Enhancing Relation Extraction by Using Shortest
Dependency Paths Between Entities with
Pre-trained Language Models

Haluk Alper Karaevli*T, Tunga Giingor*
*Department of Computer Engineering, Bogazigi University, Istanbul, Turkey
t AI Enablement Department, Turkey R&D Center, Huawei Technologies

Abstract—Relation Extraction (RE) is the task of finding
the relation between entities in a plain text. As the length
of the sentences increases, finding the relation becomes more
challenging. The shortest dependency path (SDP) between two
entities, obtained by traversing the terms in the dependency tree
of a sentence, provides a view focused on the entities by pruning
noisy words. In the supervised form of the relation extraction
task, Relation Classification, the state-of-the-art methods gener-
ally integrate a pre-trained language model (PLM) into their
approaches. However, none of them incorporates the shortest
dependency paths to the best of our knowledge.

This paper investigates the effects of using shortest dependency
paths with pre-trained language models by taking the R-BERT
relation classification model as the baseline and building upon it.
Our novel approach enhances the baseline model by adding the
sequence representation of the shortest dependency path between
entities, collected from PLMs, as an additional embedding. In the
experiments, we evaluated the proposed model’s performance for
each combination of SDPs generated from Stanford, HPSG, and
LAL dependency parsers with BERT and XLNet PLMs in two
datasets, SemEval-2010 Task 8 and TACRED. We improved the
baseline model by absolute 1.41% and 3.60% scores, increasin,
the rankings of the model from 8" to 7*" and from 18" to 7*
in SemEval-2010 Task 8 and TACRED, respectively.

Index Terms—Relation extraction, Dependency parse, Shortest
dependency path, Pretrained language models.

I. INTRODUCTION

HE internet is the most significant information source of

our current world. However, most of the data it contains is
in an unstructured text form which requires additional process-
ing to be understandable by the machines. The tasks defined
for such needs are gathered under the topic of Information
Extraction. One of such tasks is Relation Extraction, in which
the objective is to find the relations between entities given the
plain text of a document.

The task of Relation Extraction is assessed in three general
manners; supervised, distantly-supervised, and unsupervised.
In supervised approaches, the aim is to predict the correct
relation between entities in a sentence from a fixed number
of relations. Distantly supervised methods have the same
objective as their supervised peers, but a set of sentences
is taken as input instead of one sentence. Not all sentences
in a particular set represent relation between entity pairs.
In unsupervised approaches, none of the entity tuples, the

978-1-6654-9810-4/22/$31.00 ©2022 IEEE

relations, or the corresponding sentences for the entities are
known beforehand.

Dependency parsers have been used in various aspects by
the models from all approaches of Relation Extraction [1]-[7].
By providing a structured representation of the raw text using
contextual connections, dependency parsers enable models to
focus on the interactions between terms.

Shortest dependency path (SDP) is defined as the path with
minimum contextual connections between two entities in the
dependency tree. For example, for the sentence “The house
at the end of the street is red.” the SDP text constructed by
combining the shortest dependency path between the words
“house” and “red” would be “house is red”.

In Relation Classification, the state-of-the-art methods gen-
erally integrate a pre-trained language model [8]-[10]. Pre-
trained Language Models (PLMs) are language models trained
on large corpora to learn contextual semantics of words
without focusing on a specific task.

In this paper, the effects of using shortest dependency paths
with pre-trained language models are investigated in the su-
pervised relation extraction domain. The relation classification
model R-BERT [11] is chosen as the baseline for this task.
In R-BERT, the sentence and the entities are represented as
separate vectors concatenated in the last layer. Because of its
compartmentalized architecture, adding a new feature to the
model is a considerably straightforward process.

We aim to improve R-BERT’s performance by integrating
PLM representation of the SDP between target entities to the
input of R-BERT’s last layer. Three dependency parsers named
Stanford [12], HPSG [13], and LAL [14] are used to generate
the SDPs. In addition to integrating the shortest dependency
paths, XLNet [15] is applied as an alternative to BERT as the
pretrained language model of R-BERT. In selection of XLNet,
its improved performance over BERT in various nlp tasks and
its autoregressive structure are considered. The experiments
are conducted on SemEval-2010 Task 8 dataset [16], which is
the most commonly used dataset in relation classification task,
and TACRED [17] dataset constructed by Stanford University.

Our contribution to the domain of relation classification is
an improved R-BERT model that surpasses the performance of
the baseline system in both SemEval and TACRED datasets.
According to the results we received, in SemEval we improve
the standing of the model from 8" place to 7' place. A

Concatenation

F " ’ "
+ Tanh G +Tanh

[LY.

Vsent »
el
[_Vez
% (XXX

HicLs) Hy

(ese@)

Fully-connected
+ Tanh

Relation Probabilities

Pre-trained Language Model

Pre-trained Language Model

Shortest

[Wy Wo oo [EM] Wi oo W, [E12] . [E21] Wi .. W,

Dependency

t

Input sentence [Wy Wa o Wi Wy e Wi oo Wiy oo Wy

¢ Path

[Shortest Dependency Path Generator]

t

Dependency Parser J E

Fig. 1. Architecture of the proposed model. The dotted box shows the preprocessing steps.

greater change of standing is achieved in TACRED, from 18"
place (unofficial) to 7t".

The source code of the proposed model can be found at
https://github.com/HalukKaraevli/R-BERT-SDP

The paper is organized as follows: In Section 2 related
works in the relation classification domain are given. In
Section 3 the methodology of the model and the algorithm
used to generate shortest dependency paths is given. In Section
4 the results of the experiments are presented. Section 5
concludes the paper.

II. RELATED WORK

The depLCNN model of Xu et al. [18] aims to learn robust
relation representations of the entities by feeding their shortest
dependency paths through a convolutional neural network.
In addition, they propose a novel negative sampling strategy
addressing the relation directionality that finds the subject and
object entity of the relation.

Liu et al. [6] focus on using information acquired from the
dependency tree of the sentences in determining the relations
between entities. A new representation of Augmented De-
pendency Path (ADP) and dependency-based neural network
(DepNN) are proposed.

The contribution of Xu et al. [19] is the usage of “deep”
recurrent neural networks in relation extraction. They argue
that by using individual RNN’s in each depth level for the
shortest dependency path representation of the sentence, one
can acquire the “whole” representation of the text which would
contain information from different levels of abstraction.

In Lee et al. [20], entity-aware attention mechanism adds
the attention weights of entity pairs to the representation of
each word by using the relative positions of the words to the
entities and the “latent types” of the entities acquired from
Latent Entity Typing.

Similar to Lee et al. [20], Wu et al. [11] propose a way
to incorporate entity-level information into the pre-trained
language model to achieve an increase in performance of
relation classification. Different from Lee et al. [20], the
entity representations which are generated using the BERT
pre-trained language model are explicitly fed to the classifier
model.

III. METHODOLOGY

The general flow of the proposed model is
shown in Fig. 1. We represent a sentence as
s = (wiwe ... Wt.. . Wp...Wg... Wy ...Wy), Where w,

denotes the 2" word, ¢t and r are the indexes of the first and
last words that constitute the first entity, and k£ and m are the
respective indexes of the second entity. To obtain the shortest
dependency path, as shown on the right part of the figure,
the sentence is given to a dependency parser and the outputs
of the parser are fed to the SDP generator accompanied with
the target entities. The SDP of the sentence is generated as
SDPs = (Wt ... Wy ... W - .. Wy).

Fig. 2. Dependency tree representation of the sentence “The school master
teaches the lesson with a stick.” and the shortest dependency path.

The process for generating SDP from dependency parse out-
put is explained below with an example sentence “The school

master teaches the lesson with a stick.” whose dependency tree
can be seen in Fig. 2:

1) Find the tokens that constitute each entity in the depen-
dency tree. Ex: e; = [master], es = [stick]

2) For each such token, generate the list
of parents from the root to the token.
Ex: parente, = [root, teaches, master]],
parent,, = [[root, teaches, with, stick]]

3) For token pairs (¢1,t2) where ¢; and ¢y are the to-
kens of the first and second entities, compare items
in the same index in the parents lists of the two
tokens and discard previously compared items un-
til a mismatch occurs. If no mismatch occurs, go
to step 6. Ex: t; = [root,teaches, master], toa =
[root, teaches, with, stick] Compare root. Continue.
Compare teaches, Discard root. Compare master and
with. Mismatch occurs. Go to 4.

4) Put t1’s remaining parents list into a new list res in
reversed order, without the last common item. Ex: res =
[master]

5) Append to’s remaining parents list (last common item
included) to the output of the 4 step. Go to step 7. Ex:
res = [master, teaches, with, stick]

6) If the parents list of ¢; is emptied, return ¢5’s remaining
terms. If ¢o’s parents list is emptied, then return the
reverse of the remaining items in ¢;’s list. Include the
last compared item in both cases.

7) Apply steps 3-6 for each token pair.

8) Take the shortest list as the shortest dependency path.

9) Replace the first and last items with the first and second
entities.

10) Return the string of items joined with space.

Besides forming the shortest dependency path in
preprocessing step, to identify the spans of the entities by the
sentence encoder (i.e. the pre-trained model that receives the
whole sentence), special tokens of [E11], [E12], and [E21],
[E22] showing the starting and ending points of the first and
second entities, respectively, are added to the sentence. With
the addition of the special tokens, the sentence s becomes
s = (wiwy...[Ell]w; ... w,[E12]...[E21]Jwg . .. wyy,
[E22]...wy,), as shown on the left of the figure.

The sentence encoder (left part of the figure) tokenizes the
tagged sentence, generates input mask and entity masks (where
the tokens of a particular entity are 1, others are 0), and
produces the embeddings H; for all tokens and [CLS] which
corresponds to the sentence embedding. The SDP encoder
(right part of the figure), on the other hand, produces only
the [CLS] embedding. Note that in the XLNet version, a
module named sequence summary, which is a fully-connected
layer with tanh activation, is applied to the <cls> (the XLNet
equivalent of [CLS]) tokens’ last hidden state.

The final embeddings for entities are produced by averaging
the embeddings of the tokens of the entities. The averaged
embedding is then fed to a fully-connected layer that uses
tanh as the activation function. Thus, the equations for entity

embeddings are as follows:

1 T

V., =W, [tanh <—T_t+1;Hi> + b
1 m

Ve, = Wo ltanh <—m—k+1 ZEkHz> + b2

where Wy, W5 and by, by are weights and biases of the model.
The sentence and SDP embeddings also pass through their
respective fully-connected layer with tanh activation:

Veent = Wo (tanh (HicLs)..,..)) + bo
Vidap = W3 (tanh (Hicrs),,,)) + b3

All Wy, Wy, Wy, and W3 have the same dimension. W; €
R4 where d is the dimension of the embeddings received
from the pre-trained model.

Finally, the outputs from the fully-connected layers are
concatenated and fed through a softmax layer:

h = Wy [concat (Vsent, Ve, s Vey, Vaap)] + ba
p = softmax (k')
The dimension of the resulting probability distribution p
from the softmax layer is equal to the number of relations in

the system. The loss function is chosen as the negative log-
likelihood of the probability of the correct relation.

IV. EXPERIMENTS

We evaluated the performance of the proposed approach on
two datasets; SemEval-2010 Task 8 and TACRED. SemEval-
2010 Task 8 dataset [16] consists of nine relation classes
named as cause-effect, instrument-agency, product-producer,
content-container, entity-origin, entity-destination, component-
whole, member-collection, and message-topic and a no-
relation class for negative samples. It has 10717 instances
divided into train and test sets having 8000 and 2717 samples,
respectively. TACRED [17] dataset has 41 relation classes
consisting of 106,264 instances further stratified into train,
dev and test sets with 68124, 22631, and 15509 instances.
The classes in TACRED focus on organizations and people
while in SemEval-2010 Task 8 we see broader, more general
relations. As for the evaluation metrics that are used in the
experiments, we follow the previous papers using the given
datasets to be able to compare our performances.

The shortest dependency path texts are generated using the
stanza library for the Stanford parser and the official GitHub
repositories for the HPSG and LAL parsers. For the results
acquired from the HPSG and LAL parsers, the weights of
the best-performing models are taken from their respective
repositories.

The experiments are conducted on two GPUs. For SemEval
results, variants with base pre-trained models are trained with a
GTX1060, others are trained with an RTX3090. For TACRED,
all training processes are done with the RTX3090.

The source code of the model and the shortest dependency
path generation process can be found in the link given in
Section 1.

— stanford_bert base -
hpsg_bert_base

— lal_bert_base

—— baseline_bert_base

0 2 4 3 8 1
Epoch

a) BERT Base

0870
0885
0860
0ass
0850
£o8as

-
0840

0835

— stanford_bert_large =~
hpsg_bert_large

— lal_bert_large

—— baseline_bert_large

083
L1

0 2 4 & 8 10

Epoch

c) BERT Large

stanford_xInet_base ~
hpsg_xInet_base
lal_xInet_base
baseline_xInet_base

0 2 4 6 8 1
Epach

b) XL Net Base

stanford_xinet_large
hpsg_xInet_large
lal_xInet_large
baseline_xInet_large

0 2 4 6 8 10

d) XL Net Large

Fig. 3. Micro F1 scores of baseline and SDP enhanced models for each pre-trained language model on SemEval dataset.

A. Experiments on SemEval-2010 Task 8

In SemEval experiments, both the base version and the large
version of the pre-trained language models BERT and XL Net
are used with the baseline model and also with the three
parsers. In this way, we build and compare 16 models. Each
model is trained for ten epochs that are further divided into
five checkpoints. The performance of the models are evaluated
at each checkpoint. The learning rate of 2e-5 is applied to the
models using the BERT pre-trained model, while this value is
chosen as le-5 for the XLNet models. The dropout and batch
size are, respectively, 0.1 and 16 in every model.

We provide the results in terms of both Micro F1 score
and also Macro F1 score which was the official evaluation
metric used in the shared task. In Micro F1 results the no-
relation class is included. On the other hand, in the official
Macro F1 results the no-relation class is omitted. In Micro
F1 calculations, relation and its direction (el to €2 or e2 to
el) together are considered as a unique class. Thus, having
two directions for each relation the no-relation class totals
to 19 classes. In official Macro F1 calculations, only the
relations are considered as unique classes (9 classes). But in
order to correctly predict a sample’s relation class, the model
should also find the direction of the relation between entities,
otherwise even though the relation is correct the sample is
considered as a false prediction.

In Fig. 3, Micro F1 scores of the baseline and the three SDP

TABLE I
OFFICIAL MACRO F1 SCORES OF THE MODELS ON SEMEVAL-2010 TASK
8 DATASET

Epoch Micro Fl. Macro FI.

Model (Checkpoint) w/ no-relation | w/o no-relation
(19 Class) (Official)
BERT;).ase-baseline]] 39.25 %

(original paper)

BERT},, s.-baseline 8 (1) 85.13 % 88.54 %
BERT},, s-stanford 6 (3) 85.24 % 88.53 %
BERT} se-hpsg 7 (4) 85.79 % 89.09 %
BERT}q se-1al 8 (4 85.68 % 88.80 %
BERT ¢ g4-baseline 503) 85.68 % 89.02 %
BERT4-4.-stanford 4 (1) 86.12 % 89.90 %
BERT¢rgc-hpsg 4 (1) 85.90 % 88.75 %
BERT gy gc-lal 8 (1) 86.64 % 89.84 %
XLNetp, s -baseline 8 (3) 85.76 % 88.80 %
XLNetp se-stanford 5(4) 85.50 % 88.75 %
XLNetyq se-hpsg 4 (3) 85.61 % 88.79 %
XLNetp, se-lal 7(2) 85.54 % 88.68 %
XLNet; 4y qe-baseline 8 (1) 86.82 % 89.83 %
XLNet;qrge-stanford 7(4) 86.20 % 89.33 %
XLNet;qrge-hpsg 8 (1) 85.72 % 88.80 %
XLNet;qrge-lal 8 (1) 86.27 % 89.08 %

enhanced models are compared for each pre-trained language
model seperately. We observe that among all the models that
use BERT,s. and BERT,, 4., the ones with the LAL parser
achieve better Micro F1 scores than their peers.

Surprisingly, in the XLNet versions, the baseline models

— baseline bert_base
i .’ 3 baseline_xInet_base
[baseline_bert_large
—— baseline_xInet_large

8 2 A 5 8 1
Epoch

a) Baseline

\
083 I A TN
| ERTAVIAN
083 o hoblige 8 —— hpsg_bert_base =
o8 ,(/’ ,ﬁ'"f hpsg_xinet_base
i f\ / —— hpsg_bert_large
fl f‘ — hpsg_xInet_large
13
] 2 4 & 8 10
Epoch
c) HPSG

Fig. 4.

show the best scores, indicating that SDPs do not increase the
performance of XLNet. The permutations of some of the terms
that XL Net process (XLNet trains itself on every permutation
of the given sequence) contain the words occurring in the
shortest dependency path with the same order as in SDPs.
We believe that the reason for the high performance of the
baseline models is the incorporation of the SDP information
into the XL.Net embeddings by the XLNet’s transformer heads
that are using these orderings.

In Fig. 4, Micro F1 scores are shown separately for the
baseline model and the models enhanced with the tree parsers.
Both of Fig. 3 and Fig. 4 depict the same information but under
different groupings of the results; grouped with respect to the
pre-trained language models in the former and with respect
to the parsers in the latter. In this way, each figure provides
specific information about the distinct characteristics of the
proposed models.

Table I summarizes the results given in Fig. 3 and Fig. 4.
The table shows the best scores the models achieve with the
related epoch information.

When we compare the pre-trained language model perfor-
mance in each dependency parser approach given in Fig. 4, we
see that the models that use XLNet PLMs give better results
than the models with BERT in Micro F1 scores. However, the
same deduction cannot be made from the official Macro F1
scores given in Table L.

Overall, we observe that for the SemEval-2010 Task 8
dataset, combining XLNet PLMs with dependency parsers

—— stanford_bert_base
stanford_xInet_base
stanford_bert_large

—— stanford_xinet_large

Ay

8 : 4 § 8 i
Epacn

b) Stanford

lal_bert_base
lal_xinet_base
lal_bert_large

lal_xInet_large

) 2 4 & g 0

Micro F1 scores of pre-trained language models for baseline and SDP enhanced models on SemEval dataset.

does not increase the performance of the baseline XLNet
model. However, integrating shortest dependency paths to the
models with BERT PLMs increases both Macro F1 and Micro
F1 scores of the baseline up to 1 absolute point.

B. Experiments on TACRED

In the TACRED dataset experiments, only the large versions
of the pre-trained language models are used. All variations are
trained with a learning rate of le-5 and a dropout rate of 0.1.
Each model is trained for ten epochs, each divided into four
checkpoints. At each checkpoint, the model’s accuracy in the
dev set is calculated.

The selection of the best checkpoint of each model to be
used in the test set is made using two methods. The first
method selects the checkpoint with the best accuracy score
in the dev set among all model checkpoints. As the second
method, an early stopping mechanism based on accuracy is
applied. If the accuracy of the trained system does not surpass
the current best score for five checkpoints, the training is
stopped and the checkpoint with the best score until that
moment is selected.

Fig 5 shows the performance of the baseline and the SDP
enhanced models for each pre-trained language model and Fig
6 shows the performance of the pre-trained language models
for each dependency parser. We see that the models that use
XLNet learn more slowly than their BERT peers in all cases.
Also, the models with BERT PLMs provide better results than
their XLNet counterparts in the dev set.

0845 —— baseline_bert_large_tacred 08402 S, —— baseline_xInet_large_tacred -
/ stanford_bert_large_tacred vi y stanford_xInet_large_tacred
.80 —— hpsg_bert_large_tacred 0.80 b —— hpsg_xInet_large_tacred
— lal_bert_large_tacred — lal_xInet_large_tacred
ors 075
0 4 6 1 0 2 4 6 8 10
Epoch Epoch
) BERT Large b) XL Net Large

Fig. 5. Accuracy scores of baseline and SDP enhanced models for each pre-trained language model on TACRED dev dataset.

o8ro

0885

0860

08ss

0850

sccuracy

0845

0840

—— baseline_bert_large_tacred
baseline_xinet_large_tacred

A
Epoch

3

a) Baseline

0

oaro

08es

0880

0ass

0850

Accuracy

0845

084

—— hpsg_bert_large_tacred
hpsg_xinet_large_tacred

Epoch

<) HPSG

3

0

080 / —— stanford_bert_large_tacred
stanford_xInet_large_tacred

[2 4
Epach

6 8

b) Stanford

0

—— lal_bert_large_tacred
lal_xInet_large_tacred

10

Fig. 6. Accuracy scores of pre-trained language models for baseline and SDP enhanced models on TACRED dev dataset.

TABLE 1T
MICRO F1 SCORES OF THE MODELS USING BEST OF 10 EPOCHS ON
TACRED DATASET

TABLE III
MICRO F1 SCORES OF THE MODELS USING EARLY STOPPING ON
TACRED DATASET

Model (Chligl(();f)lint) Precision Recall F1 Model (Ch]iglgggint) Precision Recall F1

BERT 44 -baseline 3 (0) 75.48% 68.09% | 71.60% BERT 44 -baseline 1(3) 74.66% 68.10% | 71.23%
BERT 4 ge-stanford 2 (3) 78.00% 64.05% | 70.34% BERT 4 ge-stanford 1 (0) 77.80% 64.05% | 70.14%
BERT4sge-hpsg 2 (3) 79.45% 65.02% | 71.52% BERT4sge-hpsg 2 (3) 79.45% 65.02% | 71.52%
BERT 4-gc-lal 3(2) 76.28% 67.46% | 71.60% BERT4-gc-lal 3(2) 76.28% 67.46% | 71.60%
XLNet; 4y qe-baseline 4 (3) 75.21% 68.17% | 71.52% XLNet;4s-g.-baseline 3(3) 73.32% 69.71% | 71.47%
XLNetqrge-stanford 5(2) 77.88% 63.89% | 70.19% XLNet;4s-g-stanford 2 (3) 75.65% 65.58% | 70.26%
XLNetjqrge-hpsg 4 (0) 74.56% 70.59% | 72.52% XLNet;4r-ge-hpsg 4 (0) 74.56% 70.59% | 72.52%
XLNetyqrge-lal 4 (0) 74.87% 71.23% | 73.01% XLNet;grgc-lal 4 (0) 74.87% 71.23% | 73.01%

Table II and Table III show the Micro precision, recall, and
F1 values, and also the best epoch and checkpoint for each
model. The tables correspond to, respectively, the case where
the best checkpoint is taken and the case with early stopping
criterion. In both cases, the best two models are the ones that
apply XLNet with LAL and HPSG parsers. These two XLNet
models outperform the closest BERT version by 1.41% and
0.92%, respectively.

We observe in Table II that the best results are obtained from
the checkpoints of the fifth epoch or earlier, suggesting that
the system is not required to run for ten epochs. Additionally,
comparing the results in Tables II and III indicate that the
checkpoints and thus the results for half of the system varia-
tions are the same. For these systems, early stopping achieves
the same score as running the system for 10 epochs and then
selecting the best. For the other half, the decrease due to early
stopping is negligible. Thus, we can significantly lower the
time required to train a system by applying early stopping with
five checkpoints without a notable decrease in the performance
of the system.

V. CONCLUSIONS

In this paper, we proposed an improved version of the R-
BERT model [11] by integrating shortest dependency path
embeddings obtained from pre-trained language models to the
relation representation of the R-BERT model.

We combined the base and large versions of the pre-trained
language models BERT and XLNet with the dependency
parsers Stanford, HPSG, and LAL. The experiments were
conducted on two commonly used relation extraction datasets,
SemEval-2010 Task 8 and TACRED. In the SemEval dataset,
the proposed model achieved an F1 score of 89.90%, improv-
ing the baseline score of the original paper and the baseline
score in this work by, respectively, 0.65% and 1.41%. In the
TACRED dataset, the proposed model achieved 73.01% F1
score, surpassing the unofficial performance score of 69.40%
of the baseline (obtained from paperswithcode website) by
3.6% and increasing the rank of the model from 18" to 7t"
in paperswithcode rankings.

In the experiments, we observed that all versions of the
proposed model outperform the baseline model of BERT ¢
in the SemEval-2010 Task 8 dataset except one case. In
TACRED, LAL parser increases the performance of both
PLMs, HPSG improves that of XLNet, and Stanford decreases
their performance. In general, we can say that shortest depen-
dency paths obtained from state-of-the-art dependency parsers
improve the results in relation extraction.

A promising future work would be the investigation of
different dependency representations, such as the augmented
shortest dependency path in place of the vanilla version. In
this work, we did not take into account the labels of the
dependencies between the words in the extraction of the
shortest dependency paths. Embedding this information into
the shortest dependency paths can further increase the per-
formance of the proposed model. Finally, the current system
works only on English texts. Investigation of the model’s

performance in different languages could be an important
extension.

REFERENCES

[1] K. Fundel, R. Kiiffner, and R. Zimmer, “Relex—relation extraction using
dependency parse trees,” Bioinformatics, vol. 23, no. 3, pp. 365-371,
2007.

[2] M. Wang, “A re-examination of dependency path kernels for relation
extraction,” in Proceedings of the Third International Joint Conference
on Natural Language Processing: Volume-II, 2008.

[3] C. Liu, W. Sun, W. Chao, and W. Che, “Convolution neural network
for relation extraction,” in International Conference on Advanced Data
Mining and Applications. Springer, 2013, pp. 231-242.

[4] M. Miwa and M. Bansal, “End-to-end relation extraction using Istms on
sequences and tree structures,” arXiv preprint arXiv:1601.00770, 2016.

[51 Y. Zhang, P. Qi, and C. D. Manning, “Graph convolution over
pruned dependency trees improves relation extraction,” arXiv preprint
arXiv:1809.10185, 2018.

[6] Y. Liu, F. Wei, S. Li, H. Ji, M. Zhou, and H. Wang, “A dependency-
based neural network for relation classification,” arXiv preprint
arXiv:1507.04646, 2015.

[7] Z.Li,Z. Yang, C. Shen, J. Xu, Y. Zhang, and H. Xu, “Integrating shortest
dependency path and sentence sequence into a deep learning framework
for relation extraction in clinical text,” BMC medical informatics and
decision making, vol. 19, no. 1, pp. 1-8, 2019.

[8] Q. Tao, X. Luo, H. Wang, and R. Xu, “Enhancing relation extraction
using syntactic indicators and sentential contexts,” in 2019 IEEE 31st
International Conference on Tools with Artificial Intelligence (ICTAI).
IEEE, 2019, pp. 1574-1580.

[9] H. Wang, M. Tan, M. Yu, S. Chang, D. Wang, K. Xu, X. Guo, and

S. Potdar, “Extracting multiple-relations in one-pass with pre-trained

transformers,” arXiv preprint arXiv:1902.01030, 2019.

C. Li and Y. Tian, “Downstream model design of pre-trained language

model for relation extraction task,” arXiv preprint arXiv:2004.03786,

2020.

S. Wu and Y. He, “Enriching pre-trained language model with entity

information for relation classification,” arXiv preprint arXiv:1905.08284,

2019.

D. Chen and C. D. Manning, “A fast and accurate dependency parser

using neural networks,” in Proceedings of the 2014 conference on

empirical methods in natural language processing (EMNLP), 2014, pp.

740-750.

[13] J. Zhou and H. Zhao, “Head-driven phrase structure grammar parsing

on penn treebank,” arXiv preprint arXiv:1907.02684, 2019.

K. Mrini, F. Dernoncourt, Q. Tran, T. Bui, W. Chang, and N. Nakashole,

“Rethinking self-attention: Towards interpretability in neural parsing,”

arXiv preprint arXiv:1911.03875, 2019.

[15] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and

Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language

understanding,” Advances in neural information processing systems,

vol. 32, 2019.

I. Hendrickx, S. N. Kim, Z. Kozareva, P. Nakov, D. o) Séaghdha,

S. Padé, M. Pennacchiotti, L. Romano, and S. Szpakowicz,

“SemEval-2010 task 8: Multi-way classification of semantic relations

between pairs of nominals,” in Proceedings of the 5th International

Workshop on Semantic Evaluation. Uppsala, Sweden: Association for

Computational Linguistics, Jul. 2010, pp. 33-38. [Online]. Available:

https://aclanthology.org/S10-1006

Y. Zhang, V. Zhong, D. Chen, G. Angeli, and C. D. Manning,

“Position-aware attention and supervised data improve slot filling,” in

Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing (EMNLP 2017), 2017, pp. 35-45. [Online].

Available: https://nlp.stanford.edu/pubs/zhang2017tacred.pdf

K. Xu, Y. Feng, S. Huang, and D. Zhao, “Semantic relation classification

via convolutional neural networks with simple negative sampling,” arXiv

preprint arXiv:1506.07650, 2015.

Y. Xu, R. Jia, L. Mou, G. Li, Y. Chen, Y. Lu, and Z. Jin, “Improved

relation classification by deep recurrent neural networks with data

augmentation,” arXiv preprint arXiv:1601.03651, 2016.

J. Lee, S. Seo, and Y. S. Choi, “Semantic relation classification via

bidirectional Istm networks with entity-aware attention using latent entity

typing,” Symmetry, vol. 11, no. 6, p. 785, 2019.

[10]

(11]

[12]

[14]

[16]

[17]

[18]

[19]

[20]

