
Analysis of Word Dependency Relations and
Subword Models in Abstractive Text Summarization

Ahmet Beka Özkan
Computer Engineering

Boğaziçi University
Istanbul, Turkey

bekaozkan@gmail.com

Tunga Güngör
Computer Engineering

Boğaziçi University
Istanbul, Turkey

gungort@boun.edu.tr

Abstract—Abstractive text summarization is an important task
in natural language processing. As many texts are becoming
available in the digital world at very high speeds, people begin
to need automated systems to summarize such bulk data in
a condensed form that only holds the necessary information.
With recent advances in deep learning techniques, abstractive
text summarization has gained even more attention. Attention-
based sequence-to-sequence models are adapted for this task
and achieved state-of-the-art results. Additional mechanisms
like pointer/generator and coverage have become the standard
mechanisms for abstractive summarization. On top of these
common approaches, we observe the effects of integrating word
dependency relations and using subword models. We show that
word dependency relations increase the performance. We also
present that subword usage is another viable option to be
included for models as well.

Index Terms—text summarization, sequence-to-sequence mod-
els, pointer/generator, coverage, word dependency relations, sub-
word models

I. INTRODUCTION

Summarization is the task of acquiring a condensed text
considering the main information of an original longer text.
There are two different methods for summarization, namely
extractive and abstractive. Extractive summarization selects
actual words, phrases or sentences from the input and uses
them as the summary. Abstractive summarization, on the other
hand, aims to grasp the semantic information of a text and tries
to construct a natural, reformed, novel summary that might
consist of new words, phrases or sentences, which is similar
to human-written summaries.

In this digital age of overloaded information, the need
for automatic summarization systems has naturally arisen.
Because it is relatively easier than abstractive summarization,
researchers have proposed many ways for automatic extractive
summarization. However, abstractive systems begin to achieve
comparable results with the adaptations of recent deep learning
techniques. Because of its innovative potential and the use
of external knowledge, abstractive summarization has the
potential of producing high-quality summaries.

Semantic information of words is very important in natural
language understanding. In order to make the representations
of words better, we can also incorporate syntactic information.

We saw that very few models were proposed integrating
word dependency relations in abstractive summarization. Their
effectiveness on such models is not particularly analyzed.
In this paper, we integrated word dependency relations and
analyzed their effects on abstractive summarization models as
a contribution.

Recent deep learning models on Natural Language Process-
ing (NLP) use subword entities. These models have achieved
state-of-the-art results and have quickly begun to be used
frequently. They can successfully capture the morphological
structures of words such as base forms, prefixes, suffixes, etc.,
which helps natural language understanding and generation.
However, there are not many studies using subwords in
recurrent neural network (RNN) based models in abstractive
summarization. In this paper, we used various subword models
and analyze their uses as another contribution.

II. RELATED WORK

Prior to deep learning, abstractive summarization was a
big challenge for researchers. Because of the absence of the
current natural language understanding and natural language
generation techniques, researchers tried to come up with
statistical summarization models and graph-based approaches.
After the advances of deep learning techniques, abstractive
summarization has gained more focus as it becomes an in-
teresting challenge to generate words and summaries from
scratch.

Rush et al. [1] designed a fully data-driven model. They
used a convolutional network to encode the source sentences
and an attentional feed-forward neural network to generate the
resulting summaries. They also built the Gigaword dataset for
summarization purposes, which is widely used in the literature.

Nallapati et al. [2] proposed an attentional encoder-decoder
RNN that is very much similar to the standard machine
translation models (Bahdanau et al. [3]). They introduced a
two-level hierarchical attention mechanism for both word and
sentence levels which provides the model to focus on the
important parts of the document more effectively. In addition,
they constructed the CNN/Daily Mail dataset, which is also
very widely used.

Chopra et al. [4] used almost the same model as Rush et al.
Instead of using a feed-forward neural network for generation,978-1-6654-3405-8/21/$31.00 c©2021 IEEE

they used recurrent neural networks, specifically LSTM and
Elman RNN architecture.

Paulus et al. [5] introduced a new intra-decoder attention
mechanism, which provides more information flow about
the previously generated summary words and the prevention
of repeated phrases. The model also has a mixed training
objective function that combines both the classical maximum-
likelihood cross-entropy loss and policy learning to maximize
ROUGE scores directly.

See et al. [6] proposed the pointer/generator and a coverage
mechanism. The former is a very good way to solve out-
of-vocabulary (OOV) token problems in many abstractive
summarization systems since OOV words are generally very
important for resulting summaries. The latter is quite useful
for not attending the same parts of the input sentences, which
means avoiding repetition over the input parts.

Song et al. [7] used the dependency parse tree of the
sentences for the pointer-generator mechanism to consider the
syntactic constructions better. After obtaining some features
from the dependency tree, they proposed using two parallel
attention for both words (semantic) and dependency features
(structural).

Çelikyılmaz et al. [8] proposed deep communicating agents
for abstractive summarization. The encoding task is divided
into subsections and handled by multiple agents communicat-
ing with each other. Their decoder uses a hierarchical attention
mechanism over the agents and the source words.

III. MODEL

We used two-layer bidirectional RNNs as the encoder that
reads the input word embedding vectors (x1, x2, ..., xn) and
transforms them into the hidden states (h1, h2, ..., hn), where
n is the length of input text. The encoder can be any type of
RNN, but typically LSTMs or GRUs are used, and the hidden
states obtained from forward

−→
hi and backward

←−
hi passes are

concatenated.
−→
hi = GRU(xi,

−−→
hi−1)

←−
hi = GRU(xi,

←−−
hi+1)

hi =
−→
hi ⊕

←−
hi

(1)

for all i = {1, 2, ..., n}. Note that ⊕ is the concatenation
operation. Considering the hyper-parameter of hidden state
size as d, hi ∈ R2d.

The decoder basically predicts an output token wt step by
step. It is a unidirectional LSTM or GRU network.

pvocab(wt) = p(wt | w1, w2, ..., wt−1, ct)

= softmax(Wv(st ⊕ ct) + bv)
(2)

where ct ∈ R2d is the context vector (shown below), st is the
hidden state of the decoder at the step t, Wv ∈ Rv×3d is the
learnable parameter, and bv ∈ RV is the bias term. Note that
V is the vocabulary size.

The decoder updates its hidden state using the embedding
vector of the previously generated summary token yt−1 and
the context vector ct.

st = GRU(yt−1 ⊕ ct, st−1) (3)

The context vector ct is computed with the help of the attention
mechanism.

αti =
exp(eti)

n∑
j=1

exp(etj)

ct =

n∑
i=1

αtihi

(4)

The values eti are computed using (5).

eti = V T
a tanh(Wa(st−1 ⊕ hi) + ba) (5)

where Wa ∈ R2d×2d and Va ∈ R2d are the learnable
parameters, and ba ∈ R2d is the bias term.

As usual, negative log-likelihood is used as the loss func-
tion.

losst = − log pvocab(w
∗
t)

loss =
1

m

m∑
t=1

losst
(6)

where w∗
t is the predicted word at the decoding step t, and m

is the length of the summary.

A. Pointer/Generator Mechanism

The typical usage of the model described above does not
have the potential of generating OOV tokens in their original
forms. It can only generate a special “OOV” tag from the
vocabulary, which represents all of the OOV tokens. However,
for a summary to have “OOV” tags are useless because
their corresponding original forms generally represent the key
information in the article. Pointer/generator mechanism (See
et al. [6]) is a way of generating OOV tokens in their original
forms. It is basically a binary switch that guides the model
to either generate a new token from the vocabulary or copy
a token from the input text. The probability of the switch is
estimated by the value pgen at each decoding step t.

pgen = σ(Wg(st ⊕ ct ⊕ yt−1) + bg) (7)

where Wg ∈ R1×(3d+E) is the learnable parameter, and bg ∈
R is the bias term. Note that E is the word embedding vector
size, and it can be set as a hyper-parameter.

The model generates a token wt from the vocabulary if
the value pgen becomes 1. Conversely, it points to a particular
token in the input text if the value becomes 0. When the
model opts to point, it copies the token that is being pointed
to into the potential summary. The pointing is done with the
use of the original attention distribution which is a probability
distribution over all of the input tokens regardless of the OOV
tokens.

Notice that the probability of generating a particular token
is pvocab and can be computed using (2) previously. Now, we

Encoder

Decoder

Attention

Fig. 1. Sequence-to-Sequence Encoder-Decoder Model with Pointer/Generator Mechanism.

change the probability of producing a particular token to (8)
in order to formulate the whole pointer/generator mechanism.

p(wt) = pgenpvocab(wt) + (1− pgen)
∑

i:wi=wt

αti (8)

Fig. 1 graphically represents the model after the addition of
the pointer/generator mechanism.

B. Coverage Mechanism
Oftentimes, abstractive summarization models output the

same tokens or phrases subsequently. For inputs that are
longer articles, it can even generate the same sentence more
than once. This obviously is not suitable for summarization.
The problem occurs because the attention mechanism actually
ignores the past distributions. There is simply no need to focus
on the same parts. For this purpose, a new coverage vector is
defined (See et al. [6]).

covt =

t−1∑
t′=0

αt′i (9)

We integrate this coverage vector into the attention mecha-
nism, specifically in (5).

eti = V T
a tanh(Wa(st−1 ⊕ hi ⊕ covt) + ba) (10)

As See et al. [6] imply, this modification alone does not
produce successful results, as the model might opt to ignore
this term while training. Therefore, a new loss term is defined
as the following.

losscovt =

m∑
i=1

min(αti, covti) (11)

The original loss computation in (6) is also modified with this
term.

losst = − log p(w∗
t) + λlosscovt (12)

where λ is a hyper-parameter, and it is typically set as 1 [6].
The coverage loss is actually used as a regularization term.

It contributes to the overall loss more if both the coverage
vector and the attention distribution for a particularly generated
word at any decoding step become high. It consequently forces
the model to cover all of the tokens in the input text by
forbidding it to attend the same parts. This effectively makes
the resulting summaries consider the overall semantic of input
text better, and therefore, not miss the important facts and
avoid repetitions.

C. Word Dependency Features

Word embeddings are widely used in deep learning. A
properly trained word embedding matrix captures the semantic
relations successfully. Nevertheless, it does not capture the
syntactic features. We can help the models further by in-
tegrating syntactic features of words in sentences. We used
dependency parsing to obtain a dependency parse tree for each
sentence in the datasets. By using the properties of the tree and
the results of the parsing, we obtained five syntactic features:

• Part-of-speech tag
• Label of the incoming edge
• Token position in the sentence
• Relative token position in the sentence
• The depth in the parse tree
The number of different part-of-speech tags and the labels

of the incoming edges are fixed, which means that it is easy to
categorize them. We categorized the relative position feature,
which is a real number between 0 and 1, into 10 classes. The
remaining features are simply non-negative integers.

After embedding these features for each token in the input,
we concatenated the resulting embedding vectors to get an
overall structural embedding vector fi. This vector can be
integrated into the model in two different locations. First, the
word embedding vector ei and the structural embedding vector
fi can be concatenated and used as the input of the encoder.

ei = ei ⊕ fi (13)

Another possibility to integrate is the output of the encoder.
This means that the hidden states of the encoder hi and
the structural embedding vector fi can be concatenated. The
attention mechanism and decoder can use these new states as
if they are the original outputs of the encoder.

hi = hi ⊕ fi (14)

D. Subword Usage

Recently, subwords are very widely used in NLP-related
deep learning models. With their contributions, many of the
new models achieve state-of-the-art results regarding their
specific problems. We have found that not many studies in
abstractive summarization using RNNs utilized subwords in
their models let alone analyzing their effect.

We used byte-pair encoding [9], WordPiece [10] and un-
igram language model [11] as the subword models. Each

of them is trained separately and the resulting subwords are
integrated into the models.

IV. EXPERIMENTS AND DISCUSSION

A. Preliminaries

a) Datasets: We used the same Gigaword dataset pro-
vided by Rush et al. [1] with the same preprocessing workflow,
which simply consists of the Penn Treebank tokenization,
lower-casing and replacing numeric characters with the special
character. We also created a new Gigaword test set since
we think the original one does not resemble the training and
validation sets well. We randomly picked 100,000 examples
from both the training and validation set and removed them
from their respective sets. While training, we clipped the input
sentences to make them contain 100 tokens maximum, and
the output summaries to 50 tokens. We also used the non-
anonymized version of the CNN/Daily Mail dataset through
the use of the scripts provided by See et al. [6]. We clipped the
input articles to 400 and the output summaries to 100 tokens
since it contains larger texts. For both of the datasets, we lim-
ited the vocabulary size to 50,000 most frequent unique tokens.

b) Word Embeddings: We used pre-trained GloVe vec-
tors as the word embeddings with the dimension of 200 and
froze them while training. We used the same parameters for
embedding layers of both the encoder and the decoder.

c) Model Architecture: The baseline models consist of
2-layer bidirectional GRU as the encoder and 1-layer unidirec-
tional GRU as the decoder. Both of them have a hidden vector
size of 256. The weights and biases for feed-forward layers
are initialized by sampling from a uniform distribution with
bounds ±

√
1

input vector size . The weights on RNNs are initialized

from a uniform distribution with bounds ±
√

1
hidden vector size .

d) Training: We used a batch size of 16. The optimiza-
tion algorithm that we used was Adagrad. We set the learning
rate to 0.15 and the initial accumulator value to 0 as its hyper-
parameters. We also used gradient clipping with the value 2.0
as the threshold. We used beam search for decoding the output
summaries in evaluation, and the beam size was set to 4.

e) Word Dependency Relations: For the models using
dependency features in Section IV-B, we used spaCy1, which
is a library for NLP in Python.

f) Abbreviations Used in Tables: We used abbreviations
for referring to various models we constructed for the sake
of simplicity in the subsequent tables. “PG” uses the pointer/
generator mechanism on top of “Baseline”, as described in
Section III-A. “COV” uses the coverage mechanism only on
top of “Baseline”, as described in Section III-B. “PG+COV”
uses both of these mechanisms. Some models have corre-
sponding counterparts that use dependency relations. In order
to distinguish them, we used the “Dep” prefix. Lastly, we
presented the results of the models that use subwords in
Section IV-D. Each model that uses a different subword model
can be distinguished with a prefix, namely “BPE”, which

1https://spacy.io

TABLE I
THE ROUGE SCORES OF THE MODELS WITH DIFFERENT ADDITIONAL

OVER THE GIGAWORD TEST SETS

Gigaword Original
Model R-1 R-2 R-L Model R-1 R-2 R-L
Baseline 29.889 12.402 27.889 Dep Baseline 30.172 12.58 28.019
PG 31.169 13.333 29.142 Dep+PG 31.711 13.403 29.571
COV 21.645 6.718 20.211 Dep+COV 20.468 6.112 19.782
PG+COV 30.494 13.31 28.758 Dep+PG+COV 30.986 13.348 28.998

Gigaword Custom
Model R-1 R-2 R-L Model R-1 R-2 R-L
Baseline 39.019 17.003 36.708 Dep Baseline 39.274 17.513 37.207
PG 41.007 18.264 38.511 Dep+PG 41.747 19.941 39.004
COV 27.962 9.022 26.214 Dep+COV 26.325 9.007 26.179
PG+COV 39.322 17.792 37.217 Dep+PG+COV 39.937 18.48 37.717

TABLE II
THE ROUGE SCORES OF THE MODELS WITH DIFFERENT MECHANISMS

OVER THE CNN/DAILY MAIL TEST SET

CNN/Daily Mail
Model R-1 R-2 R-L Model R-1 R-2 R-L
Baseline 31.183 11.769 28.429 Dep Baseline 32.047 11.99 28.718
PG 34.914 14.934 32.025 Dep+PG 34.807 14.072 31.198
COV 25.406 9.923 24.101 Dep+COV 25.278 6.942 22.135
PG+COV 33.023 13.886 30.353 Dep+PG+COV 34.038 14.022 30.989

stands for byte-pair encoding, “WordPiece” for WordPiece,
and “Unigram” for unigram language model. They alone do
not use any additional mechanism. “BPE+PG+COV” uses
the pointer/generator and coverage mechanisms on top of
“BPE”. The only difference between “BPE+PG+COV” and
“BPE” is that the former uses LSTMs as RNNs instead of
GRUs. The models using other subword algorithms can be
distinguished with corresponding prefixes instead of “BPE”.
Note that for each table, R-1, R-2 and R-L stand for the
F1 scores of ROUGE-1, ROUGE-2 and ROUGE-L scores,
respectively [12]. We used the pyrouge library2, which is
a Python wrapper for the original ROUGE summarization
evaluation package, to obtain these scores.

B. Dependency Features on Abstractive Models

Tables I and II show the ROUGE scores of the models
with different mechanisms described in Section III. It is clear
that the integration of the pointer/generator mechanism in-
creases the performance. Every model that has this mechanism
achieves better results compared to the baseline models. This
shows its usefulness in an abstractive summarization task.
With its addition to any model, the ability to generate OOV
words is gained. For a summarization task, it is vital to include
them in the resulting summaries as explained in Section III-A.

On the other hand, the coverage mechanism does not seem
to be useful since it decreases the scores drastically. This is
actually a true statement but a misleading one. The actual
reason for the low scores is due to the nature of coverage.
At the starting time of the training from scratch, the model
knows absolutely nothing about the nature of the dataset
and abstractive summarization task. We penalize the model
by introducing the coverage term to the loss. Therefore, it
becomes hard to train the model to get lower loss values.
This is why the models with the coverage mechanism produce
inconsistent results in Tables I and II.

Generally, the integration of dependency features to each
model increases almost every ROUGE score. The only ex-
ception seems to be the models with the additional coverage

2https://github.com/bheinzerling/pyrouge

TABLE III
THE ROUGE SCORES OF “INPUT” AND “HIDDEN” MODELS OVER THE

GIGAWORD TEST SETS

Gigaword Original Gigaword Custom
Model R-1 R-2 R-L R-1 R-2 R-L
Input 30.986 13.348 28.998 39.937 18.48 37.717
Hidden 30.19 12.653 28.345 39.015 17.987 37.061

TABLE IV
THE ROUGE SCORES OF “INPUT” AND “HIDDEN” MODELS OVER THE

CNN/DAILY MAIL TEST SET

CNN/Daily Mail
Model R-1 R-2 R-L
Input 34.038 14.022 30.989
Hidden 33.886 13.35 30.334

mechanism only, namely “Dep+COV”. The other models
generally have increased ROUGE scores by around 0.5-1
in Tables I and II. The improvements of the scores show
the benefit of integrating dependency features into abstractive
summarization models.

C. Integration Position of Word Dependency Features

We also examined the effect of the placement position of
dependency features in the models. “Input” uses the equation
(13), and “Hidden” uses (14). The other parts of these models
are the same as “PG+COV”. The scores of these models can
be seen in Tables III and IV.

We can see that “Input” achieves better results than “Hid-
den”. It is due to the fact that the encoder uses them along with
the word embeddings to generate better hidden states. These
hidden states depend on the dependency features in addition
to the word embeddings. Note that we used the same approach
as in “Input” as the baseline for the models including the use
of dependency features in all of the tables above.

D. Subword Models on Abstractive Models

Tables V and VI contain the scores of the models that
use different subword models. We observe that the scores
of “BPE”, “WordPiece” and “Unigram” are very close to
the scores of “PG+COV”. Considering that these subword-
based models do not use any additional mechanism suitable
for abstractive summarization, these results are pretty decent.
There are two reasons for that. First, these subword-based
models do not use the coverage mechanism. As we concluded

TABLE V
THE ROUGE SCORES OF THE MODELS THAT USE SUBWORD MODELS

OVER THE GIGAWORD TEST SETS

Gigaword Original Gigaword Custom
Model R-1 R-2 R-L R-1 R-2 R-L
BPE 30.219 13.08 28.647 39.299 17.212 36.918
BPE+PG+COV 32.186 14.003 30.344 41.973 18.579 40.107
WordPiece 30.24 13.017 28.698 39.401 17.211 37.027
WordPiece+PG+COV 32.201 14.014 30.367 41.997 18.591 40.23
Unigram 30.014 13.01 28.498 38.871 17.894 39.241
Unigram+PG+COV 32.584 13.502 30.681 41.698 18.237 41.149

TABLE VI
THE ROUGE SCORES OF THE MODELS THAT USE SUBWORD MODELS

OVER THE CNN/DAILY MAIL TEST SET

CNN/Daily Mail
Model R-1 R-2 R-L
BPE 33.176 13.89 30.483
BPE+PG+COV 36.196 14.371 33.554
WordPiece 33.204 13.895 30.451
WordPiece+PG+COV 36.196 14.372 33.556
Unigram 33.006 13.925 30.203
Unigram+PG+COV 34.963 14.506 32.972

TABLE VII
THE ROUGE SCORES OF VARIOUS MODELS INCLUDING

“DEP+PG→COV” OVER THE GIGAWORD TEST SET

Gigaword
Model R-1 R-2 R-L
ABS (Rush et al., 2015) 29.55 11.32 26.42
ABS+ (Rush et al., 2015) 29.76 11.88 26.96
lvt2k-1sent (Nallapati et al., 2016) 32.67 15.59 30.64
RAS-LSTM (Chopra et al., 2016) 32.55 14.70 30.03
RAS-Elman (Chopra et al., 2016) 33.78 15.97 31.15
UniLM (Dong, Yang, Wang, Wei et al., 2019) 38.90 20.05 36.00
ProphetNet (Qi, Yan, Gong, Liu et al., 2020) 39.51 20.42 36.69
Dep+PG→COV 32.95 15.30 30.97

TABLE VIII
THE ROUGE SCORES OF VARIOUS MODELS INCLUDING

“DEP+PG→COV” OVER THE CNN/DAILY MAIL TEST SET

CNN/Daily Mail
Model R-1 R-2 R-L
words-lvt2k-temp-att (Nallapati et al., 2016) 35.46 13.30 32.65
seq-to-seq + attn baseline (See et al., 2017) 30.49 11.17 28.08
pointer-generator (See et al., 2017) 36.44 15.66 33.42
pointer-generator + coverage (See et al., 2017) 39.53 17.28 36.38
UniLM (Dong, Yang, Wang, Wei et al., 2019) 44.17 21.47 41.11
ProphetNet (Qi, Yan, Gong, Liu et al., 2020) 44.20 21.17 41.30
Dep+PG→COV 38.17 16.93 35.88

in Section IV-C, enabling the coverage mechanism from the
start of the training decreases the performance, which is how
coverage is used in “PG+COV”. The second reason is that
the subword models naturally handle the OOV tokens as the
pointer/generator mechanism does.

The most obvious observation that can be seen in Tables V
and VI is that the addition of the pointer/generator mechanism
significantly improves the performances. The pointer/generator
mechanism is used because of its ability to generate OOV
tokens. However, the same ability is inherently gained by using
subword models. It could be confusing to understand which
factor plays a role in this improvement when they both solve
the problem of OOV tokens. The pointer/generator mechanism
does not only point to an OOV token seen in the input text.
It can also decide to point to a token that is already in the
vocabulary. This effectively introduces extractiveness to the
models. Indeed, “BPE+PG+COV”, “WordPiece+PG+COV”
and “Unigram+PG+COV” have gained extractiveness and
this, as a result, helps to increase the scores.

Using subword models alone increases the effectiveness of
the models as they solve the problem of OOV tokens. With
the addition of the pointer/generator mechanism, these models
improve their performances even more. We conclude that
integrating subwords into abstractive summarization models
is beneficial as the related scores increase in our experiments.

E. Proper Usage of Additional Mechanisms

We also built a model that uses LSTMs instead of GRUs
and did not freeze the parameters of word embeddings while
training. This model uses the pointer/generator mechanism. We
trained the model without using the coverage mechanism until
it converges to a sufficient point. Then, we enabled coverage
and trained the model further for a while as it shows its benefits
in this way. The model also uses dependency features. We call
this model “Dep+PG→COV”. Tables VII and VIII have the
scores of several existing models including “Dep+PG→COV”
for comparison.

With the proper usage of the coverage mechanism, we
can see in Tables VII and VIII that “Dep+PG→COV” pro-
duces very good results compared to “Dep+PG+COV” or
“Dep+PG” in Tables I and II for both Gigaword and CNN/
Daily Mail datasets. It surpasses them by more than 2 points
in each ROUGE score for the original Gigaword test set. This
shows the benefit of the coverage mechanism in abstractive
summarization tasks. On the other hand, the improvement
is even higher for the CNN/Daily Mail dataset. The reason
for the higher contribution comes from the nature of these
two datasets. The input texts of the Gigaword dataset are
a lot shorter. The longer texts cause the model to generate
repeated words or phrases more frequently. Therefore, using
the coverage mechanism for the Gigaword dataset is not as
vital as using it for the CNN/Daily Mail dataset.

Table VII contains the results of some popular models
evaluated using the Gigaword dataset. We can see that our
model can achieve better scores compared to the models by
Rush et al. [1], Nallapati et al. and [2], Chopra et al. (except
their RAS-Elman model) [4]. In Table VIII, the scores of
various models can be seen for the CNN/Daily Mail dataset.
Our model can perform better than Nallapati et al. [2]. It
also surpasses the baseline and the pointer/generator model
from See et al. [6]. However, it fails to achieve better scores
than their “pointer-generator + coverage” model. Note that we
failed to create a baseline model performing close to their
baseline model. We think that integrating dependency features
on top of their baseline model would achieve better scores
than their best model.

UniLM [13] and ProphetNet [14] are relatively new models
and differ from the others in Tables VII and VIII. They are
based on transformer models whereas the others use RNN-
based networks. It can clearly be seen that these transformer-
based models achieve significantly higher results. However, we
showed that integration of dependency features increases the
performance. Utilizing similar transformer-based approaches
with dependency usage might surpass these models.

V. CONCLUSION

In our experiments, we analyzed the effects of the addi-
tional mechanisms used in abstractive summarization models.
We have found that the pointer/generator mechanism solves
the problem of generating OOV tokens. It also brings ex-
tractiveness to the models and balances between these two
summarization approaches. We also observed the effect of
the coverage mechanism. We have found that using it after
the parameters of the models converge in training helps the
models avoid any repeated words or phrases, and it is very
useful for summarizing long input texts. We further included
word dependency relations and found that the knowledge of
dependency structure makes natural language understanding
more efficient and natural language generation better. Further-
more, we also analyzed the use of three subword models.
They naturally handle the out-of-vocabulary word issues in
summarization tasks. With the additional mechanisms, the
performances of the models get even better.

For future work, we think that other training approaches
can be adapted for the models that we used. For exam-
ple, policy gradient techniques in reinforcement learning to
directly maximize the ROUGE scores are used, and they
produce worthy results [5]. Recently, transformers are used
very frequently, and they achieve state-of-the-art results in
many NLP problems, including abstractive summarization.
Even though we could not achieve the scores of recent studies,
using their models as a baseline and integrate our additions
into them might produce better scores. Many popular models
use subwords internally. However, finding a suitable way to
incorporate word dependency features into these models might
provide better results.

REFERENCES

[1] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for
abstractive sentence summarization,” in Proceedings of the Conference
on Empirical Methods in Natural Language Processing, EMNLP. ACL,
2015, pp. 379–389.

[2] R. Nallapati, B. Zhou, C. N. dos Santos, Ç. Gülçehre, and B. Xiang,
“Abstractive text summarization using sequence-to-sequence rnns and
beyond,” in Proceedings of the 20th SIGNLL Conference on Computa-
tional Natural Language Learning, CoNLL. ACL, 2016, pp. 280–290.

[3] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in 3rd International Conference
on Learning Representations, ICLR, 2015.

[4] S. Chopra, M. Auli, and A. M. Rush, “Abstractive sentence summa-
rization with attentive recurrent neural networks,” in The Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL HLT. ACL, 2016,
pp. 93–98.

[5] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for
abstractive summarization,” Computing Research Repository (CoRR),
vol. abs/1705.04304, 2017.

[6] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization
with pointer-generator networks,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics. ACL, 2017,
pp. 1073–1083.

[7] K. Song, L. Zhao, and F. Liu, “Structure-infused copy mechanisms for
abstractive summarization,” in Proceedings of the 27th International
Conference on Computational Linguistics, COLING. ACL, 2018, pp.
1717–1729.

[8] A. Çelikyılmaz, A. Bosselut, X. He, and Y. Choi, “Deep communicating
agents for abstractive summarization,” in Proceedings of the Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT. ACL, 2018,
pp. 1662–1675.

[9] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics. ACL, 2016.

[10] M. Schuster and K. Nakajima, “Japanese and korean voice search,” in
International Conference on Acoustics, Speech and Signal Processing,
ICASSP. IEEE, 2012.

[11] T. Kudo, “Subword regularization: Improving neural network translation
models with multiple subword candidates,” in Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics. ACL,
2018, pp. 66–75.

[12] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out. ACL, 2004, pp. 74–81.

[13] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou,
and H. Hon, “Unified language model pre-training for natural language
understanding and generation,” in Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information
Processing Systems, NeurIPS, 2019, pp. 13 042–13 054.

[14] W. Qi, Y. Yan, Y. Gong, D. Liu, N. Duan, J. Chen, R. Zhang,
and M. Zhou, “Prophetnet: Predicting future n-gram for sequence-to-
sequence pre-training,” in Proceedings of the Conference on Empirical
Methods in Natural Language Processing: Findings, EMNLP. ACL,
2020, pp. 2401–2410.

