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Text categorization is the task of automatically assigning unlabeled text documents to some predefined
category labels by means of an induction algorithm. Since the data in text categorization are high-
dimensional, often feature selection is used for reducing the dimensionality. In this paper, we make an
evaluation and comparison of the feature selection policies used in text categorization by employing
some of the popular feature selection metrics. For the experiments, we use datasets which vary in size,
complexity, and skewness. We use support vector machine as the classifier and tf-idf weighting for
weighting the terms. In addition to the evaluation of the policies, we propose new feature selection met-
rics which show high success rates especially with low number of keywords. These metrics are two-sided
local metrics and are based on the difference of the distributions of a term in the documents belonging to
a class and in the documents not belonging to that class. Moreover, we propose a keyword selection
framework called adaptive keyword selection. It is based on selecting different number of terms for each
class and it shows significant improvement on skewed datasets that have a limited number of training
instances for some of the classes.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Text categorization is the task of automatically assigning unla-
beled text documents to some predefined category labels by means
of an induction algorithm. It has gained great popularity and
importance in recent years since the amount of documents in elec-
tronic media which necessitate some form of organization and
arrangement increased considerably. A large number of statistical
techniques and machine learning approaches have been used for
this task such as naive Bayes, linear regression, Rocchio classifica-
tion, neural networks, k-nearest neighbors (k-NN) clustering, and
support vector machines (Sebastiani, 2002).

In text categorization, generally a document is represented as a
set of words without regard to the grammar and word order. This
representation is called the bag of words model. Since a document
collection may contain thousands of words, a bag of words repre-
sentation of a document will probably have a very high dimension-
ality. This situation is a critical challenge for most learning
algorithms. Therefore, normally feature selection is used in text
categorization systems for the purpose of reducing the dimension-
ality. Dimensionality reduction has many benefits such as improv-
ing the interpretability of the data, reducing the time and storage
requirements, and speeding up the learning process. Moreover, it
may improve the classification accuracy since it can prevent
ll rights reserved.
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overfitting by eliminating the terms that are useless or misleading
for the classifier.

Feature selection on textual data is mostly based on feature
ranking in which all features are evaluated by a metric that esti-
mates their importance and then the ones with the highest scores
are selected. There are mainly two ways for selecting features: lo-
cally and globally. In local policy each category is represented with
a different set of keywords, while in global policy the feature set is
created globally and it is the same for all categories. Local policy
helps us to find the most important terms for each class, whereas
global policy favors the prevailing classes and gives penalty to clas-
ses with small number of training documents.

A fundamental factor that has an impact on performance in text
categorization experiments is the characteristics of the dataset
used, which are the size of the dataset, the number of terms, and
the skewness property. Especially, skewness (class imbalance) is a
major determinant of the classification performance (Chawla,
Japkowicz, & Kotcz, 2004). Highly skewed datasets are particularly
hard to categorize since the common classes may dominate the rare
classes. Therefore, feature selection and document classification
algorithms may show a biased behavior by classifying the common
classes successfully while largely ignoring the rare classes.

In this paper, we study the binary classification problem with
support vector machines (SVM), where each document is classified
into one of two categories. The document either belongs to a given
class or does not. The paper presents an evaluation of feature selec-
tion policies by using some popular feature selection metrics. We
evaluate the policies by concentrating on the following aspects:
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� Comparison and analysis of different feature selection metrics.
� Evaluation of local and global policies for each feature selection

metric.
� Investigation of the effect of datasets with different characteris-

tics on the performances of the metrics.

In addition to the evaluation of feature selection policies and
well-known metrics, we propose some new feature selection met-
rics which are more advanced forms of the Acc2 metric that was
studied by Forman (2003). These proposed metrics are two-sided
metrics (that is, they take into account the negative features as
well as the positive features) and are based on the difference of
the distributions of a term in the documents belonging to a class
and in the documents not belonging to that class. They are all local
metrics and achieve high performance rates even at small number
of keywords. This makes them precious especially when the prac-
titioner is constrained to use a limited number of keywords.

We also propose a novel feature selection framework called adap-
tive keyword selection (AKS) which selects different number of
terms for classes that have different sizes. It is inspired by the obser-
vation that classification performances are better with high number
of keywords in datasets that contain an abundant number of exam-
ples for each class, while the performances are better with low num-
ber of keywords in skewed datasets that contain very few examples
for some of the classes. In accordance with our expectations, it shows
significant performance improvements on skewed datasets that
have a limited number of training instances for some of the classes.

The rest of the paper is organized as follows: Section 2 presents
an overview of the literature about feature selection in text catego-
rization. In Section 3, we describe the existing feature selection
methods that are used in this study and the ones that we propose.
Section 4 explains the experimental settings; the classifier, the
datasets, the evaluation criteria, and the preprocessing steps. In
Section 5, we show the results of the experiments and give a com-
parative and detailed discussion of these results. Section 6 con-
cludes the paper.
2. Related work

Text categorization is a learning task which aims at predicting
the category labels of unlabeled documents by using a training
set. Therefore, most of the machine learning algorithms such as
SVMs, neural networks, naive Bayes, and k-NN can be used for this
task. There are several studies in the literature that compare the
performances of the learning algorithms in the text categorization
domain (Sebastiani, 2002; Sriurai, 2011). It was found that SVM is
generally a top performer in this task (Forman, 2003; Joachims,
1998; Lan, Tan, Su, & Lu, 2009; Yang and Liu, 1999).

Feature selection is an important topic in learning tasks where
datasets with high number of features are common. There exist a
great deal of works about feature selection that are not focused on
textual data (Camps-Valls, Mooij, & Schölkopf, 2010; Guyon &
Elisseeff, 2003; Rakotomamonjy, 2003; Yu & Liu, 2004). Since tex-
tual data have thousands of dimensions, most of the general fea-
ture selection methods are not efficient or successful in text
categorization. For example, wrapper methods which search the
space of all possible feature subsets perform very well on low-
dimensional data. However, it is inefficient to use these methods
on text documents (Pinheiro, Cavalcanti, Correa, & Ren, 2012; Li,
Xia, Zong, & Huang, 2009). Likewise, embedded methods perform
feature selection in the process of training and reach a solution
faster by avoiding retraining the learning machine when each fea-
ture is selected (Grigorescu, Petkov, & Kruizinga, 2002). For in-
stance, the recursive feature elimination method (Chen, Zeng, &
van Alphen, 2006) makes use of the change in the objective
functions as a ranking criterion when a feature is removed. With
a backward elimination strategy, the features that contribute least
to the classification are removed iteratively. This is an efficient
strategy for texture classification in computer vision systems;
however eliminating features iteratively is not feasible in a do-
main with high dimensionality such as text classification. There-
fore, methods used in the text domain are mostly based on the
scoring of features.

Feature selection is at least as important as the choice of the
induction algorithm in text categorization. Accordingly, many
studies to evaluate the feature selection metrics have been done
by researchers. However, it is hard to generalize the findings of
these studies and compare the result of a study with another one
because of the variations in the evaluation metrics and experimen-
tal settings such as datasets, classifiers, term weighting methods,
feature selection policy, and preprocessing.

Forman (2003) considers local policy and gives a comprehen-
sive evaluation of many feature selection metrics. SVM is used as
the classifier and many datasets including skewed datasets as well
as homogenous ones are evaluated. A work that includes both of
the feature selection policies is carried out by Debole and
Sebastiani (2003). Nevertheless, they focus on a new term weight-
ing scheme using the feature selection scores of the terms and thus
they do not give a detailed comparison of the policies. Özgür,
Özgür and Güngör (2005) compare local and global policies by
using SVM as the induction algorithm. However, they use a single
dataset and do not analyze the effect of these keyword selection
approaches for document corpora of varying class distributions.
In the study, local and global policies are named as class-based
and corpus-based keyword selection, respectively. In a later study
(Özgür and Güngör, 2007), they analyze the two keyword selection
policies on datasets with different skewness properties and sizes.
However, they only use the tf-idf metric for keyword selection
and do not consider the popular feature selection metrics such as
information gain, chi-square, and document frequency threshold-
ing. Bakus and Kamel (2006) investigate some more advanced fea-
ture selection approaches that employ higher order decisions and
that take the feature-to-feature correlation into account when
selecting the feature set, such as odds ratio, correlation-based fea-
ture selection (CFS) and Markov blanket. Li et al. (2009) compare
six popular feature selection metrics on topic-based and sentiment
classification tasks. They analyze the methods for low and high fea-
ture numbers separately and derive results about the perfor-
mances of different methods on these cases.

In addition to these comparative studies, some successful meth-
ods for feature selection have also been developed. One such exam-
ple is given by Forman (2003) where a method called bi-normal
separation, which is especially successful in highly skewed data-
sets, is proposed. Another example is gain ratio, which is acquired
by normalizing the information gain score of a term by its entropy
(Debole & Sebastiani, 2003). An approach based on unsupervised
feature selection is proposed by Dasgupta, Drineas, Harb, Josifovski
and Mahoney (2007). Their algorithm assigns a univariate impor-
tance score to each feature. It then randomly samples a small num-
ber of features (independent of the total number of features, but
dependent on the number of documents and an error parameter)
and solves the classification problem induced on those features.
Li et al. (2009) propose a method named as weighted frequency
and odds (WFO) that has the effect of combining different feature
selection methods by parameter tuning. Experiments on four data-
sets and a comparison with other methods show that it performs
robustly across different domains and gives comparable results.
There are methods based on Gini index theory which was used ear-
lier in decision trees for splitting attributes and achieved better
categorization precision rates. Singh, Murthy and Gonsalves
(2010) discuss how the Gini index can be effectively used for
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feature selection in text categorization and acquires results compa-
rable to the well-known metrics.

There are also some works that use supervised techniques for
term weighting where the scores of the terms in the feature selec-
tion phase are also used in the term weighting phase. A method
called supervised term weighting is proposed in which the idf part
of the tf-idf term weighting formula is replaced by the score of the
term that is calculated in the feature selection phase (Debole &
Sebastiani, 2003). Likewise, Soucy and Mineau (2005) introduce a
method called ConfWeight which is a weighting method based
on the statistical estimation of the word importance for a particu-
lar categorization problem. Xu, King, Lyu and Jin (2010) apply fea-
ture selection in a semi-supervised manner by using a small set of
labeled data. They propose a new feature selection approach based
on the maximum margin principle to increase the discriminative
power of the classifier.

The class imbalance problem is encountered in a large number
of practical applications of machine learning and data mining. It
has been widely realized that class imbalance gives rise to prob-
lems that are either nonexistent in or more difficult to handle than
balanced class cases and often causes a classifier to perform subop-
timally. The problem is more severe when the imbalanced data are
also high dimensional as in the case of text documents. In such
cases, feature selection methods are critical to achieve optimal per-
formance (Chen & Wasikowski, 2008). In Forman (2004), it is
claimed that most feature selection metrics based on feature scor-
ing can be blinded by a surplus of strongly predictive features for
some classes, while largely ignoring features needed to discrimi-
nate difficult classes. They propose solutions to this pitfall by
scheduling approaches. Zheng, Wu and Srihari (2004) propose a
framework for finding the optimal combination of features that
signal non-membership (negative) and membership (positive) as-
pects on imbalanced textual data. In a similar work, the effect of
three types of metrics on imbalanced datasets was analyzed (Ogu-
ra, Amano, & Kondo, 2011). It was found that metrics that implic-
itly combine positive and negative features denoting membership
and non-membership outperform metrics that are used in a com-
bination setting by explicitly combining positive and negative
features.

Due to the existence of various feature selection metrics, meth-
ods based on their combinations have also been proposed. Olsson
and Oard (2006) combine a few of the popular metrics by taking
the maximum, average, or minimum of the scores. It is argued that
even a simple combination approach yields results better than the
individual metrics. Neumayer, Mayer and Nørvåg (2011) analyze
binary combinations of some of the well-known feature selection
methods and compare the results with a large number of individ-
ual metrics on 18 multi-class datasets. Although the combined
metrics give higher performances than the individual ones in most
cases, they do not show a consistent behavior and the perfor-
mances largely depend on the domain.
3. Feature selection metrics

In this section, we explain five feature selection metrics that are
well-known in the text categorization domain and are used in this
study as well as four new methods that we propose. Section 5 gives
a detailed comparison of the proposed methods with the existing
ones.
3.1. Existing metrics

Table 1 shows five popular feature selection metrics we use in
the analyses (Manning, Raghavan, & Schütze, 2008; Sebastiani,
2002). Note that the scores calculated by these formulae are local
scores in the sense that they show the score of a term with respect
to a specific class ci. Let f(tk, ci) denote the feature selection score of
term tk specified locally to class ci and nc is the number of
classes. In order to assess the value of tk in a ‘global’ sense, either
the sum fsumðtkÞ ¼

Pnc
i¼1f ðtk; ciÞ, the weighted average favgðtkÞ ¼Pnc

i¼1PðciÞf ðtk; ciÞ, or the maximum fmaxðtkÞ ¼maxnc
i¼1f ðtk; ciÞ of its

category-specific values may be computed. For obtaining the
global versions of the local metrics, we use the globalization tech-
nique fmax which is claimed to outperform the other techniques
(Debole & Sebastiani, 2003).

3.1.1. Information gain (IG)
This metric measures the reduction in the entropy by knowing

the presence or absence of a term in a document. It is a very pop-
ular term-goodness criterion that is widely-used in the machine
learning community.

3.1.2. Chi-square statistics (CHI)
In statistics, the chi-square test is applied to measure the inde-

pendence of two random variables. In the domain of text categori-
zation, the two random variables are the occurrence of a term t and
the occurrence of a class c. It is also used extensively in the text
categorization research and in most studies it is claimed to per-
form comparable to information gain.

3.1.3. Document frequency (DF)
This is a very simple metric which is independent of the class la-

bels. It is based on the assumption that infrequent terms are not
reliable and effective in category prediction. It counts the number
of documents in which a term appears and selects the terms whose
counts are the highest. In spite of its simplicity, it has a performance
similar to IG and CHI if the keyword number is not too low.

3.1.4. Accuracy balanced (Acc2)
This is a two-sided metric (it selects both negative and positive

features) that is based on the difference of the distributions of a
term in the documents belonging to a class and in the documents
not belonging to that class. It resembles the sv2 (simplified chi-
square) metric that was proposed by Galavotti, Sebastiani and Simi
(2000) as a simplification of the CHI metric. The difference is that
contrary to Acc2, sv2 is one-sided (it selects only positive features).
In Zheng and Srihari (2003) and Sebastiani (2002), sv2 (renamed as
GSS coefficient) was studied and claimed to have a performance
comparable to IG and CHI while Forman (2003) reports similar re-
sults for Acc2.

3.1.5. Term frequency-inverse document frequency (tf-idf)
This is similar to the DF metric in the sense that it is based on

the idea that terms which have higher tf-idf scores are more infor-
mative for the classification task. It was used by Özgür and Güngör
(2007), but was not compared to other metrics. A variant of the tf-
idf metric was proposed by How and Kulathuramaiyer (2004) and
was claimed to perform comparable to other popular metrics such
as IG and CHI.

3.2. Proposed metrics

The proposed metrics are local metrics and each metric is a sim-
ple variation of another one taking into account some characteris-
tics of the classification task. The metrics are named as M1, M2, M3,
and M4.

3.2.1. M1. Metric
This metric is a more elaborate version of the Acc2 metric. In

Acc2, only the number of documents in which a term occurs is



Table 1
Existing feature selection metrics.

Name Formula

Information gain

IGðtk; ciÞ ¼
X

c2fci ;�cig

X
t2ftk ;�tkg

Pðt; cÞ log
Pðt; cÞ

PðtÞPðcÞ

Chi-square CHIðtk; ciÞ ¼ N � ½Pðtk ;ciÞPð�tk ;�ciÞ�Pð�tk ;ciÞPðtk ;�ciÞ�2
PðtkÞPð�tkÞPðciÞPð�ciÞ

Document frequency DF(tk, ci) = P(tk, ci)
Accuracy balanced Acc2ðtk; ciÞ ¼ jPðtk; ciÞ � Pðtk; �ciÞj
Term frequency-inverse document frequency

tf � idf ðtk; ciÞ ¼
X

dj2fcig
tf ðtk; djÞ log

DðciÞ
Dðtk; ciÞ

Notation:
P(tk, ci): percentage of documents belonging to class ci in which term tk occurs
Pð�tk; ciÞ: percentage of documents belonging to class ci in which term tk does not occur
Pðtk;�ciÞ: percentage of documents not belonging to class ci in which term tk occurs
Pð�tk;�ciÞ: percentage of documents not belonging to class ci in which term tk does not occur
P(tk): percentage of documents in which term tk occurs
Pð�tkÞ: percentage of documents in which term tk does not occur
P(ci): percentage of documents belonging to class ci

Pð�ciÞ: percentage of documents not belonging to class ci

N: total number of documents in the dataset
tf(tk, dj): frequency of term tk in document dj

D(ci): number of documents in class ci

D(tk, ci): number of documents in class ci in which term tk occurs
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taken into account without considering the number of actual
occurrences of the term in the documents. In this method, we mul-
tiply the Acc2 score by relative term occurrence frequencies:

M1ðtk; ciÞ ¼ Acc2ðtk; ciÞ �
A
t1
� B

t2

� �

where A and B are the number of occurrences of term tk in the doc-
uments, respectively, belonging to class ci and not belonging to class
ci; t1 and t2 correspond to the number of terms, respectively, in class
ci and in other classes. Note that the M1 metric is not a simple
extension of the Acc2 method from a binary approach (a term either
occurs or does not occur in a document) to a frequency approach
(number of times a term occurs in a document). Instead, it aims
at taking a combination of these two approaches.
3.2.2. M2. Metric
This metric is also similar to Acc2, but we measure the correla-

tion between a term and a class in a different way. Here, we con-
sider the documents in the whole corpus in which the term
appears as a group and we find the proportion of the documents
with class label ci in this group. We also multiply it by the docu-
ment frequency of term tk in the whole corpus. Because, without
such a modification, a very infrequent and thus uninfluential term
can have a similar score as a frequent term that is effective in the
classification of many documents, since the document proportions
in the group may be similar in both cases. The calculation of the M2

metric is given by the following formula:

M2ðtk; ciÞ ¼ DFðtkÞ �
C
d1
� D

d2

� �

where C and D are the number of documents in category ci, respec-
tively, in which term tk occurs and tk does not occur; d1 and d2 cor-
respond to the number of documents in which, respectively, tk

occurs and tk does not occur; DF(tk) is the sum of document fre-
quencies of all classes for term tk .
3.2.3. M3. Metric
This metric, as in the case of the M2 metric, integrates a fre-

quency score into the calculation. It is calculated as the multiplica-
tion of the M1 score of a term by the document frequency of the
term. Since the M1 method alone does not take into account the
document frequency, it may give similar weights to frequent and
rare terms. However, it may be reasonable to prefer the frequent
terms since they play a role in the classification of more docu-
ments. The formula is given below:

M3ðtk; ciÞ ¼ DFðtkÞ �M1ðtk; ciÞ
3.2.4. M4. Metric
In the experiments, we observed that despite the fact that the

M1 metric gives very good results for low number of keywords, it
is not as good as the global methods when the number of keywords
increases. That is, the top keywords determined with respect to the
M1 scores have more discriminative power than the top keywords
selected by the other methods. But, as we increase the number of
keywords, it seems that the M1 method cannot select new key-
words as good as those in the other methods. For instance, on
the Wap dataset, the M1 method outperforms all other popular
metrics up to about 200 keywords; but beyond this point its per-
formance falls behind the performance of others. This phenomenon
is related with the fact that a class with a few documents does not
include sufficient number of reliable keywords. In other words,
there may be only a few keywords occurring several times in such
a class and if we select too many keywords most of them will be
noise words that have a little or no effect in classification. For han-
dling the deficiency of the M1 metric with high number of key-
words, we select the first n keywords by the M1 metric, where n
is the number of documents in that class. Then we select the
remaining keywords from the list of keywords extracted by the
global IG metric by scanning the list beginning from the highest
scored keyword. Note that the keywords found by IG that have al-
ready been selected or that do not occur in the documents in that
class are ignored.
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3.3. Adaptive keyword selection framework

Different text categorization problems have varying levels of
difficulty due to some factors such as class skewness, similarity
of classes, very large vocabulary, and insufficient training exam-
ples. Especially, when the number of classes increases, the separa-
bility of them decreases and therefore more training data are
required for successful categorization.

In a multi-class environment, probably the number of training
examples for different classes will be unequal. In such imbalanced
situations, inevitably rare classes will suffer from the inadequacy
of positive training examples for them. It will be difficult for a fea-
ture selection metric to find a large number of reasonable key-
words for rare classes. Therefore selecting too many features will
cause overfitting and reduce the performance in such classes.

In this method, we propose a solution for the issue that different
classes in a dataset may require different number of terms for the
best performance. In our experiments, we have seen that in data-
sets where there is a substantial amount of training examples,
the performance of the classifier increases as the number of se-
lected keywords increases. However, in datasets with a small train-
ing set, the results are better when a small number of keywords is
used. Therefore we decided to employ an adaptive framework in
such a way that the size of the keyword set is proportional to the
size of the training data.

In order to find the best number of keywords for each class, first
we divided the classes into groups with respect to the number of
documents they contain. Then we carried out several experiments
on different datasets to determine the optimal number of key-
words for each group. Below is the keyword number selection pro-
cedure for a class with respect to the number of documents it
contains, where n represents the number of documents in the
training set of the class:
Use

100 keywords n > 0 and n 6 15
20 keywords n > 15 and n 6 30
100 keywords if n > 30 and n 6 100
500 keywords n > 100 and n 6 200
1000 keywords n > 200 and n 6 500
2000 keywords n > 500

8>>>>>>>><
>>>>>>>>:

Basically, this framework selects more keywords as the docu-
ment number in a class increases. It begins with as few as 20 key-
words and increases this number up to 2000 keywords. However,
as can be seen in the formula above, the situation is different for
classes having less than 15 documents. We observed in the exper-
iments that selecting more keywords (for example, 100) for classes
that have less than 10–15 training instances improves the results
slightly. The reason is that for a class that has such a low number
of training documents, a small number of reliable keywords
describing the class cannot be determined. We acquire a better
classification when we use more keywords, even though some of
these keywords do not have much discriminative power.
Table 2
Properties of the datasets used.

Dataset # of Training Documents # of Test Documents

Classic3 2699 1192
Hitech 1530 770
LA1 2134 1070
Reviews 2708 1361
Wap 1047 513
Reuters-21578 9603 3299
RCV1 23149 781265
The AKS framework is a local policy since it processes each class
separately according to its size. We tested the AKS framework
using local versions of all keyword selection metrics including
the proposed ones. As we will see in Section 5, the results of almost
all metrics were improved in skewed datasets. Currently the map-
ping between the class sizes and the keyword numbers is done in
an ad hoc manner. Rather than adopting a mapping by intensive
experimentation that seems suitable for all the datasets, it seems
better to derive these parameters automatically for each dataset
separately. This can be done by training the classifier on a develop-
ment set. We leave this for future work.
4. Experimental settings

In this work, we used SVM as the learning method, since in pre-
vious studies it was asserted that SVM is almost always one of the
best classifiers in text categorization. It aims at solving binary clas-
sification problems by finding a hyperplane in n-dimensional space
that separates positive and negative examples with the largest pos-
sible margin. In this way, the generalization error on unseen exam-
ples is minimized. We used the SVMlight implementation with
default parameter settings and a linear kernel (Joachims, 1999).

We performed experiments on seven datasets with different
characteristics shown in Table 2. The last column of the table
shows the skewness property (homogenous, medium, highly
skewed) of each dataset. We measure skewness by dividing the
standard deviation of the class distribution by the mean of the dis-
tribution, which is an indication of the amount of imbalance with
respect to the dataset size. Classic3 dataset is quite easy to catego-
rize and, as shown in the experiments section, can achieve an accu-
racy over 99%. Hitech, LA1 and Reviews datasets are relatively
homogenous and they contain more training instances per cate-
gory compared to Wap. Wap dataset is a skewed dataset with 20
classes and very few training instances (1047 documents). Reu-
ters-21578 dataset, a standard dataset in text categorization, has
90 classes and 9603 training instances after ModApte splitting is
applied.

Finally, we have conducted experiments on RCV1, a rather new
benchmark collection for text classification research. For the exper-
iments, we used the whole dataset and applied the LYRL-2004 split
(Lewis, Yang, Rose, & Li, 2004). There are just a few works in the
literature that employ the whole RCV1 dataset (e.g. Joachims,
2006). To the best of our knowledge, this paper is one of the first
works in the text categorization domain which conducts a detailed
set of experiments on the whole RCV1 dataset. Therefore, we ded-
icate a separate subsection (Section 5.3) for the results of the
experiments and a discussion of the RCV1 dataset.

In all experiments, we have removed the stopwords according
to the stopwords list of the smart system (ftp://ftp.cs.cornell.edu/
pub/smart). In addition, non-alphabetic characters were discarded,
all letters were converted to lowercase and stemming was applied
by means of Porter’s stemmer (1997). For term weighting, we used
tf-idf weighting with length normalization (Manning et al., 2008).
# of Classes # of Terms Skewness (sd/mean)

3 10930 Homogenous (0.13)
6 18867 Medium (0.45)
6 25024 Medium (0.45)
5 31325 Medium (0.57)
20 8064 Highly skewed (0.96)
90 20308 Highly skewed (3.32)
103 46487 Highly skewed (2.03)



Table 3
Micro- and macro-averaged F-measures for Hitech dataset.

10 30 50 100 200 500 1000 1500 2000 All

Micro-F
tf-idf(l) 0.551 0.610 0.617 0.638 0.624 0.654 0.644 0.618 0.638 0.649
tf-idf(g) 0.372 0.523 0.559 0.621 0.606 0.645 0.649 0.647 0.666 0.649
IG(l) 0.510 0.610 0.617 0.638 0.630 0.654 0.644 0.634 0.638 0.649
IG(g) 0.430 0.523 0.559 0.621 0.641 0.645 0.649 0.658 0.666 0.649
CHI(l) 0.557 0.590 0.620 0.631 0.636 0.636 0.619 0.630 0.632 0.649
CHI(g) 0.485 0.559 0.597 0.621 0.637 0.633 0.651 0.670 0.667 0.649
Acc2(l) 0.558 0.612 0.636 0.649 0.637 0.651 0.659 0.647 0.646 0.649
Acc2(g) 0.521 0.581 0.575 0.606 0.607 0.657 0.642 0.637 0.661 0.649
DF(l) 0.501 0.550 0.578 0.624 0.613 0.622 0.644 0.664 0.661 0.649
DF(g) 0.214 0.546 0.538 0.583 0.616 0.609 0.624 0.624 0.629 0.649

M1 0.573 0.625 0.637 0.658 0.657 0.656 0.666 0.661 0.673 0.649
M2 0.547 0.617 0.638 0.645 0.635 0.645 0.655 0.646 0.645 0.649
M3 0.555 0.610 0.637 0.638 0.650 0.652 0.652 0.659 0.653 0.649
M4 0.571 0.623 0.630 0.657 0.661 0.648 0.655 0.633 0.629 0.649

Macro-F
tf-idf(l) 0.486 0.529 0.539 0.577 0.564 0.591 0.573 0.549 0.557 0.558
tf-idf(g) 0.228 0.433 0.461 0.538 0.505 0.572 0.597 0.582 0.602 0.558
IG(l) 0.456 0.529 0.539 0.577 0.571 0.591 0.573 0.555 0.557 0.558
IG(g) 0.301 0.433 0.461 0.538 0.558 0.572 0.597 0.601 0.602 0.558
CHI(l) 0.477 0.495 0.536 0.572 0.567 0.551 0.545 0.552 0.567 0.558
CHI(g) 0.340 0.437 0.509 0.528 0.550 0.570 0.610 0.611 0.605 0.558
Acc2(l) 0.459 0.522 0.550 0.571 0.564 0.596 0.600 0.583 0.593 0.558
Acc2(g) 0.433 0.507 0.496 0.521 0.522 0.567 0.582 0.567 0.603 0.558
DF(l) 0.397 0.485 0.507 0.549 0.540 0.549 0.592 0.611 0.603 0.558
DF(g) 0.141 0.389 0.383 0.461 0.527 0.510 0.524 0.526 0.532 0.558

M1 0.482 0.553 0.578 0.582 0.572 0.590 0.615 0.609 0.615 0.558
M2 0.449 0.527 0.546 0.568 0.555 0.594 0.597 0.578 0.588 0.558
M3 0.443 0.533 0.563 0.559 0.566 0.585 0.581 0.597 0.586 0.558
M4 0.472 0.542 0.556 0.594 0.596 0.578 0.600 0.570 0.561 0.558
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We have analyzed the results in terms of micro-averaged and
macro-averaged F-measures (Manning et al., 2008) at different
keyword selection points. The former reflects the overall perfor-
mance better, while the latter is preferable in measuring the clas-
sifier’s performance on rare categories since it gives equal weight
to all classes regardless of the frequency of the class. We varied
the number of keywords from 10 to 2000 and also compared the
results with the case where all keywords are considered (no fea-
ture selection). We have not carried out experiments with more
than 2000 keywords since we observed in our preliminary experi-
ments that F-measures generally reach their maximum values be-
low 2000 keywords and then start to decline.
5. Results and discussion

In this work, we carried out an extensive set of experiments
with local and global policies using different number of terms
and different feature selection metrics on seven datasets. In this
section, we first give the results for three of the datasets. Then,
we will make a detailed comparison of the policies, the existing
metrics, and the proposed methods. Finally, we will comment on
the findings obtained in this research and their significance with
respect to the text categorization domain. The F-measure results
for the datasets not included in this section can be found in the
appendix.

Tables 3–5 show the micro- and macro-averaged F-measure re-
sults of the experiments using the old feature selection metrics as
well as the proposed ones. In the tables, the local and global ver-
sions of the previous metrics are denoted by (l) and (g), respec-
tively. We give the results of three datasets: Wap, Hitech and
Reuters. Wap and Hitech are good examples of skewed and homog-
enous datasets, respectively, and they are included here in order to
evaluate and comment on the performance of the metrics under
the skewness criterion. Reuters is given for comparison with the
previous work since it is one of the most popular datasets in the
text categorization community. In addition to the highest score
for each keyword number (shown in bold), the change in the per-
formance of each metric as the keyword number increases pro-
vides us important information about the behavior of the
approaches.

5.1. Comparison of local and global policies

In previous studies, the well-known feature selection metrics
were compared with each other extensively, but their local and
global versions were not studied and compared in detail. In this
study, one of our main objectives is the comparison of feature
selection policies.

Fig. 1 shows the micro-averaged F-measure results for the glo-
bal and local versions of feature selection metrics on the Reuters
dataset as a function of the number of keywords. The success rate
without feature selection (all words) is also shown as a straight
line for comparison. First, we observe that the local policy performs
significantly better than the global policy when the keyword num-
ber is low. The reason of this behavior is that, in the test phase, lo-
cal policy tries to identify a document belonging to a class using
keywords specific to that class, whereas global policy uses key-
words common to all classes. When there is a very few number
of keywords, each keyword selected by the global policy serves
as a discriminative feature for several classes and thus fails to iden-
tify the correct class. For instance, using 50–100 keywords for a
dataset of 90 classes like Reuters implies that there will be about
one keyword per class on the average. Such a low number does
not seem to be sufficient for a correct classification. On the other
hand, local policy makes use of several specific keywords for each
class and the decision of whether a document belongs to a partic-
ular category or not can be made more accurately. The perfor-
mance of the global policy approaches to that of the local policy
as more keywords are included and it performs better after about



Table 4
Micro- and macro-averaged F-measures for Wap dataset.

10 30 50 100 200 500 1000 1500 2000 All AKS

Micro-F
tf-idf(l) 0.671 0.737 0.741 0.738 0.735 0.722 0.746 0.741 0.749 0.752 0.734
tf-idf(g) 0.134 0.496 0.587 0.655 0.691 0.721 0.740 0.749 0.743 0.752 –
IG(l) 0.685 0.735 0.750 0.742 0.747 0.744 0.742 0.758 0.749 0.752 0.769
IG(g) 0.399 0.526 0.577 0.644 0.746 0.753 0.755 0.756 0.755 0.752 –
CHI(l) 0.440 0.714 0.732 0.732 0.720 0.736 0.742 0.756 0.758 0.752 0.751
CHI(g) 0.242 0.523 0.540 0.607 0.631 0.712 0.730 0.741 0.749 0.752 –
Acc2(l) 0.639 0.728 0.757 0.770 0.758 0.755 0.752 0.758 0.752 0.752 0.795
Acc2(g) 0.221 0.476 0.529 0.629 0.697 0.730 0.743 0.753 0.758 0.752 –
DF(l) 0.000 0.567 0.704 0.751 0.771 0.747 0.760 0.747 0.747 0.752 0.777
DF(g) 0.000 0.341 0.395 0.543 0.657 0.723 0.756 0.757 0.758 0.752 –

M1 0.667 0.738 0.762 0.777 0.758 0.750 0.747 0.749 0.748 0.752 0.790
M2 0.603 0.732 0.738 0.757 0.765 0.759 0.756 0.760 0.753 0.752 0.774
M3 0.610 0.701 0.735 0.776 0.769 0.761 0.758 0.748 0.750 0.752 0.793
M4 0.665 0.739 0.769 0.765 0.767 0.761 0.755 0.754 0.754 0.752 0.790

Macro-F
tf-idf(l) 0.506 0.593 0.565 0.532 0.507 0.495 0.509 0.477 0.483 0.450 0.543
tf-idf(g) 0.093 0.208 0.306 0.350 0.412 0.442 0.455 0.468 0.455 0.450 –
IG(l) 0.492 0.531 0.548 0.517 0.508 0.508 0.460 0.490 0.482 0.450 0.545
IG(g) 0.052 0.185 0.284 0.375 0.479 0.501 0.473 0.474 0.467 0.450 –
CHI(l) 0.493 0.511 0.520 0.509 0.462 0.491 0.475 0.488 0.491 0.450 0.538
CHI(g) 0.121 0.239 0.256 0.336 0.375 0.451 0.486 0.469 0.478 0.450 –
Acc2(l) 0.435 0.554 0.564 0.551 0.509 0.516 0.488 0.491 0.485 0.450 0.574
Acc2(g) 0.117 0.235 0.278 0.411 0.479 0.489 0.480 0.480 0.492 0.450 –
DF(l) 0.000 0.353 0.513 0.550 0.538 0.483 0.524 0.483 0.481 0.450 0.587
DF(g) 0.000 0.053 0.095 0.237 0.326 0.430 0.474 0.470 0.462 0.450 –

M1 0.481 0.559 0.551 0.594 0.534 0.520 0.488 0.484 0.482 0.450 0.630
M2 0.386 0.562 0.539 0.558 0.524 0.519 0.492 0.492 0.486 0.450 0.539
M3 0.376 0.497 0.546 0.577 0.527 0.522 0.495 0.478 0.481 0.450 0.590
M4 0.480 0.554 0.572 0.558 0.524 0.497 0.471 0.468 0.467 0.450 0.585

Table 5
Micro- and macro-averaged F-measures for Reuters dataset.

10 30 50 100 200 500 1000 1500 2000 All AKS

Micro-F
tf-idf(l) 0.776 0.812 0.831 0.835 0.838 0.845 0.853 0.850 0.855 0.855 0.850
tf-idf(g) 0.367 0.565 0.625 0.694 0.760 0.811 0.843 0.858 0.860 0.855 –
IG(l) 0.777 0.820 0.838 0.842 0.845 0.850 0.856 0.858 0.856 0.855 0.858
IG(g) 0.485 0.661 0.705 0.765 0.815 0.849 0.857 0.862 0.861 0.855 –
CHI(l) 0.520 0.823 0.840 0.842 0.839 0.845 0.852 0.855 0.854 0.855 0.853
CHI(g) 0.231 0.367 0.531 0.626 0.742 0.798 0.844 0.856 0.862 0.855 –
Acc2(l) 0.773 0.811 0.835 0.846 0.855 0.860 0.862 0.859 0.859 0.855 0.863
Acc2(g) 0.352 0.388 0.513 0.622 0.196 0.814 0.832 0.848 0.860 0.855 –
DF(l) 0.725 0.802 0.820 0.841 0.847 0.854 0.859 0.859 0.859 0.855 0.862
DF(g) 0.412 0.542 0.624 0.679 0.753 0.802 0.839 0.854 0.857 0.855 –

M1 0.773 0.817 0.835 0.854 0.857 0.858 0.861 0.862 0.862 0.855 0.866
M2 0.762 0.815 0.828 0.847 0.858 0.861 0.861 0.859 0.860 0.855 0.864
M3 0.690 0.803 0.819 0.846 0.856 0.863 0.861 0.861 0.860 0.855 0.862
M4 0.773 0.815 0.823 0.852 0.860 0.861 0.857 0.859 0.861 0.855 0.861

Macro-F
tf-idf(l) 0.494 0.512 0.519 0.508 0.514 0.493 0.495 0.491 0.492 0.438 0.516
tf-idf(g) 0.014 0.031 0.044 0.090 0.163 0.262 0.370 0.417 0.432 0.438 –
IG(l) 0.494 0.530 0.512 0.517 0.496 0.495 0.493 0.496 0.490 0.438 0.527
IG(g) 0.034 0.099 0.140 0.195 0.321 0.392 0.457 0.490 0.476 0.438 –
CHI(l) 0.466 0.491 0.493 0.500 0.488 0.493 0.493 0.494 0.491 0.438 0.497
CHI(g) 0.051 0.107 0.163 0.242 0.377 0.439 0.476 0.475 0.482 0.438 –
Acc2(l) 0.492 0.525 0.524 0.527 0.515 0.513 0.500 0.492 0.489 0.438 0.531
Acc2(g) 0.039 0.113 0.145 0.215 0.193 0.484 0.488 0.492 0.490 0.438 –
DF(l) 0.463 0.497 0.515 0.539 0.532 0.511 0.500 0.491 0.493 0.438 0.538
DF(g) 0.010 0.034 0.058 0.090 0.147 0.243 0.364 0.411 0.438 0.438 –

M1 0.507 0.512 0.531 0.529 0.513 0.505 0.496 0.495 0.494 0.438 0.535
M2 0.470 0.531 0.519 0.529 0.518 0.513 0.499 0.493 0.489 0.438 0.531
M3 0.302 0.459 0.495 0.506 0.507 0.506 0.498 0.492 0.489 0.438 0.499
M4 0.484 0.485 0.477 0.491 0.499 0.491 0.472 0.486 0.478 0.438 0.499
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1000 keywords. With this number of keywords, it seems that a fea-
ture selection procedure common to all classes can capture the dif-
ferences in different categories.
As in the case of Reuters, a similar behavior related to the local
and global policies is observed in the other skewed datasets Wap
and RCV1. However, in homogenous datasets, although the local



Fig. 1. Micro-averaged F-measures for Reuters dataset.

Fig. 2. Micro-averaged F-measures for Hitech dataset.

Fig. 3. Macro-averaged F-measures for Reuters dataset.

Fig. 4. Macro-averaged F-measures for Hitech dataset.
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policy still outperforms the global policy at low keyword numbers,
the performance gap between the two policies closes earlier. Fig. 2
shows the micro-averaged results for the Hitech dataset. The per-
formance of the global policy is a little worse than that of the local
policy when the number of keywords is low, but for most of the
metrics it performs better after 500–1000 keywords. In balanced
datasets, all classes will be represented equally well by the selected
features and thus a less number of global features will be sufficient
for documents belonging to different classes.

When we analyze the macro-averaged F-measure results, we
see a similar pattern concerning the relationship between the pol-
icies and the feature numbers. Figs. 3 and 4 show the macro-aver-
aged F-measure results for the Reuters and Hitech datasets,
respectively. A difference from the micro-averaged success rates
is that, in skewed datasets, the superiority of the local policy is
more clear in this case. Its performance is almost always higher
than that of the global policy and it exceeds the performance of
using all words even with 30–50 keywords. This is an interesting
result. Using a few class-specific keywords instead of a large num-
ber of general keywords classifies the documents belonging to rare
classes more accurately. The increase in the classification accuracy
of such classes results in better macro-averaged scores.

In order to make a comparison between the feature selection
metrics, we show in Table 6 their performances under different
environments. The table groups the success rates with respect to
two criteria. The first one is the size of the feature set, where fea-
ture numbers between 10 and 500 are considered as low keyword



Table 6
Success rates of existing metrics under skewness and feature number criteria.

Keyword 6 500 Keyword > 500

Homogenous Skewed Homogenous Skewed

Micro-averaged F-measure
Global metrics
tf-idf 0.758 0.562 0.852 0.793
IG 0.765 0.615 0.856 0.799
CHI 0.760 0.530 0.857 0.791
Acc2 0.781 0.514 0.852 0.799
DF 0.680 0.533 0.845 0.796

Local metrics
tf-idf 0.786 0.699 0.834 0.791
IG 0.797 0.698 0.850 0.790
CHI 0.793 0.674 0.846 0.792
Acc2 0.804 0.782 0.855 0.807
DF 0.757 0.682 0.846 0.800

Macro-averaged F-measure
Global metrics
tf-idf 0.674 0.188 0.819 0.446
IG 0.703 0.227 0.824 0.474
CHI 0.710 0.228 0.825 0.477
Acc2 0.741 0.267 0.819 0.487
DF 0.589 0.150 0.803 0.449

Local metrics
tf-idf 0.757 0.406 0.799 0.478
IG 0.766 0.440 0.816 0.485
CHI 0.763 0.438 0.812 0.489
Acc2 0.767 0.519 0.825 0.491
DF 0.724 0.443 0.818 0.507

Fig. 5. Comparison of local and global policies (macro-averaged F-measures).

S�. Tas�cı, T. Güngör / Expert Systems with Applications 40 (2013) 4871–4886 4879
numbers and feature numbers between 1000 and 2000 as high
keyword numbers. The second criterion is dataset skewness; we
put Reuters, Wap and RCV1 into the group of skewed datasets
and the others (Hitech, Reviews, Classic3, LA1) into the homoge-
nous dataset group. All the figures in the table are averages of
the success rates of the metrics in the corresponding group.
Although taking the average of F-measure scores for different fea-
ture numbers in several datasets is not mathematically sound, it
provides us an idea about the general performances of the metrics.

In the case of global policy, IG, CHI and Acc2 have similar perfor-
mances and are the best methods on both homogenous and
skewed datasets. When we have a few number of keywords,
Acc2 performs slightly better than IG and CHI. It gives the highest
micro- and macro-averaged F-measures on homogenous datasets.
On skewed datasets, however, while Acc2 is still the best metric
in terms of macro-averaged F-measures, IG performs much better
than all other metrics in terms of micro-averaged results. This indi-
cates that although the keywords selected by the IG method can
classify more documents correctly, they are mostly good discrimi-
nators for classes having large number of documents and they fail
in identifying the documents in rare classes. On the other hand, the
keywords selected by Acc2 give equal chance to both types of clas-
ses. As the number of keywords is increased, the performances of
all metrics approach to each other. But IG, CHI and Acc2 seem to
be a little more successful in this case also.

The superiority of Acc2 over other metrics is emphasized more
clearly in local policy. When the keyword number is low, it per-
forms about 10–15% better than the second best metric on skewed
datasets and therefore it is a quite successful local classification
method for skewed datasets. Acc2 is the best metric for homoge-
nous datasets also, but IG and CHI show similar performances in
this case. When we have a large number of keywords, the methods
show similar behaviors as in the case of global policy. When we
look at the micro-averaged F-measure results, we see that Acc2
is slightly better than the other methods. In macro-averaged
scores, DF shows a good performance especially on skewed
datasets. This indicates that, for classes containing very few docu-
ments, we can achieve high performances by just selecting the high
frequency keywords.

In Fig. 5, we see the macro-averaged F-measure results of IG for
100 and 2000 keywords with local and global policies as the skew-
ness of the datasets increases. The Classic3 dataset is one extreme
with only 3 classes while RCV1 is the other extreme with 101 clas-
ses. First, the figure shows explicitly that the success rate is inver-
sely proportional to the skewness of the dataset. Second, we
observe the relationship between the local and global policies with
respect to dataset skewness. With low number of keywords, as the
skewness of the dataset increases, the superiority of the local pol-
icy over the global policy becomes more apparent. For instance,
while the local and global IG performances are similar in the Clas-
sic3 dataset for 100 keywords (95.9% and 95.5%, respectively), the
local IG value is 2.65 times higher than the global IG value in Reu-
ters for the same keyword number (51.7% and 19.5%, respectively).
As discussed above, the reason of this behavior is the insufficiency
of a small set of global features. However, the difference between
the two policies begins to disappear as we increase the number
of features and they perform alike at 2000 keywords.

5.2. Analysis of the proposed metrics and adaptive keyword selection

The success of local policy at low keyword numbers motivated
us to concentrate on local feature selection metrics. All of the
methods proposed in this paper are local methods. They show
slightly different success patterns in different situations depending
on the environmental parameters such as the dataset, feature
numbers, etc. For instance, M3 seems to be the best metric on
the Reviews dataset while M1 is the best one for the Hitech dataset.
Likewise, M1 is more successful than M2 at low keyword numbers
for skewed datasets, but it is not so successful when more key-
words are selected.

Figs. 6 and 7 show, respectively, the micro- and macro-averaged
F-measures for the Wap dataset. In the figures, we compare the
new metrics with Acc2(l). We have chosen Acc2 as a representative
of the old metrics since it exhibits the best performance as ex-
plained in Section 5.1.

The best micro- and macro-averaged F-measure results for the
M1 method both occur with 100 keywords on the Wap dataset
(77.7% and 59.4%, respectively). The situation is similar for the
M3 method: 77.6% micro- and 57.7% macro-averaged F-measures
with 100 keywords. We observe a significant improvement when
compared with the local versions of the Acc2 metric. Acc2 reaches



Fig. 6. Micro-averaged F-measures for Wap dataset.
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at most 77.0% micro- (100 keywords) and 56.4% macro-averaged
(50 keywords) F-measures. M1 and M3 give their best results for
both scores with the same feature numbers. This is not the case
for Acc2 and when we fix the number of keywords, it shows a
worse performance. For instance, the macro-averaged score with
100 keywords is just 55.1% and the micro-averaged score with
50 keywords is 75.7%.

On the Hitech dataset (Table 3), for instance, the M1 method
reaches 67.3% micro- (2000 keywords) and 61.5% macro-averaged
(1000 and 2000 keywords) F-measures, while Acc2 can achieve at
most 65.9% micro- and 60.0% macro-averaged F-measures (both
Fig. 7. Macro-averaged F-me
with 1000 keywords). Again, the performance gap between the
old and new metrics enlarges as the number of keywords de-
creases. The situation is similar on Reuters (Table 5) and all the
metrics except M3 perform significantly better than Acc2 for key-
word numbers between 100 and 500.

A comparison of the new metrics with the existing metrics
other than Acc2 reveals the performance gain more clearly. For in-
stance, on the Wap dataset, all of the new metrics outperform IG(l)
and IG(g) when the keyword number is between 100 and 1000.
This success on a skewed dataset indicates that the new metrics
are very good at finding the best features even when a class does
not have too many training documents. The situation is similar
for the more homogenous Hitech dataset. The proposed metrics
are more successful than CHI(l) for low keyword numbers and than
CHI(g) for high keyword numbers. CHI(g) shows the best perfor-
mance with a high keyword number (1500 keywords), which is a
characteristic of a global method, but it is even outperformed by
the local M1 metric at 2000 keywords.

Table 7 lists the micro- and macro-averaged F-measure scores
with respect to the dataset skewness and keyword number criteria.
As before, we compare the new metrics with the most successful
one of the existing metrics (Acc2(l)). M1 and M4 seem to be the best
methods in terms of both micro- and macro-averaged scores when
the number of keywords is low. As the keyword number increases,
again the success rates of different metrics approach to each other.
With high number of keywords, M4 shows a poor performance and
falls behind Acc2(l). However, M1 obtains quite high micro- and
macro-averaged scores for homogenous datasets and proves to
be the best metric. For skewed datasets with this number of key-
words, none of the methods outperform Acc2(l) and all have per-
formances similar to Acc2(l). We should note that although M4

can be regarded as a successful method in general, it has a weak-
ness about the macro-averaged score on skewed datasets. This
shows that it cannot handle rare classes as successfully as other
methods. As a result, we evaluate the new methods as successful;
in most cases they cause an improvement on the performance and
in the others they are at least as good as the existing methods
regardless of the dataset.
asures for Wap dataset.



Table 7
Success rates of proposed metrics under skewness and feature number criteria.

Keyword 6 500 Keyword > 500

Homogenous Skewed Homogenous Skewed

Micro-averaged F-measure
Acc2 (l) 0.804 0.782 0.855 0.807
M1 0.807 0.787 0.857 0.805
M2 0.796 0.777 0.854 0.808
M3 0.802 0.769 0.855 0.806
M4 0.806 0.788 0.851 0.807

Macro-averaged F-measure
Acc2 (l) 0.767 0.519 0.825 0.491
M1 0.772 0.528 0.828 0.490
M2 0.759 0.514 0.822 0.492
M3 0.762 0.485 0.822 0.489
M4 0.770 0.509 0.819 0.474
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A remarkable property of the proposed methods is that they
reach their maximum values at about 100 keywords on skewed
datasets. This is an important property since it indicates that per-
formance ratios similar as or better than those that can only be ob-
tained using a large number of keywords with the existing
methods can be achieved with much less keywords and thus in
much less time. This indicates that the methods can determine a
small but discriminative set of features for most of the classes.
However, when the number of keywords increases, most classes
suffer overfitting. Likewise, on homogenous datasets, they acquire
quite high scores with 100 keywords, but they preserve these suc-
cess rates on these datasets as the keyword number increases.

We employed the adaptive keyword selection framework on
the skewed datasets Wap and Reuters only, since its logic is based
on large differences of document numbers in the classes. The right-
most points in Figs. 6 and 7 show the success rates of the AKS
method on the Wap dataset. In order to allow for a general com-
parison of AKS with all other methods, we give in Table 8 the aver-
age performances for low and high keyword numbers of the
existing and new methods and the performance of AKS. When
we look at the results, we see that AKS improves the performance
of almost all local keyword selection metrics on both datasets. The
performance gain on the Wap dataset is more clear, while on the
Reuters dataset there is a slight improvement.

To measure the significance of the results, we compared the AKS
method with a fixed keyword number which usually shows the
best performance on each dataset. We have chosen the keyword
numbers 100 for Wap and 1000 for Reuters, since the local metrics
yield the best results (taking into account both micro- and macro-
averaged F-measures) under these keyword numbers. So, for in-
stance, for the Wap dataset, we compared the classification of
AKS with the classification obtained using 100 keywords for each
of the nine local metrics. On the Wap dataset, the improvement ob-
tained with the AKS version of each metric except tf-idf and CHI is
statistically significant. For Reuters, all the metrics except tf-idf
perform better under the AKS framework, but only the result of
M1 is statistically significant.

We also note that although the success rate of AKS is not always
higher than the best success rate (among all feature numbers) for
some of the metrics on Reuters, there is usually an insignificant dif-
ference in such cases. For instance, the highest micro-averaged
score for CHI(l) is 85.5% obtained with 1500 keywords (or, with
all the words), while it is 85.3% when the keyword numbers de-
pend on the size of the classes. However, the most important result
about the AKS method is that its performance is always better than
or similar as the best performance for each metric. This indicates
that provided that we can determine the optimal number of key-
words for each class, AKS seems to be a very valuable tool for
skewed datasets.
Another desirable property of AKS is that it gives rise to high
performances in both the micro- and macro-averaged F-measures
simultaneously. This is particularly important since no other meth-
od has proved to be the best in both of the F-measures at the same
time. For instance, if we consider Acc2(l) at 1000 keywords for the
Reuters dataset, the micro-averaged F-measure is quite high
(86.2%) but the macro-averaged F-measure is only 50.0%. On the
other hand, if we select 100 keywords, the macro-averaged F-mea-
sure increases to 52.7% but the micro-averaged F-measure de-
creases to 84.6%. When we use adaptive keyword selection,
Acc2(l) micro- and macro-averaged F-measures reach to their
highest values (86.3% and 53.1%, respectively). This situation is a
consequence of the success of the AKS framework in classifying
both rare and common classes correctly.

5.3. Evaluation of the RCV1 dataset

RCV1 (Reuters Corpus Volume 1) is an archive of over 800,000
manually categorized newswire stories made available by Reuters
for research purposes (Lewis et al., 2004). It consists of English lan-
guage stories produced by Reuters journalists over a period of one
year (from August 20, 1996 to August 19, 1997). The documents in
this collection vary from a few hundred to several thousand words
in length. The difference of this corpus from the popular Reuters-
21578 dataset is that RCV1 is much larger, containing about 35
times as many documents as the Reuters-21578 collection.

In this study, we carried out several experiments on the RCV1
dataset with all the existing and proposed feature selection met-
rics. We used the entire corpus in all of the experiments in order
to observe the behavioral patterns of the dataset as the metric
and the keyword number vary. To the best of our knowledge, this
is one of the first works in the text categorization domain which
conducts a detailed set of experiments on the whole RCV1 dataset.

Figs. 8 and 9 show the micro- and macro-averaged F-measures,
respectively. In these figures, the most striking observation is the
success of the DF metric with the local policy. It is always more
successful than the other metrics up to 2000 keywords. Further-
more, it is the only metric that has significantly higher macro-aver-
aged F-measure results than using all words and it outperforms the
all words strategy for all keyword numbers past 100 keywords. We
ascribe the surprising success of DF(l) in RCV1 to the huge size and
large dimensionality of the dataset. The other metrics give prece-
dence to discriminative but rare words which in turn causes many
documents to be represented by only a few dimensions or by no
dimensions after keyword selection is applied. So, the classification
is biased towards these very few keywords, weakening its reliabil-
ity. On the other hand, DF chooses the most common words; so
that the majority of the documents in the corpus are well-repre-
sented even after keyword selection. The selection of common
words does not bring about a serious adverse effect since the use-
less ones (stopwords) have already been eliminated in the earlier
steps.

Similar to the results on the other datasets, the success rates on
the RCV1 dataset also affirm the success of the local policy at low
keyword numbers. We see that all of the local policies have higher
F-measures when the number of keywords is less than 100–200.
However, the success rates of the local policy at low keyword num-
bers are not as high as those in other skewed datasets. We can
reach the best performances with just 30–50 keywords on Wap
and Reuters, and those performances are preserved or even they
decrease beyond this point. On the other hand, on RCV1, the
F-measure scores begin with low values and they steadily increase
as we increase the feature number.

Finally, if we compare the results of the RCV1 dataset with the
results of Reuters-21578, when we use all words, we see that the
micro-averaged F-measure of RCV1 is lower (79.7% vs. 85.5%). This



Table 8
Comparison of AKS framework with fixed feature number policy.

Wap Reuters

Keyword 6 500 Keyword > 500 AKS Keyword 6 500 Keyword > 500 AKS

Micro-averaged F-measure
tf-idf 0.724 0.745 0.734 0.823 0.853 0.850
IG 0.734 0.750 0.769 0.829 0.857 0.858
CHI 0.679 0.752 0.751 0.785 0.854 0.853
Acc2 0.735 0.754 0.795 0.830 0.860 0.863
DF 0.590 0.751 0.777 0.815 0.859 0.862
M1 0.742 0.748 0.790 0.832 0.862 0.866
M2 0.726 0.756 0.774 0.829 0.860 0.864
M3 0.725 0.752 0.793 0.813 0.861 0.862
M4 0.744 0.754 0.790 0.831 0.859 0.861

Macro-averaged F-measure
tf-idf 0.533 0.490 0.543 0.507 0.493 0.516
IG 0.517 0.477 0.545 0.507 0.493 0.527
CHI 0.498 0.485 0.538 0.489 0.493 0.497
Acc2 0.522 0.488 0.574 0.516 0.494 0.531
DF 0.406 0.496 0.587 0.510 0.495 0.538
M1 0.540 0.485 0.630 0.516 0.495 0.535
M2 0.515 0.490 0.539 0.513 0.494 0.531
M3 0.508 0.485 0.590 0.463 0.493 0.499
M4 0.531 0.469 0.585 0.488 0.479 0.499

Fig. 8. Micro-averaged F-measures for RCV1 dataset.
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situation may be explained by the high class number in the RCV1
dataset. On the other hand, the macro-averaged F-measure is sur-
prisingly higher (47.9% vs. 43.8%). We believe that the reason is the
large number of training examples for most of the classes. Obvi-
ously, having many training instances for all categories is a valu-
able quality for a dataset. For example, 27 classes in the Reuters
dataset have less than 10 training documents whereas only 5 clas-
ses in RCV1 suffer the same problem.

5.4. Summary of the results

In this section, we summarize the results obtained and com-
ment on their implications for a text categorization task.
An obvious observation is that success rate, especially the
macro-averaged F-measure, is inversely proportional to dataset
skewness (Forman, 2004). Identifying keywords with high discrim-
inative power is difficult for rare classes due to insufficient number
of examples. This causes a negative effect on the macro-averaged
score which measures the performance on class basis.

Among the existing metrics analyzed in this study, Acc2 seems
to be the best one, especially when there is a few number of fea-
tures. This is more apparent for the local policy of Acc2 on skewed
datasets. IG and CHI, which are probably the mostly studied feature
selection methods in text categorization, result in scores lower
than Acc2 in most cases. However, when we have a large number
of features, these three methods show similar behavior, although



Fig. 9. Macro-averaged F-measures for RCV1 dataset.
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Acc2 still yields the best performance with a small margin. The
other two methods, tf-idf and DF, seem to give the worst results,
although tf-idf performs comparable to IG and CHI on some
datasets.

For all classification methods, local versions outperform the glo-
bal versions when the keyword number is low. The performance
improvement is more significant for skewed datasets and in
macro-averaged scores. When the keyword number is increased,
local and global policies have similar performances, although the
local version of a metric is still slightly better than the global ver-
sion for skewed datasets.

With low number of keywords two of the proposed metrics, M1

and M4, outperform Acc2, while with high number of keywords
one of them, M1, outperforms Acc2. Thus, we observe that the
new method M1 is more successful than Acc2 which is one of the
best classification methods studied in the literature. M4 has a defi-
ciency on skewed datasets in terms of macro-averaged scores,
which implies that it should be used with care on such datasets
when the class-based performance is important.

The other new metrics M2 and M3 are not as successful as Acc2.
On the other hand, when we compare them with other existing
methods, in most cases they give more successful results and in
other cases they show similar performances. Thus, we can say that
all of the proposed methods are in general more successful than
the widely-used existing methods. Another property of the new
methods is that, especially on skewed datasets, they reach their
top performances at about 100 features.

An important observation is the high success rate of the AKS
version of local methods. For all methods including the old and
new ones, making the number of features dependent on the class
size causes a significant increase in performance compared to the
policy of adopting a fixed number of keywords for all classes. The
AKS framework eliminates the disadvantages of using a fixed key-
word number: the keywords do not carry sufficient information to
discriminate between the classes when there is a few number of
keywords and the common keywords selected for different classes
have a negative effect on the classification task when there is a
large number of keywords. By eliminating these effects, AKS
increases both the document-based (micro-averaged) and
class-based (macro-averaged) success rates. To the best of our
knowledge, this is the first work that varies the number of features
with respect to the class size in the text categorization domain.

Another desirable property of the AKS method is that it elimi-
nates the need to determine a suitable keyword number for obtain-
ing high scores in both micro- and macro-averaged F-measures. In
other methods, usually the best micro- and macro-averaged
F-measure scores occur at different keyword numbers. However,
AKS yields results more successful than the other local methods
in both of these measures.

The RCV1 dataset shows the best performance under the local
DF metric. The superiority of this simple method over other well-
known and successful methods on this dataset is an interesting re-
sult and we leave a detailed analysis of this behavior for future
work. Another observation is that, although local methods are still
more successful than global methods for low feature numbers, this
difference is not as striking as in other datasets.
6. Conclusions and future research

In this work, we made an extensive study of feature selection
policies in text categorization with SVM-based classification. We
compared the local and global versions of some of the well-known
feature selection metrics by varying the number of selected fea-
tures from 10 to 2000. In the experiments, we used several data-
sets with different class skewness, size and complexity. We also
introduced some new feature selection metrics that are better than
or at least as good as the well-known metrics in all the datasets.
The new metrics have shown high performances especially when
the keyword number is low (for example, 100–200 keywords). This
makes them invaluable when the practitioner is constrained to use
a small number of keywords.



Table A.1
Micro- and macro-averaged F-measures for Reviews dataset.

10 30 50 100 200 500 1000 1500 2000 All

Micro-F
tf-idf(l) 0.842 0.865 0.889 0.900 0.906 0.918 0.926 0.924 0.920 0.941
tf-idf(g) 0.790 0.869 0.869 0.894 0.935 0.944 0.943 0.937 0.936 0.941
IG(l) 0.850 0.884 0.900 0.909 0.926 0.930 0.936 0.940 0.942 0.941
IG(g) 0.816 0.897 0.904 0.909 0.937 0.943 0.940 0.940 0.941 0.941
CHI(l) 0.828 0.877 0.901 0.907 0.919 0.921 0.928 0.933 0.933 0.941
CHI(g) 0.736 0.896 0.912 0.923 0.930 0.940 0.941 0.944 0.940 0.941
Acc2(l) 0.842 0.900 0.905 0.917 0.927 0.938 0.942 0.940 0.938 0.941
Acc2(g) 0.829 0.899 0.921 0.919 0.930 0.940 0.941 0.944 0.944 0.941
DF(l) 0.805 0.852 0.868 0.895 0.906 0.918 0.928 0.930 0.933 0.941
DF(g) 0.468 0.791 0.813 0.852 0.897 0.930 0.935 0.933 0.939 0.941

M1 0.844 0.888 0.902 0.921 0.922 0.934 0.938 0.939 0.936 0.941
M2 0.850 0.902 0.903 0.916 0.923 0.940 0.942 0.940 0.937 0.941
M3 0.869 0.895 0.903 0.914 0.924 0.940 0.941 0.944 0.940 0.941
M4 0.844 0.888 0.902 0.921 0.922 0.936 0.940 0.942 0.940 0.941

Macro-F
tf-idf(l) 0.847 0.863 0.890 0.904 0.904 0.916 0.916 0.912 0.906 0.928
tf-idf(g) 0.567 0.697 0.693 0.720 0.931 0.939 0.939 0.935 0.932 0.928
IG(l) 0.860 0.892 0.886 0.908 0.928 0.928 0.930 0.934 0.936 0.928
IG(g) 0.655 0.871 0.867 0.899 0.933 0.938 0.937 0.935 0.939 0.928
CHI(l) 0.841 0.881 0.886 0.905 0.916 0.916 0.919 0.923 0.926 0.928
CHI(g) 0.664 0.905 0.915 0.923 0.928 0.937 0.933 0.937 0.935 0.928
Acc2(l) 0.847 0.901 0.905 0.919 0.930 0.935 0.940 0.939 0.935 0.928
Acc2(g) 0.840 0.908 0.923 0.922 0.931 0.939 0.939 0.942 0.941 0.928
DF(l) 0.819 0.869 0.880 0.905 0.909 0.920 0.929 0.931 0.933 0.928
DF(g) 0.295 0.567 0.605 0.678 0.731 0.927 0.935 0.934 0.936 0.928

M1 0.847 0.888 0.901 0.922 0.925 0.933 0.935 0.935 0.929 0.928
M2 0.854 0.904 0.903 0.915 0.924 0.937 0.940 0.936 0.934 0.928
M3 0.866 0.892 0.907 0.918 0.925 0.935 0.938 0.940 0.935 0.928
M4 0.847 0.888 0.901 0.920 0.921 0.932 0.940 0.939 0.936 0.928

Table A.2
Micro- and macro-averaged F-measures for LA1 dataset.

10 30 50 100 200 500 1000 1500 2000 All

Micro-F
tf-idf(l) 0.631 0.731 0.761 0.785 0.789 0.807 0.814 0.812 0.815 0.841
tf-idf(g) 0.465 0.648 0.722 0.767 0.793 0.816 0.817 0.825 0.833 0.841
IG(l) 0.660 0.739 0.765 0.793 0.807 0.830 0.831 0.831 0.833 0.841
IG(g) 0.388 0.664 0.724 0.769 0.804 0.828 0.829 0.833 0.838 0.841
CHI(l) 0.671 0.736 0.761 0.788 0.813 0.823 0.833 0.840 0.838 0.841
CHI(g) 0.340 0.635 0.663 0.745 0.789 0.822 0.828 0.824 0.838 0.841
Acc2(l) 0.659 0.742 0.764 0.802 0.817 0.829 0.835 0.840 0.840 0.841
Acc2(g) 0.478 0.687 0.758 0.789 0.812 0.831 0.829 0.830 0.829 0.841
DF(l) 0.318 0.688 0.740 0.766 0.782 0.814 0.815 0.827 0.826 0.841
DF(g) 0.103 0.397 0.642 0.709 0.762 0.799 0.821 0.832 0.827 0.841

M1 0.669 0.735 0.772 0.800 0.813 0.832 0.830 0.833 0.841 0.841
M2 0.554 0.730 0.760 0.804 0.813 0.831 0.833 0.837 0.841 0.841
M3 0.608 0.743 0.761 0.798 0.814 0.826 0.835 0.835 0.835 0.841
M4 0.669 0.735 0.772 0.800 0.811 0.827 0.836 0.833 0.836 0.841

Macro-F
tf-idf(l) 0.552 0.674 0.706 0.728 0.735 0.755 0.762 0.756 0.764 0.777
tf-idf(g) 0.284 0.528 0.628 0.692 0.715 0.752 0.748 0.753 0.765 0.777
IG(l) 0.578 0.688 0.714 0.743 0.756 0.781 0.779 0.775 0.777 0.777
IG(g) 0.301 0.510 0.603 0.658 0.745 0.771 0.764 0.762 0.772 0.777
CHI(l) 0.607 0.686 0.715 0.741 0.766 0.772 0.778 0.788 0.785 0.777
CHI(g) 0.318 0.523 0.549 0.651 0.722 0.762 0.765 0.757 0.775 0.777
Acc2(l) 0.546 0.682 0.712 0.759 0.773 0.770 0.774 0.776 0.781 0.777
Acc2(g) 0.387 0.584 0.677 0.732 0.754 0.769 0.758 0.768 0.759 0.777
DF(l) 0.376 0.582 0.665 0.702 0.715 0.755 0.758 0.767 0.768 0.777
DF(g) 0.117 0.227 0.515 0.588 0.688 0.724 0.756 0.766 0.760 0.777

M1 0.590 0.680 0.715 0.749 0.760 0.773 0.774 0.773 0.782 0.777
M2 0.455 0.662 0.707 0.750 0.770 0.774 0.771 0.775 0.776 0.777
M3 0.472 0.675 0.698 0.745 0.763 0.762 0.772 0.770 0.767 0.777
M4 0.590 0.680 0.715 0.749 0.749 0.762 0.771 0.764 0.770 0.777
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Another contribution of this study is a new feature selection
framework called adaptive keyword selection (AKS) which selects
different number of terms for classes that have different sizes. It
has shown significant improvements with skewed datasets that



Table A.3
Micro- and macro-averaged F-measures for Classic3 dataset.

10 30 50 100 200 500 1000 1500 2000 All

Micro-F
tf-idf(l) 0.653 0.895 0.939 0.951 0.959 0.960 0.964 0.965 0.971 0.994
tf-idf(g) 0.701 0.873 0.901 0.937 0.956 0.981 0.988 0.992 0.992 0.994
IG(l) 0.735 0.896 0.918 0.958 0.973 0.986 0.989 0.992 0.991 0.994
IG(g) 0.702 0.848 0.886 0.956 0.974 0.988 0.991 0.990 0.992 0.994
CHI(l) 0.638 0.915 0.947 0.963 0.974 0.981 0.987 0.989 0.990 0.994
CHI(g) 0.732 0.848 0.890 0.956 0.972 0.989 0.991 0.992 0.992 0.994
Acc2(l) 0.787 0.880 0.926 0.958 0.972 0.985 0.991 0.991 0.991 0.994
Acc2(g) 0.736 0.867 0.916 0.944 0.967 0.984 0.988 0.989 0.991 0.994
DF(l) 0.745 0.865 0.883 0.917 0.949 0.964 0.973 0.973 0.978 0.994
DF(g) 0.622 0.800 0.833 0.894 0.943 0.970 0.986 0.992 0.992 0.994

M1 0.789 0.892 0.934 0.956 0.976 0.984 0.989 0.989 0.990 0.994
M2 0.743 0.881 0.920 0.955 0.972 0.984 0.991 0.991 0.991 0.994
M3 0.766 0.899 0.930 0.955 0.973 0.984 0.989 0.990 0.992 0.994
M4 0.789 0.892 0.934 0.956 0.976 0.983 0.990 0.990 0.992 0.994

Macro-F
tf-idf(l) 0.720 0.880 0.935 0.950 0.957 0.959 0.964 0.964 0.970 0.994
tf-idf(g) 0.665 0.871 0.898 0.936 0.953 0.980 0.989 0.992 0.992 0.994
IG(l) 0.728 0.889 0.912 0.959 0.974 0.986 0.990 0.992 0.991 0.994
IG(g) 0.665 0.811 0.863 0.955 0.975 0.988 0.991 0.990 0.992 0.994
CHI(l) 0.706 0.908 0.945 0.963 0.974 0.981 0.987 0.989 0.990 0.994
CHI(g) 0.709 0.821 0.870 0.956 0.972 0.990 0.991 0.993 0.992 0.994
Acc2(l) 0.761 0.867 0.923 0.958 0.972 0.985 0.991 0.991 0.991 0.994
Acc2(g) 0.690 0.865 0.914 0.944 0.967 0.985 0.988 0.990 0.991 0.994
DF(l) 0.720 0.848 0.871 0.908 0.945 0.964 0.973 0.973 0.978 0.994
DF(g) 0.623 0.798 0.831 0.893 0.941 0.970 0.987 0.992 0.992 0.994

M1 0.756 0.877 0.928 0.956 0.976 0.985 0.990 0.990 0.991 0.994
M2 0.723 0.868 0.918 0.954 0.973 0.984 0.991 0.991 0.991 0.994
M3 0.737 0.896 0.928 0.955 0.974 0.984 0.990 0.990 0.992 0.994
M4 0.756 0.877 0.928 0.956 0.977 0.984 0.990 0.991 0.992 0.994

Table A.4
Micro- and macro-averaged F-measures for RCV1 dataset.

10 30 50 100 200 500 1000 1500 2000 All

Micro-F
tf-idf(l) 0.329 0.463 0.525 0.597 0.659 0.730 0.762 0.776 0.783 0.797
tf-idf(g) 0.191 0.402 0.465 0.551 0.660 0.736 0.775 0.783 0.788 0.797
IG(l) 0.338 0.416 0.493 0.573 0.649 0.728 0.756 0.765 0.770 0.797
IG(g) 0.274 0.411 0.476 0.578 0.669 0.745 0.778 0.785 0.784 0.797
CHI(l) 0.364 0.452 0.531 0.599 0.676 0.735 0.762 0.772 0.776 0.797
CHI(g) 0.192 0.405 0.457 0.550 0.661 0.726 0.768 0.782 0.787 0.797
Acc2(l) 0.283 0.381 0.476 0.567 0.668 0.742 0.772 0.782 0.789 0.797
Acc2(g) 0.260 0.330 0.387 0.513 0.648 0.720 0.769 0.779 0.785 0.797
DF(l) 0.444 0.568 0.629 0.693 0.738 0.775 0.788 0.792 0.792 0.797
DF(g) 0.281 0.423 0.466 0.557 0.658 0.737 0.772 0.784 0.788 0.797

M1 0.257 0.381 0.476 0.567 0.668 0.742 0.772 0.783 0.789 0.797
M2 0.268 0.391 0.471 0.575 0.670 0.745 0.773 0.784 0.789 0.797
M3 0.203 0.382 0.445 0.549 0.660 0.741 0.776 0.786 0.791 0.797
M4 0.259 0.383 0.474 0.570 0.669 0.743 0.776 0.786 0.788 0.797

Macro-F
tf-idf(l) 0.045 0.082 0.125 0.186 0.262 0.363 0.424 0.460 0.470 0.479
tf-idf(g) 0.013 0.054 0.077 0.145 0.284 0.389 0.460 0.471 0.484 0.479
IG(l) 0.096 0.197 0.267 0.345 0.406 0.465 0.478 0.483 0.490 0.479
IG(g) 0.018 0.056 0.079 0.170 0.293 0.411 0.466 0.475 0.486 0.479
CHI(l) 0.139 0.247 0.308 0.365 0.434 0.469 0.486 0.490 0.492 0.479
CHI(g) 0.013 0.054 0.071 0.150 0.280 0.387 0.457 0.479 0.490 0.479
Acc2(l) 0.103 0.147 0.220 0.310 0.402 0.478 0.498 0.505 0.507 0.479
Acc2(g) 0.017 0.027 0.050 0.134 0.333 0.426 0.484 0.499 0.505 0.479
DF(l) 0.225 0.347 0.400 0.464 0.506 0.533 0.533 0.531 0.530 0.479
DF(g) 0.019 0.059 0.075 0.151 0.278 0.391 0.458 0.477 0.486 0.479

M1 0.072 0.147 0.220 0.310 0.402 0.478 0.498 0.505 0.507 0.479
M2 0.018 0.042 0.149 0.295 0.401 0.481 0.501 0.508 0.508 0.479
M3 0.011 0.035 0.077 0.201 0.342 0.450 0.490 0.500 0.508 0.479
M4 0.056 0.128 0.198 0.264 0.377 0.455 0.488 0.500 0.498 0.479
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have a limited number of training instances. In addition, it gives us
the opportunity to get very high micro- and macro-averaged
F-measures simultaneously.

Future work includes the evaluation and comparison of the fea-
ture selection policies with newer term weighting approaches such
as supervised term weighting (Debole & Sebastiani, 2003; Soucy
and Mineau, 2005) and with learning algorithms apart from sup-
port vector machines. In addition, we plan to work on adjusting
the parameters of the AKS framework automatically depending
on the characteristics of each dataset.
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Appendix A

In this appendix, we give the success rates for the datasets not
included in Section 5. Tables A.1–A.4 show the micro- and macro-
averaged F-measures for Reviews, LA1, Classic3, and RCV1 datasets,
respectively.

References

Bakus, J., & Kamel, M. S. (2006). Higher order feature selection for text classification.
Knowledge Information Systems, 9(4), 468–491.

Camps-Valls, G., Mooij, J., & Schölkopf, B. (2010). Remote sensing feature selection
by kernel dependence measures. IEEE Geoscience and Remote Sensing Letters,
7(3), 587–591.

Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Editorial: Special issue on learning
from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1), 1–6.

Chen, X. -w., & Wasikowski, M. (2008). FAST: A roc-based feature selection metric
for small samples and imbalanced data classification problems. In Proceedings of
the 14th ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 124–132). Las Vegas.

Chen, X.-w., Zeng, X., & van Alphen, D. (2006). Multi-class feature selection for
texture classification. Pattern Recognition Letters, 27(14), 1685–1691.

Dasgupta, A., Drineas, P., Harb, B., Josifovski, V., & Mahoney, M. W. (2007). Feature
selection methods for text classification. In Proceedings of the 13th ACM SIGKDD
international conference on knowledge discovery and data mining (pp. 230–239).
SanJose.

Debole, F., & Sebastiani, F. (2003). Supervised term weighting for automated text
categorization. In Proceedings of the 18th ACM Symposium on Applied Computing
(pp. 784–788). ACM Press.

Forman, G. (2003). An extensive empirical study of feature selection metrics for text
classification. Journal of Machine Learning Research, 3, 1289–1305.

Forman, G. (2004). A pitfall and solution in multi-class feature selection for text
classification. In Proceedings of the 21st International Conference on Machine
Learning (pp. 297–304). Alberta.

Galavotti, L., Sebastiani, F., & Simi, M. (2000). Experiments on the use of feature
selection and negative evidence in automated text categorization. In
Proceedings of the 4th European conference on research and advanced technology
for digital libraries (pp. 59–68). Lisbon.

Grigorescu, S. E., Petkov, N., & Kruizinga, P. (2002). Comparison of texture features
based on Gabor filters. IEEE Transactions on Image Processing, 11(10),
1160–1167.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection.
Journal of Machine Learning Research, 3, 1157–1182.

How, B. C., & Kulathuramaiyer, N. (2004). An empirical study of feature selection for
text categorization based on term weightage. In Proceedings of the IEEE/WIC/
ACM international conference on web intelligence (pp. 599–602).
Joachims, T. (1998). Text categorization with support vector machines: Learning
with many relevant features. In Proceedings of the European conference on
machine learning (pp.137–142).

Joachims, T. (1999). Making large-scale SVM learning practical. In B. Schölkopf, C.
Burges, & A. Smola (Eds.), Advances in Kernel methods – support vector learning.
MIT Press.

Joachims, T. (2006). Training linear SVMs in linear time. In Proceedings of the 12th
ACM SIGKDD international conference on knowledge discovery and data mining
(pp. 217–226). Philadelphia.

Lan, M., Tan, C. L., Su, J., & Lu, Y. (2009). Supervised and traditional term weighting
methods for automatic text categorization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(4), 721–735.

Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). RCV1: A new benchmark collection
for text categorization research. Journal of Machine Learning Research, 5,
361–397.

Li, S., Xia, R., Zong, C. & Huang, C. -R. (2009). A framework of feature selection
methods for text categorization. In Proceedings of the 47th annual meeting of the
ACL and the 4th IJCNLP of the AFNLP (pp. 692–700). Singapore.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). An introduction to information
retrieval. Cambridge University Press.

Neumayer, R., Mayer, R., & Nørvåg, K. (2011). Combination of feature selection
methods for text categorisation. In Proceedings of the 33rd European conference
on advances in information retrieval (pp. 763–766). Dublin.

Ogura, H., Amano, H., & Kondo, M. (2011). Comparison of metrics for feature
selection in imbalanced text classification. Expert Systems with Applications, 38,
4978–4989.

Olsson, J. S., & Oard, D. W. (2006). Combining feature selectors for text classification.
In Proceedings of the 15th ACM International Conference on information and
knowledge management (pp. 798–799). Arlington, Virginia.

Özgür, A., & Güngör, T. (2007). Classification of skewed and homogeneous
document corpora with class-based and corpus-based keywords. In
Proceedings of the 29th German conference on artificial intelligence (pp. 91–
101). Bremen.

Özgür, A., Özgür, L., & Güngör, T. (2005). Text categorization with class-based and
corpus-based keyword selection. In Proceedings of international symposium on
computer and information sciences (pp. 607–616). _Istanbul.

Pinheiro, R. H. W., Cavalcanti, G. D. C., Correa, R. F., & Ren, T. I. (2012). A global-
ranking local feature selection method for text categorization. Expert Systems
with Applications, 39, 12851–12857.

Porter, M. F. (1997). An algorithm for suffix stripping. In K. S. Jones & P. Willet (Eds.),
Readings in information retrieval (pp. 313–316). San Francisco: Morgan
Kaufmann.

Rakotomamonjy, A. (2003). Variable selection using SVM-based criteria. Journal of
Machine Learning Research, 3, 1357–1370.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM
Computing Surveys, 34(1), 1–47.

Singh, S. R., Murthy, H. A. & Gonsalves, T. A. (2010). Feature selection for text
classification based on Gini coefficient of inequality. In Proceedings of the 4th
international workshop on feature selection in data mining (pp. 76–85). India.

Soucy, P., & Mineau, G. W. (2005). Beyond TFIDF weighting for text categorization in
the vector space model. In Proceedings of the international joint conference on
artificial intelligence (pp. 1130–1135). Edinburgh.

Sriurai, W. (2011). Improving text categorization by using a topic model. Advanced
Computing: An International Journal, 2(6), 21–27.

Xu, Z., King, I., Lyu, M. R.-T., & Jin, R. (2010). Discriminative semi-supervised feature
selection via manifold regularization. IEEE Transactıons on Neural Networks,
21(7), 1033–1047.

Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. In
Proceedings of the 22nd annual international ACM SIGIR conference on research and
development in information retrieval (pp. 42–49). Berkeley.

Yu, L., & Liu, H. (2004). Efficient feature selection via analysis of relevance and
redundancy. Journal of Machine Learning Research, 5, 1205–1224.

Zheng, Z., & Srihari, R. (2003). Optimally combining positive and negative features
for text categorization. In Proceedings of the ICML workshop on learning from
imbalanced datasets II. Washington.

Zheng, Z., Wu, X., & Srihari, R. (2004). Feature selection for text categorization on
imbalanced data. ACM SIGKDD Explorations Newsletter, 6(1), 80–89.


	Comparison of text feature selection policies and using an adaptive framework
	1 Introduction
	2 Related work
	3 Feature selection metrics
	3.1 Existing metrics
	3.1.1 Information gain (IG)
	3.1.2 Chi-square statistics (CHI)
	3.1.3 Document frequency (DF)
	3.1.4 Accuracy balanced (Acc2)
	3.1.5 Term frequency-inverse document frequency (tf-idf)

	3.2 Proposed metrics
	3.2.1 M1. Metric
	3.2.2 M2. Metric
	3.2.3 M3. Metric
	3.2.4 M4. Metric

	3.3 Adaptive keyword selection framework

	4 Experimental settings
	5 Results and discussion
	5.1 Comparison of local and global policies
	5.2 Analysis of the proposed metrics and adaptive keyword selection
	5.3 Evaluation of the RCV1 dataset
	5.4 Summary of the results

	6 Conclusions and future research
	Acknowledgment
	Appendix A 
	References


