search Workshop, pages 52–58, Melbourne, Australia.
Association for Computational Linguistics.

Kushagra Singh, Indira Sen, and Ponnurangam Ku-
maraguru. 2018b. A Twitter corpus for Hindi-
English code mixed POS tagging. In Proceedings
of the Sixth International Workshop on Natural Lan-
guage Processing for Social Media, pages 12–17,
Melbourne, Australia. Association for Computational
Linguistics.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2011. Punctuation: Making a point in un-
supervised dependency parsing. In Proceedings of
the Fifteenth Conference on Computational Natural
Language Learning, pages 19–28, Portland, Oregon,
USA. Association for Computational Linguistics.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS tagging, lemmatizing and parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Jeanine Treffers-Daller. 2020. Turkish-German code-
switching patterns revisited: What naturalistic data
can(not) tell us. Advances in Contact Linguistics: In
honour of Pieter Muysken, 57:237.

Jeanine Treffers-Daller and Özlem Çetinoğlu. 2022.
TuGeBiC: A Turkish German bilingual code-
switching corpus. arXiv, abs/2205.00868.

Leonoor Van der Beek, Gosse Bouma, Rob Malouf,
and Gertjan Van Noord. 2002. The Alpino depen-
dency treebank. In Computational linguistics in the
Netherlands 2001, pages 8–22. Brill Rodopi.

Rob van der Goot, Ahmet Üstün, Alan Ramponi,
Ibrahim Sharaf, and Barbara Plank. 2021. Massive
choice, ample tasks (MaChAmp): A toolkit for multi-
task learning in NLP. In Proceedings of the 16th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 176–197, Online. Association for
Computational Linguistics.

Emre Yılmaz, Maaike Andringa, Sigrid Kingma, Jelske
Dijkstra, Frits van der Kuip, Hans Van de Velde, Fred-
erik Kampstra, Jouke Algra, Henk van den Heuvel,
and David van Leeuwen. 2016. A longitudinal
bilingual Frisian-Dutch radio broadcast database de-
signed for code-switching research. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 4666–
4669, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Xiang Yu, Ngoc Thang Vu, and Jonas Kuhn. 2020.
Ensemble self-training for low-resource languages:
Grapheme-to-phoneme conversion and morphologi-
cal inflection. In Proceedings of the 17th SIGMOR-
PHON Workshop on Computational Research in Pho-
netics, Phonology, and Morphology, pages 70–78,
Online. Association for Computational Linguistics.

A Appendix

A.1 Model Configuration and
Hyper-parameters

We provide the configuration and hyper-parameters
of the parser and sequence labeler models presented
in Section 4.3.

BaseLSTM We use Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 0.002, batch size
of 16, and all dropout probabilities are set to 0.33
for the parser and the sequence labeler models. We
train the parser for 150 epochs and sequence label-
ing tasks for 100 epochs.

We use 300-dimensional FastText embeddings
(Grave et al., 2018) as pretrained word vectors.
Since these embeddings are monolingual, we
choose Russian FastText embeddings for Kpv-Ru,
Hindi embeddings for Hi-En, Dutch embeddings
for Fy-Nl, and Turkish embeddings for Tr-De tree-
banks. The model also uses 100-dimensional char-
acter embeddings and POS tag embeddings which
are randomly initialized. The 3-layer BiLSTM
modules of the parser and the sequence labeler
have hidden layer size of 512 on each side. The de-
coder of the parser includes an arc MLP of size 512

1170

https://doi.org/10.18653/v1/K17-3007
https://doi.org/10.18653/v1/K17-3007
https://doi.org/10.18653/v1/2020.acl-main.107
https://doi.org/10.18653/v1/2020.acl-main.107
https://doi.org/10.18653/v1/2020.acl-main.107
https://doi.org/10.18653/v1/P18-3008
https://doi.org/10.18653/v1/P18-3008
https://doi.org/10.18653/v1/P18-3008
https://doi.org/10.18653/v1/W18-3503
https://doi.org/10.18653/v1/W18-3503
https://aclanthology.org/W11-0303
https://aclanthology.org/W11-0303
https://doi.org/10.18653/v1/K17-3009
https://doi.org/10.18653/v1/K17-3009
https://doi.org/10.18653/v1/K17-3009
https://doi.org/10.48550/ARXIV.2205.00868
https://doi.org/10.48550/ARXIV.2205.00868
https://doi.org/10.18653/v1/2021.eacl-demos.22
https://doi.org/10.18653/v1/2021.eacl-demos.22
https://doi.org/10.18653/v1/2021.eacl-demos.22
https://aclanthology.org/L16-1739
https://aclanthology.org/L16-1739
https://aclanthology.org/L16-1739
https://doi.org/10.18653/v1/2020.sigmorphon-1.5
https://doi.org/10.18653/v1/2020.sigmorphon-1.5
https://doi.org/10.18653/v1/2020.sigmorphon-1.5


25
0

50
0

75
0

1,
00
0

1,
25
0

1,
44
8

68

70

72

74

76

78

80

82
U

A
S

(%
)

Hi-En Test Set

25
0

50
0

75
0

1,
00
0

1,
25
0

1,
44
8

60

62

64

66

68

70

72

74

Gold labeled training data size

L
A

S
(%

)

50
0

1,
00
0

2,
00
0

3,
00
0

4,
00
0

5,
00
0

6,
00
0

7,
00
0

8,
00
0

9,
00
0

10
,0
00

11
,0
00

12
,2
89

62

64

66

68

70

72

74

76

U
A

S
(%

)

Fy-Nl Test Set

50
0

1,
00
0

2,
00
0

3,
00
0

4,
00
0

5,
00
0

6,
00
0

7,
00
0

8,
00
0

9,
00
0

10
,0
00

11
,0
00

12
,2
89

44

46

48

50

52

54

56

58

Gold labeled training data size
L

A
S

(%
)

BaseLSTM
Self-training

Our best model

Figure 4: Comparison of BaseLSTM, Self-training, and our best model for Hi-En and Fy-Nl in terms of
attachment scores.

and a label MLP of size 128. The decoder of the
sequence labeler consists of two fully connected
layers with size 128 and 64, respectively.

BaseXLMR Due to computational efficiency, we
choose the 768-dimensional XLM-R base language
model as the word representation module of the
BaseXLMR architecture. For the parser, the arc
MLP of the biaffine classifier has the same size
with XLM-R model and the label MLP has the
size of 256. Dropout for the classifier is set to
0.33. For the sequence labeler, we use a single-
layer feed-forward neural network to extract logit
vectors. We use AdamW optimizer (Loshchilov
and Hutter, 2019) with a learning rate of 0.00004
and set batch size to 16. The number of epochs for
the parser is 300 with an early stop of 50 epochs.
For the sequence labeler, we train the models for
100 epochs with an early stop of 15 epochs.

A.2 Effect of Gold Labeled Data on the
Parsing Performance

In our main experiments the gold training data size
differs among the four datasets. While the gold
labeled data used for training of Kpv-Ru and Tr-
De includes approximately 500 sentences, Hi-En
has 1,448 gold labeled training CS data and for
Fy-Nl we used the training set of the Dutch Alpino
UD Treebank which consists of 12,289 gold la-

beled Dutch sentences. In order to observe how
the amount of gold labeled training data affects the
models’ performance, we did a set of experiments
on each of Hi-En and Fy-Nl datasets by incremen-
tally increasing the size of labeled training data
from 500 to the original training data size as used
in the main experiments. Figure 4 shows results of
these experiments.

We observe that our best model on these
datasets (+NOC,+DTR,+RPE for Hi-En and
+NOC,+RPE,+LIH for Fy-Nl) always surpasses
Self-training and BaseLSTM regardless of
the available gold training data. Increasing the la-
beled training data has always a positive effect on
the performance of all models for Hi-En but causes
fluctuations in the performance for the case of Fy-
Nl. The reason for this difference might be that the
training data of Hi-En is in-domain and includes
CS sentences, while the training data we use for
Fy-Nl is out-of-domain and includes monolingual
Dutch sentences.

1171


