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Abstract

In this paper, we study the problem of structural analysis of Web documents aiming at

extracting the sectional hierarchy of a document. In general, a document can be represented

as a hierarchy of sections and subsections with corresponding headings and subheadings. We

developed two machine learning models: heading extraction model and hierarchy extraction

model. Heading extraction was formulated as a classification problem whereas a tree-based

learning approach was employed in hierarchy extraction. For this purpose, we developed

an incremental learning algorithm based on support vector machines and perceptrons. The

models were evaluated in detail with respect to the performance of the heading and hierarchy

extraction tasks. For comparison, a baseline rule-based approach was used that relies on

heuristics and HTML document object model tree processing. The machine learning approach,

which is a fully automatic approach, outperformed the rule-based approach. We also analyzed

the effect of document structuring on automatic summarization in the context of Web search.

The results of the task-based evaluation on TREC queries showed that structured summaries

are superior to unstructured summaries both in terms of accuracy and user ratings, and

enable the users to determine the relevancy of search results more accurately than search

engine snippets.

1 Introduction

Information retrieval research generally focuses on documents in electronic form

which are prepared for access and browsing by humans, as in the case of Web

information retrieval. Documents on the Web are usually prepared in hypertext

markup language (HTML) format and automatic analysis of them is not considered

during the preparation process. However, with the drastic increase of the number

of documents available on the Web, automatic document analysis has begun to be

important in various application areas, including search engines and summarization.

The structural and layout analysis of Web documents is a challenging task for

mainly two reasons. The first one is the practice employed by Web designers while
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authoring a Web page. During this process, the designers concentrate on properties

related to the visual appearance of documents (Klink, Dengel and Kieninger 2000).

Although a set of tags is provided by the markup language to enforce a structural

layout, the users often prefer to use some stylistic features (e.g. formatting features)

to obtain the desired effect. The intuition behind this decision is the ease of using

such properties and the flexibility attained compared to adhering to a restricted set

of tags. The HTML format is not intended for a semantic representation of the data

and hence the tags do not always correspond to a meaningful division of the content.

The second reason is the complex organization of content in Web documents. Web

documents are heterogeneous documents containing different types of entities such

as text, images, interactive forms, menus, advertisements, and tables. The designers

can freely organize the content and use all these entities in a complicated manner.

This causes Web documents to have a very complex layout. In order to understand

the contents of a document, human readers use several cues such as the context,

conventions and information about the language, along with a reasoning mechanism

(Chaudhuri 2006). However, automating this process and revealing the structure of

Web documents pose several difficulties for computer applications.

In the literature, there has been extensive research on general document analysis

and recently the analysis of Web documents has gained considerable attention. As

will be detailed in Section 2, most of these studies focus on flat or hierarchical

segmentation of documents and headings in the documents are not utilized during

this process. The problem of sectional hierarchy extraction based on the information

provided by the headings in Web documents was investigated in a few studies using

a rule-based approach (i.e. an approach based on a set of manually constructed

rules). In general, a rule-based approach is less adaptive and less robust when

compared with a machine learning approach (Desmarais, Gagnon and Zouaq 2012).

The number of features used to model the contents of Web pages is large and it is

not easy to build a rule set that covers all the usage patterns. Also, the existence of

tagging errors made during the design of a page prevents such cases to be handled

by built-in rules (Li et al. 2013). A machine learning approach can be more flexible

in the sense that a classifier can combine different features to make a decision rather

than using a predefined set of rules to filter the headings. In addition, the rules may

require a significant amount of manual effort to generate and they do not scale

easily in terms of their coverage and between domains (Irmak and Kraft 2010).

Based on these observations, in this paper, we propose methods for the structural

analysis of Web documents using machine learning techniques. The target of the

system is general Web documents without any domain restriction. Web documents

are diverse in structure, having sections and subsections with different formatting

and topics. In this study, we develop two main machine learning models: heading

extraction model and hierarchy extraction model. The heading extraction model

investigates the classification of text units in a document as heading or not. The aim

of the hierarchy extraction model is to build the document sectional hierarchy (i.e.

a tree) based on the identified headings and subheadings. Here, a structure-based

learning (i.e. tree-based learning) approach is needed rather than the simpler case

of classification. The classification or clustering task aims at determining the correct
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class of a given instance with respect to a learned model or a measure reflecting

particular relationships (e.g. similarity) between instances. In the case of document

structural analysis, on the other hand, we do not possess a predefined set of classes

and we form the structure of a given instance (document) based on a schema such

as a model, heuristics or grammar rules (Mao, Rosenfeld and Kanungo 2003). In

this respect, the process of document analysis necessitates the use of an information

extraction approach that takes the relationships and constraints between different

types of elements in a document into account.

The main difficulty in developing a tree-based learning approach is the exponential

search space that occurs during the process due to the nature of the problem (Hastie,

Tibshirani and Friedman 2009; Mandhani and Meila 2009). The branching factor

and the number of levels in a tree representing a possible solution of the problem

are large. This is the case for the problems related to natural language processing,

such as syntactic parsing, segmentation, discourse analysis, or document processing.

The common characteristic of these problems is the existence of a large number of

entities to deal with and several alternative interpretations for each entity, causing the

number of combinations to increase rapidly. This property prevents one to consider

all possible solutions in order to retrieve the best one. To alleviate this problem,

in this paper, we adopt an incremental learning approach where the subtrees are

generated in consecutive steps using support vector machines (SVM) and perceptron

algorithms. The basic idea underlying the approach is making a sequence of locally

optimal choices in order to approximate a globally optimal solution. To the best of

our knowledge, this is a novel approach in the structural analysis of Web documents.

The system built was evaluated using two alternative strategies. First, the document

structure analysis methods were evaluated with respect to the accuracy of the heading

extraction and hierarchy extraction models. Second, a task-based evaluation was

performed in Web search context where the task is structure-based and query-biased

summarization. In this approach, we analyzed the effect of structural information in

automatic summarization using English document collections and queries.

The rest of the paper is organized as follows: Section 2 gives a summary of related

work. The outline of the system architecture is shown in Section 3. Section 4 discusses

in detail the structural processing models built in this work. Section 5 explains the

summarization method. The evaluation of the system and the experimental results

are given in Section 6. Section 7 concludes the paper.

2 Related work

Structural analysis of a document is the process of making the logical structure

underlying the document explicit by means of some automated methods. As the

structure within the document is extracted, it can be represented in the form of a

structured document based on a schema. The main motivation behind this process

is facilitating the use of the information contained in the documents since structured

infor1)mation can be interpreted much more easily by computer applications. Based

on this observation, there has been a great deal of studies for extracting the structural

representation underlying documents written as flat texts.
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The analysis of document structure and extraction of structural and semantic

information in the documents is becoming increasingly important especially for Web

documents due to the wide spread use of the World Wide Web. Web documents

are usually encoded in HTML format (HTML 4.01 Specification 1999) and can

contain rich structural information. However, since HTML is concerned with the

presentation of content, it does not always correspond to the semantics of the

data. As a result, Web documents are considered as ‘semi-structured’ documents

(Chaudhuri 2006). The practical applications of document analysis include the

display of content on small-screen devices such as personal digital assistants (PDA),

summarization of content, more intelligent retrieval of information, etc. Most of the

studies that target analysis of HTML documents make use of the document object

model (DOM) tree representation since it provides a global view of the document

structure (Jensen, Madsen and Moller 2011). DOM is a platform- and language-

independent interface and allows programs to dynamically access and update the

content, structure and style of documents. In the DOM paradigm, documents are

represented as a hierarchy of nodes, which is referred to as the DOM tree (Document

Object Model 2012).

One approach used for document structural analysis is considering it as a syntactic

analysis problem (Mao et al. 2003). In this approach, the order and containment

relations between physical components (paragraphs, words, figures, etc.) and logical

components (titles, authors, sections, etc.) of a document are represented in the form

of an ordered tree. This is analogous to the analysis of a sentence which can be

described as a tree with grammatical relationships among its words. In this respect,

some syntactic analysis methods used in natural language processing are adapted to

the document analysis problem.

In one of the studies, the transformation-based learning method that was applied

previously to syntactic parsing is used for the conversion of HTML documents

into extensible markup language (XML) format (Curran and Wong 1999). The

authors use a large number of transformation templates and an evaluation function

that is specific to the error types in XML tagging. Although the structure of the

system and the details of the system components were explained, no evaluation

results were given. In another study, the logical structure of a document is modeled

via a structural representation of patterns formed of entities in the document

(Brugger, Zramdini and Ingold 1997). The document structure is constructed in a

hierarchical way where local tree node patterns are defined similar to n-grams. The

originality of the work stems from using the n-gram concept to model nodes in a

tree in addition to modeling sequential entities. Branavan, Deshpande and Barzilay

(2007) propose a method that automatically generates a table-of-contents structure

for long documents such as books. They first segment a document hierarchically

and then generate an informative title for each segment. A model is learnt using

the incremental parsing approach of Collins and Roark (2004), which is also the

approach we use for extracting hierarchical structures of documents in this work.

In this approach, the parse tree is incrementally constructed by applying simple

corrective updates to the parameters during training and beam search is incorporated

to reduce the size of the exponential search space of possible parses.
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Similar to approaching the problem of document structure analysis as a syntactic

analysis problem, some works aim at modeling the document structure explicitly by

grammar rules and parsing a given document with respect to the grammar built.

In an early study that targets extracting logical structures of documents from their

physical representations, a document given in image form is first converted into

text form (Niyogi and Srihari 1995). The structure of documents is modeled by

a set of context-free grammar rules formed for a specific domain. The documents

are parsed according to the defined grammar and the hierarchical structures are

obtained. In another study, it is argued that different types of document analysis

tasks can be solved using discriminative grammar formalisms (Shilman, Liang and

Viola 2005). In the case of document structure analysis, document layout is modeled

by a grammar based on the assumption that a document is a sequence of pages

where a page is formed of paragraphs, a paragraph is formed of lines, and so on. A

grammar learning algorithm is trained on a set of training examples and the optimal

parse for a given document is obtained using the learned model. The experiments

on a small corpus showed about 85 per cent success rates (f-measure).

The grammar-based approaches used in document layout analysis have the

advantages that the grammar rules are easy to interpret since they reflect the logical

segmentation of documents into entities and there exist plenty of sound mechanisms

for parsing. However, it is quite difficult to build a grammar in advance that can

sufficiently represent the hierarchical relationships between entities in a document,

except in very formal domains such as academic papers. This is especially the case for

Web documents due to their cluttered structures and irregular forms (Gupta et al.

2003). In addition to the actual content, Web documents include several entities

such as advertisements, unrelated images, links scattered around the screen, and

navigation menus, which makes modeling such pages with a grammar difficult. In

grammar-based approaches, this problem is handled by identifying a domain (e.g.

newspaper stories) and then building a grammar specific to that domain.

Some studies in the document analysis field approach the problem from a content

extraction perspective rather than (or, in addition to) structural analysis. In one of

these studies, Rahman, Alam and Hartono (2001) propose a rule-based approach

that extracts the contents of a Web document and produces a summary to be

used in PDA devices. The methodology used in the work follows the stages of

analyzing the structure of a document, decomposing the document into zones,

analyzing and summarizing each zone, and reordering the summary sentences based

on their importance. Gupta, Kaiser and Stolfo (2005) address the problem of domain

dependency that degrades the performance in document analysis studies. They split

the content extraction problem into two stages. First the genre of a Web page is

determined using search engine snippets and then its content is grouped into related

parts using a predefined setting for the identified genre. The major drawback of

this strategy is that it requires deciding on a set of genres in advance and building

a schema for each genre. In another study, the authors worked on eliminating the

non-content in the documents (i.e. cluttered parts around the body of a document

that distract the user from actual content) rather than identifying the important

content directly (Gupta et al. 2003). For this purpose, they use a set of filters and
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the document that remains after the non-content parts are eliminated is given as

the output. Although the cluttered parts in the documents are removed by this

approach, it fails in distinguishing important and unimportant parts in a document

and outputs all the remaining content.

There are some works that limit document analysis to the extraction of import-

ant entities from documents. Xue et al. (2007) use support vector machines and

conditional random fields (CRF) to extract the main title from the content of a

Web document using DOM tree and vision-based features. The authors address

HTML documents and form a specification of a title in these documents based

on formatting features. The method was evaluated on a document retrieval setting

and was compared with a simple baseline method. In their work, Le and Thoma

(2003) considered the problem of assigning predefined labels (title, author names,

affiliation, and abstract) to scientific documents. After the DOM tree representation

of a document is built, the unnecessary nodes in the tree are eliminated, a set of

string patterns are generated, and the document parts are labelled using a pattern

matching algorithm. The patterns are formed using both position-based and content-

based features. As the research is restricted to formal documents and clearly-written

parts in these documents, success rates up to 95 per cent were achieved. A work

that uses CRF for document analysis was given by Pinto et al. (2003). In this work,

the problem is restricted to the extraction of tables in the documents. The authors

identified a rich set of features and compared the performance of the model with

the hidden Markov model (HMM) and the maximum entropy (MaxEnt) approach.

The f-measure results obtained were about 65 per cent, 85 per cent and 93 per cent

for HMM, MaxEnt and CRF, respectively.

These works have a limited scope in the sense that they focus on specific document

entities and develop algorithms specialized for this purpose. They do not target

identifying the relationships between elements in the documents. A work addresses a

more general problem, which is the problem of finding the headings in a document

together with the underlying hierarchy (Pembe and Güngör 2009). The authors use

a rule-based approach based on a number of heuristics and DOM tree processing.

The proposed methodology was evaluated on a search engine setting and it was

shown that the use of structural information in extracts output by search engines

improves the effectiveness of the search.

Some researchers consider the document analysis problem as a semantical analysis

problem and use clustering or machine learning techniques to identify related parts

in documents. Liu, Wang and Wang (2006) aim at segmenting a Web page into a set

of semantically related blocks based on the idea that text portions inside a particular

segment usually share some common contents and presentation styles. They propose

a vision-based page segmentation algorithm that first converts an HTML DOM tree

into a semantic tree and then applies a Naive Bayes classifier using a set of content

and spatial features. In another work, it is assumed that subtrees that have a similar

structure in the DOM tree representation of a document belong to the same group

(cluster) (Mukherjee et al. 2003). This is referred to as a schema, which is defined

as representing the concepts and relationships among the document parts in a

hierarchical fashion. The authors propose a partitioning algorithm to divide a given
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Web page into a set of schemas. Kao, Ho and Chen (2004) split a Web document

into information blocks of different types by means of a form of clustering. The

work basically targets more efficient display on PDAs and proposes that hierarchical

search on such devices is easier than recursive search. The authors use a three step

process based on the information space tree concept and obtain about 80–90 per

cent f-measure scores on different datasets. Yang and Zhang (2001) view the content

of a Web document as formed of objects and employ a classification algorithm

to identify different types of objects. They base the classification on a number of

similarity measures used for objects of the same type. Given a document, the parts

that have similar contents are extracted using a pattern detection algorithm. Based

on the identified objects, document hierarchy is built recursively. The approach

basically focuses on the visual appearance of a Web page by means of the so-called

content objects and does not take into account the actual content within these

objects. Feng, Haffner and Gilbert (2005) use two learning approaches in order to

segment a given Web document into blocks and to identify the semantic categories

of the blocks. They define 12 category types that occur frequently in Web pages and

make use of different types of features such as visual clues and linguistic phrases.

The work aims at obtaining a flat sequence of segments without considering the

hierarchical structure in the document.

One of the practical applications of Web document analysis that has drawn

attention of researchers is the display of content on small-screen devices such

as PDAs. Some of the studies in the literature concentrate on this goal and

develop algorithms tailored for this particular area. In a study, a browsing method,

named as accordion summarization, for displaying the contents of Web pages on

PDAs was proposed (Buyukkokten, Garcia-Molina and Paepcke 2001; Buyukkokten

et al. 2002). Three different summarization techniques are applied, which are page

summarization, keyword-driven summarization and automated view transitions. In

each, some heuristics are used related to the contents of the documents and a

hierarchical summary is formed. Another work that targets similar devices extracts

the hierarchy of a Web page by exploiting the observation that the variety of

information content decreases as we move towards lower parts of the tree (Chen,

Ma and Zhang 2003). A rule-based method is applied by using heuristics for different

types of page elements (header, footer, separators, etc.) and the content is displayed

using a page adaptation mechanism that splits the page to fit on the small screen

of a device. Xiao et al. (2009) attempt to partition the content of a Web page into

a set of subpages, each of which fits on the screen. A tree formed of page blocks is

built by taking into account some factors such as the size and number of blocks and

semantic coherence between blocks. The internal nodes of the tree serve as index

pages that allow access to the actual contents of the Web page.

The works on document analysis can be classified with respect to a number

of criteria such as the aim of the analysis (extracting entities, a flat structure,

or a hierarchical structure), the scope of the analysis (all entities, titles, tables,

etc.), the approach used (rule-based, machine learning, clustering, grammar-based,

etc.), being domain-independent or not, and the targeted environment (computer,

PDA, mobile phone, etc.). The difference of the current work from previous studies
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lies in the methodology used and in expanding the coverage of those studies by

building the structural representation of the whole document content. We attempt

to obtain the hierarchical structures of documents using a two-step process by

first identifying the headings that will aid in determining the structure and then

forming a sectional hierarchy based on these headings and also the non-heading

content. The work addresses the whole document content, is domain-independent,

and employs a learning paradigm. In addition, it builds a summarization framework

that makes use of the results of structural analysis and forms a structural summar-

ization component that is useful in many application areas. In these respects, the

current work can be regarded as proposing a new way for solving the document

analysis problem. As will be shown in Section 6 and discussed in Section 7, the

methods built in this work yield high success rates in document structure analysis

and structural summarization and outperform the approaches used in similar

works.

3 System architecture

The components of the system built in this work are shown in Figure 1. First, the

documents collected from the Web are processed in order to obtain their DOM tree

representations. In this work, we compiled the document collection using a set of

TREC (Text Retrieval Conference 2010) queries by submitting each query to a search

engine and retrieving the results output by the search engine (Section 6.1). The DOM

tree representations were obtained using the Cobra HTML Renderer and Parser

open source toolkit (Cobra: Java HTML Renderer and Parser 2010). Although the

DOM tree of a document can be regarded as a form of hierarchical representation, it

is too complicated and does not reveal the actual content of a Web page. This is due

to the fact that DOM tree only aims at making the relationships between document

entities determined by HTML tags explicit. However, as mentioned previously, these

tags are used to get a desired visual effect and do not reflect the actual layout of

a document. Thus it is necessary to process further the DOM tree to obtain the

structure of the document.

In the methodology used, we accept a text unit as the basic element that is

used by the learning algorithms. A text unit corresponds to a text fragment (e.g.

sentence, paragraph, heading) that is assumed to be coherent in itself. In our

preliminary experiments, we observed that dividing a document into such units

instead of sentences yields more meaningful results. After the DOM tree of a

document is built, the text units within the document are identified (Section 4)

and the values of the features for each text unit are computed. The work makes

use of a rich set of features formed of different types of features to encode both

the properties of individual units and the relationships between consecutive units

(Section 4.3).

The output of the feature extraction component which consists of the text units

in the documents accompanied with feature values is fed into the heading extraction

module (Section 4.1). In the training phase, the heading extraction module learns

a model that discriminates headings and non-headings. In the test phase, given
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Fig. 1. System architecture.

a document, this model is used and a binary classification is performed in order

to identify the headings in the document. This process is followed by hierarchy

extraction in which the hierarchical relationships between the heading units are

determined and the hierarchical structure of the document is built using the heading

and non-heading units (Section 4.2). As will be detailed later, an incremental

approach is employed during hierarchy construction and a number of alternative

variations of the main algorithm are tested in order to determine the best method

(Section 4.4).

The last step in the system architecture is testing the usefulness of the methodology

in a search engine setting. For this purpose, a given user query and hierarchical

representations of documents are first subjected to simple linguistic preprocessing

operations such as stemming, case folding, and stop words elimination. Then the

documents are summarized by taking into account the query terms and structural

summaries are obtained (Section 5). Finally, the performance of the summarization

component is evaluated.
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Fig. 2. Output of structural processing.

4 Structural processing of Web documents

In general, the structure of a document can be considered as a hierarchy where the

document is formed of sections, each section has subsections, and so on, together

with the corresponding headings and subheadings. The format of the documents

used as input in the system built in this work is HTML, because it is still the most

frequently used format on the Web. The output of structural processing is a tree

representing the sectional hierarchy of a document where headings and subheadings

are at the intermediate nodes and other text units are at the leaves. An example

hierarchical structure is shown in Figure 2. The root contains a dummy unit covering

the whole document. As can be seen, headings at different levels form a hierarchy

together with the sentences under the headings.

In the current system, a Web document is modeled as a sequence of text units

based on their orders in the HTML source of the document. When we process the

HTML code of a document in a top-down manner, we obtain a unique ordering

of different types of elements (text, images, side bars, etc.) in the document. The

analyses in later steps are based on this ordering of page contents. The modeling

approach used here is analogous to sentence parsing where each sentence is modeled

as a sequence of words. We define a text unit ui in the document as a text fragment

delimited by a newline character (i.e. paragraph delimiter) as illustrated by rectangles

in Figure 3. Two machine learning models were developed: heading extraction model

and hierarchy extraction model. The models are detailed in the following subsections

together with the features used, learning and testing approaches, and implementation.

4.1 Heading extraction model

Although there exist a number of heading tags in the HTML format to identify the

headings in a page, they are either rarely used by web page designers due to the

restrictions they impose or sometimes used to obtain visual effects on plain texts.
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Fig. 3. (Colour online) Part of an example HTML document with units identified.

Hence, rather than relying on these tags, we attempt to identify the headings in

Web documents by making use of the features of text units. In this respect, all text

units in a document are treated uniformly regardless of being marked as heading

or not in the underlying HTML source. The heading tags are included as separate

features in the feature set. This increases the chance of a text unit marked as a

heading in the HTML format as being identified as a heading by the algorithm,

provided that the heading tags were used properly while authoring the Web page.

In the heading extraction model, the Web document is considered as a flat

sequence of text units and binary classification is performed. The training examples

include (ui, yi) pairs for i = 1,. . .,n, where ui corresponds to a text unit and yi to its

label, and n is the number of units in the document. The label denotes whether the

text unit is a heading or not. A text unit ui is represented as a sequence of features

xij , j = 1,. . .,k, where k corresponds to the number of features used by the model.

Here, the task is to learn the classification model distinguishing positive instances

(headings) from negative instances (non-headings).

4.2 Hierarchy extraction model

In hierarchy extraction, the problem of learning a mapping from a set of documents

X to a set of possible sectional hierarchies Y is considered. This is analogous to

syntactic parsing in which X corresponds to a set of sentences and Y to a set of

possible parse trees (Collins and Roark 2004). We formulate the problem as follows:

• Training examples (xi, yi) ∈ X × Y for i = 1,. . .,t, where t is the size of the

training set

• A function GEN(x) which enumerates a set of possible outputs for an input x

• A representation Φ(xi, yi) mapping each (xi, yi) to a feature vector

• A parameter vector α
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The training set includes (xi, yi) pairs where xi is a Web document and yi is the

gold standard tree corresponding to the document sectional hierarchy. The learning

task is to estimate the parameter vector α using the training examples as evidence.

As the parameter vector is obtained, Eqn. (1) is used to choose the most likely

hierarchical structure (ymax) for a given test document x. That is, at each step of

the incremental learning process (Section 4.4), a number of alternative partial trees

are evaluated with respect to the parameter vector and the feature set, and the one

which maximizes Eqn. (1) is identified as the correct hierarchy.

ymax = arg max
y∈GEN(x)

Φ(x, y) · α (1)

In general, the main difficulty in developing a tree-based (document trees in

document processing, parse trees in syntactic parsing, etc.) learning approach is

the exponential search space encountered during the process. That is, the set of

candidate outputs for an input x, enumerated by GEN(x), can grow exponentially

with the size of x, making the brute force enumeration of the set members intractable.

One solution to this problem is to use a heuristic method, such as beam search,

to reduce the search space. This approach has previously been successfully applied

to other tasks in the literature, including syntactic parsing and generating table-of-

contents for general documents (Collins and Roark 2004; Branavan et al. 2007). In

this method, the output tree is incrementally built by making a sequence of locally

optimal choices in order to approximate a globally optimal solution, which is also

the approach we take.

4.3 Features

We define different types of features corresponding to different levels in a document.

The first type consists of a set of features related to the properties of the smallest

item (i.e. text unit) in a document. This is followed by features based on the context

of a unit that indicate the relationships between neighboring units. Finally, global

features are defined considering the document as a whole.

4.3.1 Unit features

A text unit is considered as the smallest item in the system and is associated with

a set of features. Text units can be automatically detected using certain tags that

specify paragraphs in the HTML format, such as <br> and <p>. A text unit may

correspond either to a single node in the HTML DOM tree or to more than one

node if different parts of the unit are enclosed within different HTML tags. For

instance, a paragraph (text unit) may contain one or more parts written in bold

(enclosed inside <b> tags). In this case, the paragraph will be divided into parts as

the boldness changes and will be represented as a sequence of nodes in the DOM

tree.

In most of the Web documents, cascading style sheets (CSS) rules are used to

define the presentation of document contents. We use Cobra HTML Renderer and

Parser which supports parsing of the DOM tree and the CSS information. During
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Table 1. Formatting features for a text unit

Feature Description Data type

h1 <h1>, level-1 heading Boolean

h2 <h2>, level-2 heading Boolean

h3 <h3>, level-3 heading Boolean

h4 <h4>, level-4 heading Boolean

h5 <h5>, level-5 heading Boolean

h6 <h6>, level-6 heading Boolean

B <b>, bold Boolean

strong <strong>, strong emphasis Boolean

em <em>, emphasis Boolean

A <a>, hyperlink Boolean

U <u>, underlined Boolean

I <i>, italic Boolean

f size <font size = . . .>, font size Integer

f color <font color = . . .>, font color String

f face <font face = . . .>, font face String

b color Background color of the text unit String

li <li>, different levels in a list Integer

lettercase Letter case used in the text unit Integer

parsing, the parts of a text unit divided into several nodes in the DOM tree are

combined to form a single unit. After the parsing process, text units in the document

are associated with features. The unit features include formatting features, DOM

tree features, content features, and other types of features.

Formatting features are based on HTML tags and attributes used for formatting

the text units, such as font size, boldness, color, etc. (Table 1). The formatting

information is obtained after CSS information is incorporated.

DOM tree features are related to the DOM tree parse of the document. Although

the DOM tree is concerned with the presentation of the contents, it can also

contain valuable information about the structural organization of the document. In

HTML documents, the organization is achieved by using nested tables (<table>)

and divisions (<div>). The DOM path and the DOM address (Feng et al. 2005)

of a unit are used as features in this work. The DOM path of a unit refers to the

sequence of node labels from the root node (<html>) to the node that is the parent

of the leaf node that corresponds to the unit (e.g. ‘html.body.div.table.tr.td.b’). The

DOM address of a unit is similar in the sense that it also represents the path from

the root to the unit leaf, but the node labels are replaced with numbers. The children

of each node in the tree are numbered consecutively starting from zero. Then the

DOM address is formed as a sequence of the numbers on the path (e.g. ‘0.1.0.2.1.3.0’).

Another feature used is the position of a text unit within the innermost table or

division according to the DOM tree. This information is especially useful in heading

extraction because headings are often found at the first position within a table or

division.
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Content features are related to the textual content of a unit, such as features that

specify whether a unit contains certain cue words or phrases (‘back to top’, ‘login’,

etc.). Other content related features include the number of characters in the text unit

(e.g. 0–50, 51–100, >100), the number of sentences the text unit contains, and the

punctuation mark at the end of the text unit (if any). Such features are especially

important in heading extraction; usually, headings are limited in length, consist of

a single sentence, and contain no punctuation marks at the end.

Several other features are defined for a text unit. Some of these are related to the

visual position of the unit in a rendered Web document (i.e., as it is displayed in a

browser). For this purpose, the x and y coordinates of the text units are computed

using the Cobra HTML Renderer and Parser. Other features include a feature

designating whether a unit is the document root or not and a feature indicating the

use of a horizontal line (<hr> tag in HTML) to separate content.

4.3.2 Contextual features

We define a contextual feature of a unit as a feature that encodes a relationship (in

terms of unit features) between this unit and another unit in its context. For heading

extraction, we limit the context of a unit to the two preceding and the two succeeding

units in the document. Given a unit ui, we use the notation Fij (j = i-2, i-1, i+1,

i+2) to denote the set of features related to ui and uj . For hierarchy extraction,

the document tree built during the incremental learning process (see Section 4.4) is

considered: the context of a unit is the set of all units in the tree that the unit can

attach to. For a unit u, uij denotes the unit i levels above it and j units to its left

in the partial tree constructed so far. For instance, given a unit u, u10 represents its

parent unit, u01 its preceding sibling unit, and u20 its grandparent unit.

Contextual features utilize the difference and distance between two units in the

same context. This can provide useful information in determining the headings

and the sectional hierarchy in a document. Intuitively, a heading unit (i.e. parent

unit) is more emphasized than the underlying text units or subheadings in terms of

formatting. Similarly, text units under the same heading, i.e. sibling units, generally

have similar formatting features.

Contextual features of two units are defined in terms of the formatting, DOM

tree, and visual unit features. For a binary (boolean) or integer formatting feature,

the corresponding contextual feature is the difference of the values of the units’

features. For instance, the contextual value of the h1 feature for two units ui and uj
is ui.h1- uj .h1 (-1, 0 or 1). As another example, if ui has a font size of 12 and uj has

a font size of 14, then the contextual font size feature will be -2.

We define a contextual DOM address feature for two units as the length of the

path common to their DOM addresses starting from the root. The idea is that

semantically related parts in a document show spatial locality in the DOM tree and

have similar DOM addresses. This value is normalized by dividing it to the depth

of the overall DOM tree for that document in order to smooth the depth differences

between documents. We define contextual features related to the visual positions (x

and y coordinates) of two units. The differences of x coordinates and y coordinates
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Fig. 4. Part of an example document tree (units u1-u8). The dashed lines indicate potential

attachments of a unit u9.

are considered as positive, negative, or zero. For instance, if the difference of the y

coordinates between two units ui and uj is positive, this means that ui comes below

uj in the visual display of the Web document; therefore, ui cannot be a heading of

uj . The difference of the x and y coordinates can also be compared to a threshold

value. As an example, if the visual y position difference between two consecutive

units ui and uj is very large, then it is quite unlikely that uj is a heading of ui.

4.3.3 Global features

In addition to the features of a single unit and the contextual features, we also define

global features by considering the document or the document sectional hierarchy as

a whole. One such feature is the depth of the tree built so far during the learning

process. These features are used in the hierarchy extraction stage.

4.4 Incremental learning approach

In document sectional hierarchy extraction, we use an incremental approach in the

machine learning model. Figure 4 (units u1-u8) shows an example partial hierarchy

for a Web document. (The unit u9 and the dashed lines in the figure will be explained

later.) The root node is a dummy node covering the whole document and each of

the other nodes corresponds to a text unit in the document. The unit indices are

arranged according to their order of appearance in the document. The solid lines in

the figure indicate the dependency relations between the node pairs, i.e. the parent-

child relationships (heading-underlying text or heading-subheading). These correspond

to positive examples for the learning process. The negative examples (not shown in

the figure) are the potential dependency relations which are not realized in the gold

standard hierarchy.

The main training algorithm is given in Figure 5. The input to the algorithm

is the training set consisting of Web documents and corresponding gold standard

hierarchies. For each document in the training set, the algorithm works on the units
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Module Train_Hierarchy_Extraction_Model 
Input 
      Training set (xi, yi) 
begin 
1:   for each document xi in the training set 
2:         for each unit uj in xi    
3:                p = parent(uj) 
4:               Set (p, uj) as positive_example 
5:               prev = uj-1 
6:               while (prev != null) 
7:                     if (prev != p) 
8:                           Set (prev, uj) as negative_example 
9:                     end if 
10:                   prev = parent(prev) 
11:             end while 
12:       end for  
13: end for 
14: Build machine learning model 
end 

Fig. 5. Training algorithm for hierarchy extraction.

one by one starting from the first unit, and considers the attachment of a unit to

its parent unit as a positive example and other potential attachments of the unit

as negative examples. In extracting the negative examples, two constraints due to

the document flow are applied. First, a unit cannot be attached to a unit coming

after it in the document. Second, the connections in the tree cannot cross each other

according to the projectivity rule, as in dependency parsing (Covington 2001):

Projectivity Rule: When searching for the parent of a unit ui, consider only the

previous unit ui−1, the parent of ui−1, the parent of the parent of ui−1, and so on until

the root of the tree.

The projectivity rule states that if a unit ui−k is the parent of ui, then all the

units between ui−k and ui must also be descendants of ui−k in the hierarchy. The

projectivity rule is implemented in lines 5–11 in Figure 5. For instance, in the

example hierarchy, the connection u4-u6 violates the projectivity rule and hence does

not count as a negative example.

In the test phase, the hierarchy for a previously unseen document is built

incrementally using beam search. The testing algorithm (Figure 6) operates on

each text unit sequentially based on the order in the document and maintains a set

of partial solutions (PartialTrees). We adapt two operations similar to the previous

work on incremental parsing (Collins and Roark 2004; Branavan et al. 2007): ADV

(advance) and FILTER.

Whenever a unit in the document is processed, its potential attachments to the

existing set of partial trees are considered and the set is updated to include new

partial trees (ADV operation). In Figure 4, potential attachments of a unit (u9)

to an example partial tree are shown with dashed lines. During this process, the

two constraints due to the document flow (order of units and projection principle)

are also applied. To prevent the exponential growth of the set of partial trees, the
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Module Test_Hierarchy_Extraction_Model 
Input 
      Test set (xi, yi) 
      k: beam width 
begin 
1:  for each document xi in the test set 
2:        Preprocess the document 
3:        PartialTrees = {} 
4:        Attach u1 to document_root; Add the tree to PartialTrees 
5:        for each unit uj in xi  (j = 2 to n) 
6:              if unit uj not already attached in preprocessing 
7:                    for each tree T in PartialTrees 
8:                          Remove T from PartialTrees 
9:                          prev = uj-1       
10:                        while prev != null 
11:                              if prev is a heading 
12:                                    Attach uj to prev; Add the tree to PartialTrees (ADV) 
13:                              end if 
14:                              prev = parent(prev) 
15:                        end while 
16:                  end for 
17:                  Run hierarchy extraction model on all alternative attachments 
18:                  Keep only top k highest scored trees in PartialTrees (FILTER) 
19:            end if 
20:      end for 
21: end for 
end 

Fig. 6. Testing algorithm for hierarchy extraction.

FILTER operation is introduced. Using the output of the machine learning model,

only the top k (beam width) highest scored partially generated trees are maintained

at each step.

In this process, we also utilize the output of the heading extraction model. We

apply a preprocessing step to each document that enforces two constraints. First, if

a unit ui is a heading, then the unit ui+1 is automatically attached to ui indicating

that a heading must have at least one text unit (heading or non-heading) as the

underlying content. Second, a unit is allowed to attach only to a heading unit, since

a non-heading unit cannot serve as the parent of a text unit.

We also developed several variants of the main testing algorithm and analyzed

their effects on the accuracy of sectional hierarchy extraction. The main algorithm

uses a greedy approach in the sense that at each step only the partial trees with

maximum scores are considered and the rest are eliminated. The disadvantage of

this approach is that it is possible for a partial tree that gets high scores in most of

the steps can be eliminated when it gets a low score in a step. In the modifications

1, 3 and 4 explained below, on the other hand, we include some knowledge from

the previous steps in determining the best partial trees. The first variation takes

into account the probabilities from the root to the current node in the partial trees.

The third and fourth variations consider also the score values of a partial tree (in

terms of ranks) in the previous steps. As another type of modification, the second
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variation analyzes the effect of using the hierarchy of headings in building the overall

hierarchical structure. The details of the modifications are given below:

• Modification 1: Instead of using the score obtained from the machine learning

model directly, it is possible to convert it into a probability value using a

sigmoid function as shown below (Platt 1999; Mayfield et al. 2003):

f(x) = 1/(1 + exp(Ax + B)) (2)

In Eqn. (2), the function parameters A and B can be estimated using an iterative

method (Platt 1999). Alternatively, fixed parameters can be used (Mayfield et al.

2003), which is also the approach we take here with A = −2 and B = 0. We

calculate the probability of building a partial tree formed of n units by using the

multiplication rule of probabilities as shown in Eqn. (3):

n∏

i=1

P (parent (ui) = uj) (3)

where parent(ui) denotes the parent unit of ui. We make the simplifying assumption

that the attachments in the hierarchy are mutually independent of each other.

• Modification 2: The testing algorithm is run in two levels. In the first level, the

algorithm is applied to heading units only, i.e. heading units are connected in

order to obtain the overall heading hierarchy. Note that taking into account

only the heading units in this step does not cause any change to the algorithm

in Figure 6. The tree obtained will be similar to a tree that would be obtained

when all the units are considered, except that the leaf nodes (non-heading

units) will be missing. In the second level, non-heading units are attached to

the correct positions in the hierarchy using the output of the first level. This

is accomplished by executing the same testing algorithm under the constraint

that some of the units (headings) have already been connected (line 6 in

Figure 6).

• Modification 3: Instead of using the score output by the machine learning

model directly, the partial trees are assigned integer ranks starting from ‘1’

which is given to the best scored tree. During the filtering process, the number

of times a partial tree has obtained rank ‘1’ in previous steps is calculated

to obtain its score. The trees with higher scores are favored. In this way,

the success of a partial tree at each step is taken into account, rather than

considering its success at the current step only.

• Modification 4: The partial trees are given integer ranks similar to Modification

3. Then, the ranks at each step are summed to determine the score of a given

partial tree. The trees with smaller scores are favored. The intuition behind

this modification is the same in the sense that previous success rates of the

partial trees are also considered.

4.5 Implementation

The models defined for heading and hierarchy extraction have been implemented as

a standalone application in Java using two different machine learning algorithms:
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support vector machines and perceptron. In the heading extraction phase, document

units are represented in terms of features and a binary classification (heading

or non-heading) is performed. In the hierarchy extraction phase, positive and

negative examples are created, the partial trees are represented with features, and

the incremental learning process is applied.

Support vector machine is a machine learning method commonly used in the

classification domain. In the current system, we utilized the SVM-light implement-

ation (Joachims 1999). In addition to the linear kernel, we also experimented with

nonlinear kernel functions including polynomial and radial basis function (RBF)

kernels (Joachims 2002; Alpaydın 2004). Perceptron is a type of artificial neural

network that performs classification by mapping an input x to an output y based

on a weighted sum (Alpaydın 2004).

5 Summary extraction

We used a structure-based and query-biased summarization method which was

shown to be effective in Web search tasks (Pembe and Güngör 2009). It is an

extractive method consisting of two levels of scoring: sentence scoring and section

scoring. In the first level, following a preprocessing stage (stemming, stop words

elimination, etc.), sentences in a document are scored using statistical summarization

methods by taking into account the output of the structural processing step. The

methods used in this work are heading, location, term frequency, and query methods.

The score of a sentence is calculated as the weighted sum of the normalized scores

obtained in each method.

• Heading method: Headings in a document include terms that give a general idea

about the document contents and can be used for automatic summarization

(Mani 2001; Yang and Wang 2008). Following this observation, using the

output of the heading identification process, we give a heading score to

sentences containing heading words based on the number of such words they

contain. We consider all the headings in a similar manner without taking into

account their levels in the hierarchy. We leave the process of differentiating

between headings at different levels and using this information in the heading

score as a future work.

• Location method: Sentences located at certain positions in a document may

convey important information (Mani 2001). Based on the output of the

hierarchy extraction step, we give a positive score to sentences located at

the beginning of a section or subsection.

• Term frequency method: Sentences that include terms that occur frequently in

a document may be assumed to focus on the actual content of the document

(Mani 2001). There are several variations of the term frequency method in the

summarization literature (Baeza-Yates and Ribeiro-Neto 1999; White, Jose

and Ruthven 2003; Pembe and Güngör 2009). In this work, we adapt a simple

form and give a term frequency score to sentences based on the frequencies of

the words they contain.
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• Query method: In the information retrieval context, using query-biased sum-

maries is more effective than using generic summaries as produced by the

systems in other domains (Tombros and Sanderson 1998; White et al. 2003).

For instance, a search engine should extract the fragments in a document

that the user is interested in, rather than giving an overview of the document

even if it reflects the content better. Based on this observation, in the current

system, we give a query score to sentences containing query words based on

the number of query terms they contain.

The second level of the process deals with the scoring of the sections and

subsections that were identified during structural processing. The score of a section

is calculated by summing the scores of the sentences it contains. Sections are

represented with different number of sentences in the summary proportional to their

scores. In a previous study, it has been shown that summaries longer than those of

the traditional search engines improve the search experience of Web users (White

et al. 2003). Such summaries were shown to be more effective than the summaries

of Google and AltaVista on a task-based evaluation. Based on this idea, we define

a quota for the summary of a document (e.g. 25 sentences) and this quota is shared

hierarchically among the sections according to their scores. In the output summaries,

the hierarchical structure of the document is also preserved and displayed explicitly.

The structure-based summarization approach that we employ allows us to in-

corporate structural information about Web pages into the summarization process

in two ways. The first one is using a modified form of the heading and location

methods in determining the saliency of sentences by taking into account the extracted

headings and hierarchies. The second one is treating each section and subsection

separately, rather than considering the document as a whole, which enables more

important sections to be represented more heavily in the summary. In this respect,

the document structure is provided to have an important role during summarization

and to be represented explicitly in the summary.

6 Experiments and results

6.1 Data collection

To evaluate the system, we need a sufficiently large and representative corpus of

Web documents. Such a corpus can be compiled from the queries employed by

users in real search tasks. Studies on users’ behavior related to query formation

in search engines show that users usually prefer boolean queries consisting of only

a few words (Ingwersen and Jarvelin 2005; Markey 2007). We followed the same

strategy of using short queries in this work and compiled a set of TREC queries

(from TREC 2004 Robust Track, topics 301–450) by taking into account the search

interests of users in various domains (see Table 2). To collect the documents used

in the experiments, each query was submitted to the Google search engine and the

top 25 results (HTML documents) for each were taken. In this way, the corpus was

formed of 20 TREC queries and a total of 500 documents. The corpus represents a

diverse and realistic set of documents in terms of both structure and content due to
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Table 2. Queries used for building the corpus

Query ID Query keywords

1 Hubble telescope achievements

2 Best retirement country

3 Literary/journalistic plagiarism

4 Mexican air pollution

5 Antibiotics bacteria disease

6 Abuses of e-mail

7 Declining birth rates

8 Human genetic code

9 Mental illness drugs

10 Literacy rates Africa

11 Robotic technology

12 Creativity

13 Tourism increase

14 Newspapers electronic media

15 Wildlife extinction

16 R&D drug prices

17 Amazon rain forest

18 Osteoporosis

19 Alternative medicine

20 Health and computer terminals

the use of queries corresponding to different search interests and the use of preferred

(top) results retrieved by the search engine. The documents in the corpus also show

variations with respect to the document length and the markup tags used.

The documents in the corpus contain an average number of 110.7 text units

and 1,340 words. The headings in the documents were manually annotated using a

specification guide (Figure 7) formed by the authors that shows the general guidelines

for identification of headings. During the annotation process, we observed that the

annotators can decide on whether a text unit is a heading or not more easily for

units marked explicitly as headings using the heading tags. Document sectional

hierarchies were also manually marked based on the identified headings and the

document organization. We used two annotators for the tagging of the corpus.

The documents were divided into two groups randomly and each document was

tagged by one annotator. In order to observe the agreement between the annotators,

we performed an additional test using a subset of the corpus (100 documents).

Each document was marked by the two annotators. The agreement between the

annotators was measured as 70 per cent. The annotation process resulted that a

document contains 10.6 headings and has a hierarchy depth of 4.1 on the average.

6.2 Structural processing experiments

Following the proposed two-level approach, the structural processing phase was

evaluated in two steps: heading extraction and hierarchy extraction. The outputs of
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1. Number 
- In addition to the main document title (enclosed in <title> tags), an 

HTML document may have zero or more section headings. 
2. Form 

- A section heading consists of one line and is separated from the 
surrounding text with one or more line breaks. 

- Section headings are more emphasized than the surrounding text in 
terms of formatting (e.g. font family, font weight, font color, font 
style, alignment, and background color). 

3. Content 
- Section headings can not be too long. 
- Section headings mostly do not end with punctuation marks. 

Sometimes they end with a punctuation mark such as ”:”. 
4. Other 

- Text contents in images are not considered.  

Fig. 7. Specification guide used for manual heading annotation.

the methods were compared with the gold standard headings and document hier-

archies determined manually for each document. The machine learning experiments

were performed using five-fold cross-validation.

We used the rule-based approach developed by Pembe and Güngör (2009) as a

baseline. Using the heading tags in HTML or the DOM tree structure does not

give rise to a proper comparison and cannot serve as a baseline, since they result

in low success rates. As mentioned before, the heading tags in the HTML source of

a document may not correspond to the headings in the document. The DOM tree

structure, although it gives information about the layout in a document, does not

represent the actual hierarchy (headings and sections) of the document. The DOM

tree presents a complex view of the document and includes many irrelevant nodes.

In addition, only the leaf nodes contain textual data in the DOM tree, whereas all

the nodes in the trees built in the current system are formed of textual content.

In order to evaluate the accuracy of heading extraction, we adapted the recall,

precision, and f-measure metrics that are widely used in information retrieval

(Baeza-Yates and Ribeiro-Neto 1999). For each document, four different values

are computed: TP (true positive – the number of heading units identified correctly),

FP (false positive – the number of non-heading units identified as heading), FN

(false negative – the number of heading units identified as non-heading), and TN

(true negative – the number of non-heading units identified correctly). Based on

these values, we calculated the recall (R), precision (P), and f-measure (F) results for

the heading extraction experiment as shown in Eqn. (4):

R ≡ TP

TP + FN
P ≡ TP

TP + FP
F ≡ 2 × P × R

P + R
(4)

The accuracy of hierarchy extraction is determined by exploiting the structure in

the output trees. We focus on the parent-child relationships in the trees since they

correspond to the heading-subheading and heading-underlying text relationships. We

define the accuracy for a document as the ratio of the number of correctly identified

parent-child relationships (as compared with the gold standard) to the total number
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Table 3. Feature sets used in heading extraction

Feature set Features Number of features

Φ1 Fi, Fi(i+1) 58

Φ2 Fi, Fi(i+1), Fi(i−1) 86

Φ3 Fi, Fi(i+1), Fi(i+2) 82

Φ4 Fi, Fi(i+1), Fi(i+2), Fi(i−1) 110

Φ5 Fi, Fi(i+1), Fi(i+2), Fi(i−1), Fi(i−2) 134

of parent-child relationships. Formally, given a manually identified hierarchy and an

automatically extracted hierarchy for a document i, if there exists an edge between

a node pair (p,c) in both of the hierarchies, we say e(p,c) = 1; otherwise, e(p,c) =

0. Given the set of manually identified parent-child node pairs PCi for document

i, the hierarchy accuracy is computed as shown in Eqn. (5). Note that we do not

use the precision and recall metrics in addition to the accuracy metric in hierarchy

evaluation, since precision and recall yield the same results as accuracy in this

problem.

Accuracyi ≡
∑

(p,c)∈PCi
e(p, c)

|PCi|
(5)

6.2.1 Heading extraction

We used the classification model explained in Section 4 to classify the text units as

heading or non-heading. Intuitively the idea is that heading and non-heading units

can be determined by considering their features relative to the units in their context.

For instance, a heading unit is usually more emphasized than the immediately

following unit. We defined five feature sets using different combinations of features

as shown in Table 3. Fi denotes the features of the current unit; Fi(i+1) and Fi(i+2)

denote the contextual features related to the current unit and, respectively, the

succeeding unit and the unit following the succeeding unit; and Fi(i−1) and Fi(i−2)

denote the contextual features related to the current unit and, respectively, the

preceding unit and the unit before the preceding unit.

We evaluated the performance of heading extraction using SVM and perceptron

with different feature sets. In the heading extraction task, the number of negative

examples (non-heading text units) is much larger than the number of positive

examples (heading units), resulting in relatively low recall rates. In the literature,

there exist several approaches for dealing with such unbalanced distributions, in-

cluding oversampling or undersampling the classes (by random resampling, directed

resampling, or adding new samples), adjusting the costs of the classes, recognition-

based learning, or using modified forms of learning algorithms (Chawla 2005; Weiss,

McCarthy and Zabar 2007; Ganganwar 2012). In this work, we adopted the method

of using different costs for the positive and negative classes. In the case of SVM,

we experimented with different cost factors to adjust the cost of training errors on

positive examples (false positives) versus the cost of errors on negative examples
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Table 4. Performance results for heading extraction

Method Feature set Recall Precision F-measure

SVM – Linear Φ1 0.85 0.78 0.81

Φ2 0.83 0.78 0.80

Φ3 0.81 0.77 0.79

Φ4 0.83 0.78 0.80

Φ5 0.83 0.78 0.80

SVM – Polynomial Φ1 0.87 0.80 0.83

Φ2 0.85 0.80 0.82

Φ3 0.87 0.82 0.84

Φ4 0.85 0.80 0.82

Φ5 0.87 0.84 0.85

SVM – RBF Φ1 0.84 0.76 0.80

Φ2 0.84 0.79 0.81

Φ3 0.87 0.81 0.84

Φ4 0.88 0.83 0.85

Φ5 0.87 0.83 0.85

Perceptron Φ1 0.71 0.77 0.74

Φ2 0.70 0.78 0.74

Φ3 0.71 0.84 0.77

Φ4 0.78 0.82 0.80

Φ5 0.77 0.81 0.79

Rule-based approach – 0.72 0.64 0.68

SVM – Polynomial Fi 0.77 0.74 0.70

Fi(i+1) 0.78 0.73 0.76

Fi(i+2) 0.70 0.72 0.67

Fi(i−1) 0.76 0.70 0.69

Fi(i−2) 0.65 0.68 0.62

(false negatives). In the experiments presented in this section, a cost factor of two

was used as it yields the best performances. We also experimented with different

kernel types, which are the linear, polynomial and RBF kernels. In polynomial

kernel, we used d = 2 as the degree of the polynomial which yielded more accurate

results in the tests.

Table 4 shows the recall, precision and f-measure results for heading extraction.

The best results in each method with respect to the f-measure are displayed in bold.

The best results were obtained using SVM with polynomial and RBF kernels. It

seems that as more features are included the accuracies improve in both of the

learning algorithms. In this respect, Φ4 and Φ5 yield the highest f-measure values.

The effect of using different feature sets is less obvious for linear SVM. However,

especially for SVM with RBF kernel and perceptron, incorporating more contextual

information in the model generally improves the f-measure rates. The results also

show that machine learning approaches provide significant increase in the accuracy

compared to the rule-based approach. The improvements are more clear with the

use of a nonlinear technique (i.e. polynomial or RBF kernel) in SVM. ANOVA
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Table 5. Feature sets used in hierarchy extraction

Feature set Features Number of features

Γ1 F10 17

Γ2 F10, F01 40

Γ3 F10, F01, F20 57

Γ4 F10, F01, F20, F02 73

tests verify that the results are significant with p < 0.05 for recall, p < 0.0001 for

precision, and p < 0.0001 for f-measure.

To understand the effect of different types of features on heading extraction,

we also performed experiments using the unit features and the contextual features

separately. We used SVM with polynomial kernel as it shows successful behavior in

heading extraction. The last part of the table shows the results for the unit features

Fi, and the contextual features Fi(i+1), Fi(i+2), Fi(i−1) and Fi(i−2). We see that when

only the unit features are used or only a limited amount of context is taken into

account, the success rates drop significantly. This indicates that, while deciding on

whether a unit is a heading or not, both features about that unit and features that

encode its relations with its context should be considered. We also notice that the

context following a unit is much more important than the previous context. This

observation is in accordance with the results obtained in other natural language

processing tasks (Indurkhya and Damerau 2010).

6.2.2 Hierarchy extraction

We evaluated the tree-based learning approach used for the identification of sectional

hierarchies in documents. The initial experiments showed that unit features are not

effective in hierarchy extraction since they encode only absolute values related

to a single unit (e.g. font size of a text unit). Instead, contextual features which

show the relationships between pairs of units (e.g. font size difference between

two units) should be used. This observation is in parallel with the nature of the

hierarchy extraction task that aims to determine the correct parent-child unit pairs

in the documents. Hence, we employed only the contextual features in the hierarchy

extraction models.

Following the notation given in Section 4.3.2, we name the contextual features

of a unit u as F10 (features related to u and its candidate parent unit), F01 and

F02 (features related to u and its two candidate sibling units that are on the left in

the partial tree), and F20 (features related to u and its candidate grandparent unit).

We defined four feature sets using different combinations of features as shown in

Table 5.

The initial experiments also showed that the use of heading information improves

the accuracy of hierarchy extraction. Thus, the output of the heading extraction

step was also utilized in the hierarchy identification step (line 2 in Figure 6). The
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Table 6. Accuracies of SVM and perceptron in hierarchy extraction

Feature set

Learning algorithm Γ1 Γ2 Γ3 Γ4

SVM – Linear 0.42 0.61 0.61 0.61

SVM – Polynomial 0.57 0.63 0.63 0.65

SVM – RBF 0.58 0.66 0.67 0.67

Perceptron 0.51 0.46 0.46 0.46

headings obtained with the polynomial SVM and the feature set Φ5 (all features)

were used since it was one of the best models in heading extraction.

The accuracies obtained in the hierarchy extraction experiments are given in

Table 6 for different feature combinations and a beam width of 100. The results show

that the SVM-based approach performs significantly better than the perceptron-

based approach for high feature numbers. The nonlinear SVM models (polynomial

and RBF kernels) yield more successful results than the linear kernel. Surprisingly,

the performance of the perceptron algorithm, which is a linear approach, decreases

as more contextual features are included. The best accuracies were obtained when

the contextual differences with only the parent unit were considered. The analysis of

the success rates with respect to the feature sets shows that each algorithm shows a

similar behavior with Γ2, Γ3 and Γ4. This indicates that the information provided by

non-adjacent units (grandparents and distant siblings) does not contribute much in

identifying the correct hierarchical position of a unit. The rule-based approach used

in Pembe and Güngör (2009) resulted in about 61 per cent accuracy for hierarchy

extraction. Considering this as a baseline, we see that the machine learning approach

(nonlinear SVM models with increasing number of contextual features) outperforms

the rule-based approach significantly.

In order to analyze the effect of the beam width on the incremental learning

paradigm, we repeated the experiments with varying beam width factors. Table 7

shows the results for SVM polynomial and RBF kernels for beam widths ranging

from 1 to 100. As can be seen, the beam width does not have a significant effect on

the accuracies. This result indicates that it is sufficient to store only a few partial trees

at each iteration, highly reducing the time and space complexities. The incremental

learning approach allows us to solve the problem in polynomial time, as opposed

to an exponential time approach that considers all possible tree structures that can

be formed from the text units in a document. Similarly, with regard to the space

requirements, we need to store only a number of trees that is dependant on the

beam width during processing, rather than storing all possible partial trees.

We also analyzed the success rates of the models explained in Section 4.4 and

compared with the main model. Table 8 shows the results of the main model (M0)

and its variations (M1 to M4) for the feature set Γ4 and a beam width of 100.

It seems that all the models except M2 where hierarchy extraction is formed of

two consecutive steps show similar behavior. First extracting the hierarchy of the

headings and then placing the non-headings into this hierarchy does not work. The



Tree-based learning of document structure 595

Table 7. Effect of different beam widths in hierarchy extraction

Beam width

Learning algorithm 1 10 20 50 100

SVM – Polynomial 0.64 0.65 0.65 0.65 0.65

SVM – RBF 0.66 0.66 0.66 0.66 0.67

Table 8. Accuracies of alternative methods in hierarchy extraction

Method

Learning algorithm M0 M1 M2 M3 M4

SVM – Polynomial 0.65 0.67 0.59 0.64 0.68

SVM – RBF 0.67 0.67 0.59 0.67 0.66

reason is that at each of these independent steps the algorithm cannot make use of

the information used in the other step. For instance, while determining the correct

hierarchical location of a heading, in addition to the locations of other headings in

the hierarchy, the properties (features) of the non-headings may also be important.

The other variations of the main model have similar performance which indicates

that using scores produced by the machine learning component or converting them

into probabilities or ranks does not have a significant impact on the success rates.

Considering heading identification as a preprocessing step for hierarchy extraction,

we measured the performance loss in hierarchy extraction that results from this

preprocessing step. For this purpose, we compared the results of hierarchy extraction

that is based on automatically identified headings (as discussed above) and manually

identified (gold standard) headings. Table 9 shows the results for the feature set Γ4

and a beam width of 100 for both rule-based and machine learning models. As can

be expected, using gold standard headings causes a significant improvement on the

success rates. Given the heading structure of a document, it is possible to extract the

hierarchical structure with about 80 per cent performance using learning algorithms.

On the other hand, when the headings are also extracted by the algorithm, the

success rate drops significantly. However, it should be noted that the latter case

is a fully automatic and more realistic approach. Given an input document, the

document hierarchy (heading and non-heading hierarchies) is completely extracted.

The methods introduced show that this can be done with nearly 70 per cent success

rates.

6.3 Summarization experiments

We conducted a task-based evaluation of the system where the task is Web

search. The document sectional hierarchies were fed into the summarization module

explained in Section 5. The summaries output by the summarization system were
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Table 9. Manual versus automatic heading identification in hierarchy extraction

Method Heading extraction model Manually extracted headings

Rule-based approach 0.61 0.81

Perceptron 0.51 0.82

SVM 0.68 0.79

evaluated in terms of their usefulness in a search engine. Five types of summaries

were used in the experiments:

• Unstructured1, Unstructured2 – Query-biased summaries without the use of

structural information.

• Structured1, Structured2 – Structure-preserving and query-biased summaries

created by the system.

• Google – Query-biased extracts provided by Google.

In the models Unstructured2, Structured1, and Structured2, the parts in the

documents that cause a cluttered view (navigation menus, links, etc.) were identified

using some heuristics and eliminated. In Unstructured1, such document parts were

kept in the documents. Structured1 is based on the output of the structural processing

step, whereas Structured2 is based on the manually identified document structure.

All the summaries in these models are long summaries with similar sizes (about

25 sentences) to make them comparable with each other. The model referred to as

Google corresponds to the extracts (2–3 lines summaries) displayed by the search

engine Google as a result of a user query. Since the outputs of Google and the

proposed models have different sizes, we cannot make a direct comparison between

the model Google and the other four models. However, we include Google in this

evaluation in order to compare the results obtained in this work with those of a

state-of-the-art search engine.

The structured summaries are displayed in a hierarchical way in accordance with

the sectional hierarchy. The headings and subheadings are shown in bold. The

context of the text fragments selected as part of the summary is provided within this

structure. In this way, the users are expected to judge the relevance of the search

results better. An example summary output of the system (Structured1 model) for

the query Amazon rain forest is given in Figure 8.

The queries used in the evaluation (see Table 2) cover different types of information

needs of users (Ingwersen and Jarvelin 2005): search for a number of items (12

queries), decision search (2 queries), and background search (6 queries). A repeated

measures design was used with four subjects. The summaries were evaluated based

on the relevance judgment paradigm instead of relying on a gold standard (Mani

et al. 2002). As the success criterion, we used the relevance prediction measure

that was shown to yield more reliable results than manual metrics for summary

evaluation (Hobson et al. 2007). Human subjects were asked to determine the

relevance of original documents with respect to the given query (either relevant or

not) using the summaries. That is, a subject’s judgment on a summary is compared
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Fig. 8. (Colour online) An example summary output of the proposed system.

with his or her own judgment on the original document. If the subject marks both

the document and the summary as relevant or irrelevant, the summary is deemed

as a successful summary. In this way, the effect of differences in human subjects is

reduced. The summaries and documents were presented in random order in order

to reduce carry-over effects and an original document was not displayed until all

the summaries of that document were displayed. In addition, we included a user

poll during evaluation to rate the helpfulness of each summary. For this purpose, a

5-point Likert scale was used with 1 as not helpful and 5 as very helpful (Tombros

and Sanderson 1998; White et al. 2003).

For each summarization model, four different metrics were calculated by com-

paring the relevance judgments of the users for the summaries and the original

documents: TP (true positive), FP (false positive), FN (false negative), and TN

(true negative). Using these values, the recall (R), precision (P), and f-measure (F)

results were obtained (Eqn. (4)). In addition, accuracy (A), false negative rate (FNR)

and false positive rate (FPR), which correspond to, respectively, the number of

useful summaries over the number of all summaries, the number of summaries that

correspond to documents relevant to the query but marked as irrelevant over the

number of all relevant summaries, and the number of summaries that correspond

to documents that are not relevant to the query but marked as relevant over the

number of all irrelevant summaries were computed as shown in Eqn. (6):

A ≡ TP + TN

TP + TN + FP + FN
FNR ≡ FN

FN + TP
FPR ≡ FP

FP + TN
(6)

A total of 400 relevance judgments were obtained for each summarization method.

The results are shown in Table 10. We used the most successful hierarchy extraction

model (model M4, SVM with polynomial kernel, feature set Γ4) for Structured1. The
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Table 10. Results of the summarization experiment

System TP FP FN TN A P R F FNR FPR

Unstructured1 179 54 59 108 0.72 0.77 0.75 0.73 0.23 0.32

Unstructured2 176 53 62 109 0.72 0.77 0.73 0.72 0.24 0.30

Structured1 185 50 53 112 0.74 0.78 0.77 0.76 0.20 0.30

Structured2 183 40 55 122 0.75 0.82 0.76 0.77 0.22 0.24

Google 118 36 120 126 0.57 0.72 0.47 0.52 0.50 0.23

Table 11. Average judgment times, summary/document sizes and ratings

System Time (seconds) Size (words) User rating

Unstructured1 17.70 298 2.77

Unstructured2 18.44 306 2.77

Structured1 17.51 277 3.03

Structured2 17.02 274 3.12

Google 10.20 30 2.60

Original Document 23.59 1340 –

results show that structured summaries are superior to unstructured summaries in

terms of accuracy, precision, recall and f-measure. Also, they significantly reduce the

false negative rate (the number of search results missed by the user) and the false

positive rate (the time spent with irrelevant items). When compared to the model

Google, we see that the long outputs of the unstructured and structured models

enable the users to determine the relevancy of search results better than the extracts

produced by Google. The repeated measures ANOVA test verifies that the results

(structured models over unstructured models and unstructured models over Google)

are significant with p < 0.05 for both accuracy and f-measure. Table 11 shows

the average time for deciding the relevancy of a summary/document, the average

size of a summary/document, and the average user ratings. The last row of the table

corresponds to the original document for comparison. The table shows that the

models based on (structured or unstructured) summaries have acceptable judgment

times despite the summary sizes much longer than search engine snippets. Also,

we observe that structured summaries have quite high user ratings compared to

unstructured summaries and search engine extracts.

It is worth noting that we use the model Google in the experiments in order to

compare the approach proposed in this work (long and structured summaries) with

the approach used by traditional search engines. We do not aim at making a direct

comparison between the outputs, which would result in an unfair comparison due

to the difference in the size of the content displayed to the user. The use of a search

engine in the experiments shows us useful information in two dimensions. First,

we observe that a model that displays structured and richer content to the users

increases the relevancy of the results significantly and thus seems to be more helpful

than the current search engine models. Second, we see that the users can judge
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the relevancy of the results in an acceptable time although they are provided with

much more content. In these respects, we conclude that the summaries produced by

the system built in this work direct the users more effectively at a cost of a small

increase in response time.

7 Discussion

In this section, we compare the results obtained in this work with the results of

previous studies and discuss some issues relevant to document structure analysis and

summarization. There are only a few works that address the problem of extracting

the structures of general Web documents in terms of sectional hierarchies. Some of

the studies attempt to identify the important contents in the documents and represent

these in a suitable form like a table-of-contents structure, whereas others conduct a

more detailed analysis to convert a document into a structural representation. Here

we list a number of studies most related to the current work with respect to the

research goal.

Related to the problem of heading extraction, Xue et al. (2007) applied machine

learning techniques to extract the main title in HTML documents. The proposed

method is based on a specification for titles and the DOM tree representation

of Web pages. Similar to the current work, the documents are represented using

formatting features, visual features, and a combination of both types of features. The

experiments on a set of documents from the TREC Web Track yielded about 0.75–

0.80 f-measure results for title extraction. The authors also measured the effectiveness

of the extracted titles in a Web retrieval task. By using the extracted titles together

with the titles and contents of the Web pages, the retrieval performance of the

system was tested on three types of TREC queries. It was shown that the output of

title extraction improves the success rates significantly and precision values up to 65

per cent can be obtained. In the current work, instead of extracting the main title

(i.e. a single heading) in the documents, we focused on a more general and challenging

problem which involves extracting all the headings in a given HTML document.

We have shown that success rates of about 0.85 f-measure can be obtained for the

identification of headings and subheadings by using a learning algorithm based on

a rich feature set.

The work of Branavan et al. (2007) dealt with the problem of building a table-

of-contents structure for long documents. This problem can be approached from

either text summarization or title generation perspective. The work made use of

two types of features in the learning algorithm: local features formed of words

and word sequences to represent each part of a document with a meaningful title

and global features to obtain a coherent structure in the table-of-contents. The

proposed method was compared with four alternative approaches that generate

flat and hierarchical title structures. A detailed performance analysis was not

given; it was shown by manual evaluations that the proposed method significantly

outperforms the alternative methods. The main difference of this work from the

current work is that it aims at representing document segments with titles, whereas
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in the current work we aim at extracting both the titles and the important content

in the documents.

The main aim of structural processing is to obtain the heading-based sectional

hierarchy for an HTML document. As part of developing a summarization frame-

work, Pembe and Güngör (2009) focused on a similar problem and used a rule-based

approach for identifying the hierarchical structures implicit in Web documents. A

set of formatting features that are important in discriminating different parts in a

document was identified and a hierarchy extraction algorithm was developed based

on the formatting differences. The experiments on TREC documents showed about

71 per cent success rates. In the current work, on the other hand, we use a fully

automatic approach where the hierarchy is built incrementally instead of relying on

a predefined set of rules. In the fully automatic setting, we obtained an accuracy

of 68 per cent. We also observed that when a partial structure is provided in the

form of manually identified headings, the accuracy increased to 82 per cent. This

success rate signals that the machine learning-based approach resulted in 11 per cent

improvement over the rule-based approach developed in the mentioned work.

Another study that uses the approach of rule-based processing of the DOM tree to

obtain hierarchical structures of Web documents was proposed by Mukherjee et al.

(2003). This work is based explicitly on the structure of the paths in the DOM tree

in the sense that two nodes that have common tags in their paths from the root node

are deemed as similar. The DOM tree of a given Web page is processed with respect

to this similarity measure and the nodes are clustered accordingly, which results

in a hierarchical organization of the page. The method was applied to documents

in a number of domains (portals, news, and office products) and the hierarchies

built were given, but a detailed performance analysis was not performed. The main

difference between this work and the current work lies, as in some of the other

mentioned studies, in the content of the documents taken into consideration. The

study aims at obtaining a hierarchical structure of the documents without dealing

with the task of representing the actual content within the hierarchy.

The problem of expressing the results of a search engine query in terms of

document summaries was addressed by a few works. White et al. (2003) developed

a system called WebDocSum that produces query-biased summaries for a search

engine. Similar to the summary extraction approach used in the current work, Web-

DocSum made use of a number of heuristics well-known in the text summarization

domain (e.g. document title or query words) to generate the output summaries.

The system was evaluated using a user questionnaire that compares it with other

traditional search engines and it was shown that it outperforms the other engines

with respect to user ratings. Although the system built in this work produces

query-biased summaries, it does not take into account the structural information

in the documents. A work that makes use of structural data in the documents as

well as the information provided by the query was given in Pembe and Güngör

(2009). In this work, a number of summarization metrics that take the hierarchical

structures in Web documents into account were developed. Experiments on TREC

queries showed around 80 per cent success rates. The main difference from the

current work is that the summarization system was based on semi-automatic and
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manual hierarchical structures. In the current work, we developed a fully automatic

summarization system that yields around 76 per cent success rates.

In the rest of this section, we comment on some issues related to the results

obtained by the developed system. Although we obtained a high performance in

heading extraction (0.85 f-measure), the use of the output of this step instead of

gold standard headings causes a 10–15 per cent decrease in accuracy in hierarchy

extraction. To understand the source of this behavior, we conducted an error analysis

on the hierarchy extraction results. We saw that false negatives in heading extraction

result in a loss of structure, whereas false positives result in the creation of structures

that do not actually exist. Another source of error is due to using a beam width

during incremental learning which causes in some cases the correct partial trees to

be eliminated during processing. Other sources of inaccuracies originate from the

cluttered structures of Web documents and from the errors made by Web document

authors, such as ambiguous or wrong usage of tags and styles. Besides such errors,

we can conclude that the method results in an acceptable performance as a fully

automatic approach for sectional hierarchy extraction which can be used by practical

applications.

The application of the proposed methods to the document summarization problem

in the domain of search engines showed that structure-based and query-biased

summaries improve the effectiveness of Web search. Structured summaries allow the

users to determine the relevancy of a search result to a given query 50 per cent more

accurately. Although they are about nine times longer than the extracts produced

by search engines, such summaries result in an increase of only 70 per cent in user

response time. Besides, the ratio of relevant documents missed by the users using

search engine extracts is more than twice the ratio of relevant documents missed

using structured summaries. We see that there is a tradeoff between the response

time and the success rate when longer, more structured summaries are used.

In the case of common-place queries (e.g. the population of Germany), the users can

locate the relevant information just by browsing a few of the top search results. The

time overhead caused by the summarization method is less important in such cases.

In the case of more complex queries and background search, the accuracy becomes

more important. For those types of queries, structured summaries are preferable

since they result in a reduced number of missed items and direct the users to the

relevant documents without wasting time with irrelevant documents. User ratings

verify that structured summaries are more helpful and preferable by users compared

to short extracts. The system built is a practical approach which can be incorporated

into a search engine. The structural processing stage can be executed offline and

only once as new documents are added, whereas the summarization stage has linear

time complexity.

8 Conclusions

In this paper, we investigated the problem of heading-based sectional hierarchy

extraction for domain-independent Web documents. To overcome the exponen-

tial search space problem that occurs naturally in such tasks, we developed an
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incremental learning approach using SVM and perceptron algorithms. The system

is formed of two stages: heading extraction and hierarchy extraction. In the heading

extraction stage, an f-measure of 0.85 was obtained. The output of heading extraction

was used in the hierarchy extraction stage which resulted in 68 per cent accuracy. We

observed that the machine learning approach used in this work as a fully automatic

structure identification model outperformed the rule-based approach.

The output of the structural processing phase was utilized for automatic summar-

ization of documents in the Web search context. The performance of the structure-

based and query-biased summarization method was measured as 76 per cent in

terms of f-measure in a task-based evaluation. We showed that there is a statistically

significant performance gain over unstructured summaries. Also, a comparison with

a state-of-the-art search engine showed that the outputs produced by the system

built in this work direct the users to relevant documents much more accurately.

The proposed structural processing approach can be used in several application

areas in addition to text summarization and search engines, including areas related

to browsing, indexing and classification of documents. Besides the Web domain, it

can be used in information systems that deal with large amounts of documents,

such as medicine, libraries and law. As future work, we plan to work on methods to

identify some document components commonly encountered in Web pages, such as

menus and advertisements. Such information can be used to improve the document

hierarchies and the summaries by eliminating irrelevant information.
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