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Abstract

We propose two word representation mod-
els for agglutinative languages that bet-
ter capture the similarities between words
which have similar tasks in sentences.
Our models highlight the morphological
features in words and embed morpho-
logical information into their dense rep-
resentations. We have tested our mod-
els on an LSTM-based dependency parser
with character-based word embeddings
proposed by Ballesteros et al. (2015). We
participated in the CoNLL 2018 Shared
Task on multilingual parsing from raw text
to universal dependencies as the BOUN
team. We show that our morphology-
based embedding models improve the
parsing performance for most of the agglu-
tinative languages.

1 Introduction

This paper describes our submission to the CoNLL
2018 Shared Task on Universal Dependencies
(UD) parsing (Zeman et al., 2018b). We propose
morphologically enhanced character-based word
embeddings to improve the parsing performance
especially for agglutinative languages. We ap-
ply our approach to a transition-based dependency
parser by Ballesteros et al. (2015) that uses stack
Long Short Term Memory structures (LSTMs) to
predict the parser state. This parser uses character-
level word representation, which has been shown
to perform better for languages with rich morphol-
ogy (Ballesteros et al., 2015; Dozat et al., 2017).
From our experiment results performed on UD
version 2.2 data sets (Zeman et al., 2018a) we ob-
serve that including morphological information to
a character-based word embedding model yields a
better learning of relationships between words and

increases the parsing performance for most of the
agglutinative languages with rich morphology.

The rest of the paper is organized as follows:
Section 2 provides a brief description of the
LSTM-based dependency parser used in this study
and introduces our embedding models. Section 3
gives the implementation details of our system and
describes the training strategies we apply to differ-
ent languages. Section 4 discusses our results on
the shared task as well as the post-evaluation ex-
periments and Section 5 concludes the paper.

2 Parsing Model

We use the LSTM-based parser by Ballesteros
et al. (2015). It is an improved version of a state-
of-the-art transition-based dependency parser pro-
posed by Dyer et al. (2015) and uses stack LSTM
structures with push and pop operations to learn
representations of the parser state. Instead of
lookup-based word representations, bidirectional
LSTM modules are used to create character-based
encodings of words. With this character-based
modelling, the authors obtain improvements on
the dependency parsing of many morphologically
rich languages.

2.1 Character Embeddings of Words

The character-based word embedding model using
bi-LSTMs in (Ballesteros et al., 2015) is depicted
in Figure 1. The authors compute character-based
vector representations of words using bi-LSTMs.
Their embedding system reads each word charac-
ter by character from the beginning to the end and
computes an embedding vector of the character se-
quence, which is denoted as ~w in Figure 1. The
system also reads the word character by character
from the end to the beginning and the produced
embedding is denoted as ←−w . These two embed-
ding vectors and the learned representation of the



POS-tag of the word t are concatenated to produce
the vector representation of the word.

Figure 1: Vector represetntation of the word
travel with the character-based embedding model
in (Ballesteros et al., 2015).

2.2 Morphology-based Character
Embeddings

To improve the parsing performance of the LSTM
parser with character-based word embeddings
mentioned in Section 2.1, we include the mor-
phological information of words to the embed-
ding model. In agglutinative languages like Turk-
ish, a stem usually takes different suffixes and
by this way, different meanings are created using
a single root-word. Words that share the same
suffixes tend to have similar roles in a sentence.
Therefore, representing each word using its cor-
responding lemma and suffixes separately and uti-
lizing the morphological information of words can
improve the parsing performance in agglutinative
languages.

2.2.1 Lemma-Suffix Model
For agglutinative languages where the stem of a
word does not change in different word forms, we
created a model that uses lemma and suffix infor-
mation of words in character-based embeddings.
In this model, each word is separated to its lemma
and suffixes. Then, the embedding system first
reads the lemma of the word character by charac-
ter from the beginning to the end and computes an
embedding vector of the character sequence of the
lemma which is denoted as ~r. Secondly, the sys-
tem reads the lemma character by character from
the end to the beginning and the produced embed-

ding is denoted as ←−r . A similar process is per-
formed for the suffixes of the word and the pro-
duced vectors are denoted as ~s and←−s . These four
embedding vectors and the vector representation
of the POS-tag of the word t are then concate-
nated to produce the vector representation of the
word. Vector representation of an example word
using this model is depicted in Figure 2.

2.2.2 Morphological Features Model
The lemma-suffix model is suitable only for agglu-
tinative languages which make use of suffixes to
create different word forms. For languages that do
not have this type of grammar, we created another
model where the specific morphological features
of each word are embedded to the dense represen-
tations of the words. The reason behind this choice
is that words that share the same dependency label
usually have similar morphological features.

In this model, the embedding of a word is
created character by character as in Section 2.1.
Then, the embedding vector of each of its selected
morphological features are created by reading the
feature value character by character from the be-
ginning to the end. Finally, these embedding vec-
tors and the vector representation of the POS-tag
of the word are concatenated to produce the vector
representation of the word.

The vector representation of an example word
using its morphological features is shown in Fig-
ure 3.

3 Implementation

The systems participating in the CoNLL 2018
Shared Task on UD Parsing are expected to parse
raw text without any gold-standard pre-processing
operations such as tokenization, lemmatization,
and morphological analysis. However, the base-
line pre-processed versions of the raw text by the
UDPipe system (Straka et al., 2016) are available
for the participants who want to focus only on the
dependency parsing task. We used the automat-
ically annotated version of the corpora provided
by UDPipe, since our primary aim is to observe
the effect of our embedding models on the depen-
dency parsing of agglutinative languages.

In the implementation of the lemma-suffix em-
bedding model, we did not utilize any morpholog-
ical analyzer and disambiguator tools to find the
lemmas and the suffixes of the words. Instead, for
each word in the treebank we extracted its corre-
sponding lemma information from the conll-u ver-



Figure 2: Character-based word embedding of a Turkish word gitti (”it went” in English) using lemma-
suffix embedding model.

Figure 3: Character-based word embedding of a German word war (”was” in English) with its morpho-
logical features being Mood = Ind|Number = Sing|Person = 3|Tense = Past|V erbForm =
Fin using morphological features embedding model. The selected features for German are Case, Mood,
Tense, and VerbForm. Since there is no Case feature in the morphological features of war, the Case
feature is represented with an empty string in the word vector of war.

sion of the treebank data and subtracted the lemma
from the word to find the suffix information. We
compared these two approaches on the Turkish-
IMST treebank and observed that finding the suf-
fixes by subtracting the lemmas from the words
gives the same parsing performance as using a
morphological analyzer tool to find the lemma and
suffixes of a word. So, we opted not to use a mor-
phological analyzer and disambiguator for the lan-
guages with the lemma-suffix embedding model
due to the additional costs of these tools.

3.1 Embedding Model Selection for Different
Languages

We applied the lemma-suffix model in 2.2.1 to
Buryat, Hungarian, Kazakh, Turkish, and Uyghur
languages because these languages have aggluti-
native morphology, take suffixes, and the stem of
a word usually does not change in different word
forms. We also applied this model to Danish to

observe the effect in parsing performance of a lan-
guage with little inflectional morphology.

For the languages that do not follow this
scheme, we applied the morphological features
embedding model in 2.2.2. Table 1 shows the mor-
phological features selected for these languages in
the shared task. We selected four morphological
features from the input conll-u files for most of
the languages. For French, Indonesian, and Old
French, we used less than four features because
there are less than four common morphological
features in the conll-u files of these languages.

For Persian, Japanese, Korean, Vietnamese, and
Chinese, we used the baseline embedding model
due to the lack of representative morphological
features in their corresponding conll-u files.

3.1.1 Languages without Training Data

We trained a mixed language parser model with
morphological features embedding model for the



Language Morphological Features
Afrikaans Aspect Case Tense VerbForm
Ancient Greek Aspect Case Tense VerbForm
Arabic Aspect Case Mood VerbForm
Armenian Aspect Case Tense VerbForm
Basque Aspect Case Tense VerbForm
Bulgarian Aspect Case Tense VerbForm
Catalan AdpType Mood Tense VerbForm
Croatian Case Mood Tense VerbForm
Czech Aspect Case Tense VerbForm
Dutch Degree Case Tense VerbForm
English Case Mood Tense VerbForm
Estonian Case Mood Tense VerbForm
French Mood Tense VerbForm
Finnish Case Mood Tense VerbForm
Galician Case Mood Tense VerbForm
German Case Mood Tense VerbForm
Gothic Case Mood Tense VerbForm
Greek Aspect Case Tense VerbForm
Hebrew HebBinyan HebSource Tense VerbForm
Hindi Aspect Case Tense VerbForm
Indonesian PronType Degree
Irish Case Mood Tense VerbForm
Italian PronType Mood Tense VerbForm
Kurmanji Case Mood Tense VerbForm
Latin Case Mood Tense VerbForm
Latvian Aspect Case Tense VerbForm
North Sami Case Mood Tense VerbForm
Norwegian Case Mood Tense VerbForm
Old Church Slavonic Case Mood Tense VerbForm
Old French Tense VerbForm
Polish Aspect Case Tense VerbForm
Portuguese PronType Mood Tense VerbForm
Romanian Case Mood Tense VerbForm
Russian Aspect Case Tense VerbForm
Serbian PronType Mood Tense VerbForm
Slovak Aspect Case Tense VerbForm
Slovenian Aspect Case Tense VerbForm
Spanish Case Mood Tense VerbForm
Swedish Case Mood Tense VerbForm
Ukrainian Aspect Case Tense VerbForm
Upper Sorbian Case Mood Tense VerbForm
Mixed Language Case Mood Tense VerbForm

Table 1: List of morphological features used for the languages with the morphological features embed-
ding model.



languages with no training data. In the shared task,
this model is applied to the Buryat-KEB, Czech-
PUD, English-PUD, Faroese-OFT, Japanese-
Modern, Naija-NSC, Swedish-PUD, and Thai-
PUD treebanks.

We trained parser models for the Upper
Sorbian-UFAL and Galician-TreeGal treebanks
using the morphological features embedding
model and for the Buryat-BDT treebank using the
lemma-suffix embedding model. However, we
used the mixed language parser model for these
treebanks in the shared task due to some software
issues.

3.2 Training Specifications

Our model mostly uses the same hyper-parameter
configuration with the original settings of the
parser in (Ballesteros et al., 2015) with a few ex-
ceptions. We used stochastic gradient descent
trainer with a learning rate of 0.13. We replaced
the original character-based embedding model
with our embedding models. In the lemma-suffix
model, the forward word vector and the backward
word vector of the lemma of a word both have 50
dimensions. The forward and backward word vec-
tors of the suffix of a word also have 50 dimen-
sions each. In the morphological features model,
each of the forward and backward word vectors of
a word have 50 dimensions. Each of the four mor-
phological feature vectors have 25 dimensions. If
a morphological feature is absent in a word, an
embedding vector of an empty string is created for
that feature. So, we increased the dimension of the
character-based representations to 200 in total.

The original parser is not compatible with
UD parsing. We adapted it to be able to
take input and produce output in conll-u for-
mat. The source code of our modified version
of the LSTM-based parser by Ballesteros et al.
(2015) can be found at https://github.
com/CoNLL-UD-2018/BOUN.

A full run over the 82 test sets takes about 3
hours when no pre-trained embeddings are used,
and 20 hours when the CoNLL-17 pre-trained
word embeddings from (Ginter et al., 2017) are
used on the TIRA virtual machine (Potthast et al.,
2014). The largest of the test sets needs 4 GB
memory without pre-trained word vectors. When
the CoNLL-17 pre-trained vectors are used, mem-
ory usage can reach to 32 GB depending on the
pre-trained vector sizes.

4 Results

This section presents the parsing performance of
our parser models on the CoNLL-18 Shared Task
as well as the post-evaluation scores of our mod-
els.

4.1 Shared Task

Table 2 shows our official LAS, MLAS, and
BLEX results in the CoNLL-18 Shared Task.
The models that use the CoNLL-17 pre-trained
word embeddings from (Ginter et al., 2017) are
indicated in pre-trained vectors column. We
also trained parser models using pre-trained
word embeddings for Czech-PDT, German-GSD,
English-EWT, English-GUM, English-LinES,
Spanish-AnCora, Indonesian-GSD, Latvian-
LVTB, Swedish-LinES, Swedish-Talbanken, and
Turkish-IMST. However, we could not run these
models with their corresponding embedding files
inside the TIRA virtual machine due to some
unknown memory and disk issues.

Although the parser we used does not obtain
competitive performance when compared with the
best performing systems in the shared task, it
achieves better performance on the treebanks with
no training data when compared to its performance
on treebanks with training data. We exclude the
parallel UD treebanks from this judgment because
one can get better performance on parallel UD
treebanks by training the parser using the train-
ing data of the treebanks that have the same lan-
guage with the parallel UD treebanks (e.g., the
training data of English-EWT for English-PUD,
Czech-PDT for Czech-PUD etc.). Due to time-
constraints, we did not focus on the parallel UD
treebanks and treated them as unknown languages.

4.2 Post-Evaluation

We performed another set of experiments using
our models on the test data of UD version 2.2 data
sets. The purpose of these experiments is to inves-
tigate the effect of our embedding models on pars-
ing performance. Here we used the gold-standard
conll-u files instead of the automatically annotated
corpora by UDPipe, since our aim in these exper-
iments is to observe the performance difference
between our embedding models and the baseline
embedding model.

In Table 3, we compare our models with the
baseline model proposed in (Ballesteros et al.,

https://github.com/CoNLL-UD-2018/BOUN
https://github.com/CoNLL-UD-2018/BOUN


Pre-
Treebank LAS LAS MLAS BLEX trained

Rank vectors
af-afribooms 23 72.09 58.08 59.42 -
ar-padt 19 66.84 55.68 58.22 ar.vec
bg-btb 21 82.74 72.76 71.14 -
br-keb 10 10.59 0.43 2.21 -
bxr-bdt 19 9.12 1.01 2.46 -
ca-ancora 21 85.03 75.73 76.15 ca.vec
cs-cac 21 83.22 70.50 76.98 cs.vec
cs-fictree 20 82.00 68.75 74.49 cs.vec
cs-pdt 20 83.24 74.04 78.45 -
cs-pud 21 69.60 56.86 63.13 -
cu-proiel 22 60.39 47.99 52.96 cu.vec
da-ddt 21 73.03 63.21 63.69 da.vec
de-gsd 24 56.85 27.51 45.83 -
el-gdt 20 82.11 65.23 68.59 el.vec
en-ewt 22 73.61 64.00 66.11 -
en-gum 22 72.07 60.46 59.93 -
en-lines 22 68.92 59.03 59.74 -
en-pud 23 69.28 56.99 60.04 -
es-ancora 21 83.02 73.95 74.40 -
et-edt 17 75.47 67.74 64.42 et.vec
eu-bdt 19 70.41 57.83 63.36 eu.vec
fa-seraji 19 79.62 73.09 69.84 fa.vec
fi-ftb 20 75.34 65.24 61.69 fi.vec
fi-pud 20 60.07 53.14 48.14 -
fi-tdt 20 75.68 67.56 61.21 fi.vec
fo-oft 19 23.73 0.34 5.81 -
fr-gsd 21 80.07 71.01 72.70 fr.vec
fr-sequoia 21 80.03 70.04 73.03 fr.vec
fr-spoken 25 58.88 45.56 46.02 -
fro-srcmf 22 76.56 68.00 71.17 -
ga-idt 21 55.57 28.92 34.56 -
gl-ctg 18 76.36 62.94 66.00 -
gl-treegal 21 63.43 46.11 48.83 -
got-proiel 21 58.18 44.69 50.63 -
grc-perseus 21 54.57 28.46 35.31 grc.vec
grc-proiel 20 64.77 46.68 52.86 grc.vec
he-htb 21 57.28 43.42 45.94 he.vec
hi-hdtb 21 85.88 67.93 78.21 -
hr-set 22 75.91 56.67 67.43 hr.vec
hsb-ufal 10 29.04 7.18 15.67 -
hu-szeged 22 63.47 50.91 54.57 hu.vec

Pre-
Treebank LAS LAS MLAS BLEX trained

Rank vectors
hy-armtdp 18 21.22 5.66 11.03 -
id-gsd 21 74.01 63.22 62.50 -
it-isdt 23 84.96 75.13 75.21 -
it-postwita 17 67.94 54.15 54.81 it.vec
ja-gsd 21 72.21 58.04 59.78 -
ja-modern 19 18.82 5.02 6.27 -
kk-ktb 21 12.88 2.22 3.95 kk.vec
kmr-mg 21 14.12 2.59 6.65 -
ko-gsd 17 74.99 69.00 62.99 ko.vec
ko-kaist 17 81.45 74.22 68.61 ko.vec
la-ittb 18 76.32 67.78 72.02 la.vec
la-perseus 21 41.94 26.20 28.93 la.vec
la-proiel 21 58.20 45.91 52.11 la.vec
lv-lvtb 20 68.47 54.24 57.43 -
nl-alpino 21 75.94 60.99 63.59 nl.vec
nl-lassysmall 22 74.48 61.40 62.77 nl.vec
no-bokmaal 21 81.47 72.64 73.73 -
no-nynorsk 22 78.48 68.49 69.75 -
no-nynorsklia 21 46.98 35.58 38.54 -
pcm-nsc 19 11.60 3.84 9.60 -
pl-lfg 22 85.11 71.71 75.43 -
pl-sz 22 79.71 61.89 69.76 -
pt-bosque 19 82.62 67.97 72.83 pt.vec
ro-rrt 20 80.18 71.00 71.44 ro.vec
ru-syntagrus 17 84.69 76.43 77.43 ru.vec
ru-taiga 24 45.93 29.00 31.09 -
sk-snk 21 74.37 53.95 59.97 sk.vec
sl-ssj 20 76.78 62.89 68.32 sl.vec
sl-sst 20 44.43 32.07 36.20 sl.vec
sme-giella 20 52.97 42.13 39.10 -
sr-set 23 75.79 62.84 66.68 -
sv-lines 22 72.04 57.75 64.68 -
sv-pud 22 64.55 37.53 48.00 -
sv-talbanken 21 76.93 67.83 68.50 -
th-pud 7 0.70 0.04 0.52 -
tr-imst 22 50.33 40.54 42.00 -
ug-udt 19 55.61 35.98 43.63 ug.vec
uk-iu 20 74.34 56.38 63.46 uk.vec
ur-udtb 21 77.04 50.47 63.40 ur.vec
vi-vtb 20 39.06 25.90 27.61 vi.vec
zh-gsd 22 56.43 46.55 51.20 zh.vec

Table 2: Our official results in the CoNLL-18 Shared Task.



Treebank Embedding LAS MLAS BLEX
model Baseline Our model Baseline Our model Baseline Our model

af-afribooms MF 82.16 82.80 73.17 74.35 75.48 76.37
ar-padt MF 78.80 78.60 73.59 73.33 74.66 74.39
bg-btb MF 86.52 87.41 80.88 82.00 81.33 82.38
ca-ancora MF 87.21 87.03 80.56 80.23 81.07 80.79
cs-cac MF 87.37 87.85 84.12 84.94 84.78 85.49
cs-fictree MF 83.49 86.03 77.80 81.64 78.58 82.34
cs-pdt MF 86.66 88.47 83.39 85.89 83.91 86.38
cu-proiel MF 75.73 75.59 69.85 69.62 72.09 71.97
da-ddt LS 77.34 78.04 71.45 71.48 72.97 73.33
de-gsd MF 77.45 77.79 69.79 70.26 72.40 73.24
el-gdt MF 83.22 83.98 74.83 76.69 75.57 77.53
en-ewt MF 83.88 83.58 79.44 78.95 79.96 79.51
en-gum MF 80.34 81.46 73.30 74.34 73.87 75.03
en-lines MF 75.89 73.83 71.06 67.75 72.53 69.28
es-ancora MF 86.71 85.55 80.65 78.97 81.17 79.61
et-edt MF 80.25 81.49 76.59 78.28 77.40 78.98
eu-bdt MF 74.07 74.65 69.97 71.21 71.69 72.74
fi-ftb MF 82.76 83.88 77.86 79.02 78.54 79.89
fi-tdt MF 80.39 80.46 76.33 76.60 76.96 77.31
fr-gsd MF 84.69 83.77 78.56 77.59 79.13 78.39
fr-sequoia MF 83.16 82.49 76.75 75.96 77.38 76.40
fr-spoken MF 67.99 68.70 57.82 58.19 58.68 59.04
fro-srcmf MF 83.01 82.54 76.90 76.44 77.78 77.43
ga-idt MF 61.02 63.23 45.21 47.98 48.68 51.90
gl-ctg MF 81.56 80.70 70.76 69.41 75.38 74.25
got-proiel MF 71.88 74.95 64.13 67.99 66.78 70.78
grc-perseus MF 61.22 60.10 50.75 49.95 53.92 52.79
grc-proiel MF 79.26 79.28 64.54 64.12 67.09 67.16
he-htb MF 80.06 79.80 71.56 70.97 72.02 71.52
hi-hdtb MF 92.11 91.51 87.64 86.72 88.38 87.46
hr-set MF 80.12 81.36 74.75 76.45 76.22 77.90
hu-szeged LS 64.00 68.33 56.44 62.55 59.75 66.11
hy-armtdp MF 29.60 28.56 21.65 25.14 24.04 28.56
it-isdt MF 88.91 89.23 82.77 83.34 83.20 83.79
it-postwita MF 79.19 79.10 72.30 72.26 72.84 72.91
kk-ktb LS 35.92 35.34 25.89 25.19 30.09 30.18
la-ittb MF 83.86 85.37 79.06 80.93 80.02 82.10
la-perseus MF 47.48 51.82 41.00 46.56 44.56 51.79
la-proiel MF 68.81 70.95 62.15 64.66 64.95 67.11
lv-lvtb MF 73.48 75.43 66.19 68.67 67.37 69.66
nl-alpino MF 80.60 79.11 72.53 70.60 73.25 71.44
nl-lassysmall MF 81.15 79.19 74.84 72.37 75.52 73.26
no-bokmaal MF 88.53 88.22 84.48 83.87 84.96 84.46
no-nynorsk MF 86.64 85.42 82.00 80.39 82.94 81.21
no-nynorsklia MF 66.27 64.76 58.40 56.92 60.12 58.55
pl-lfg MF 92.02 92.68 88.93 89.80 89.16 90.01
pl-sz MF 85.86 89.56 81.34 86.50 82.02 87.17
pt-bosque MF 83.28 83.20 75.64 74.85 76.95 76.28
ro-rrt MF 81.22 80.84 74.26 74.03 75.55 75.36
ru-syntagrus MF 88.01 88.14 84.35 84.86 84.72 85.24
ru-taiga MF 48.95 56.57 40.82 50.74 42.74 52.33
sk-snk MF 78.49 82.66 73.94 79.61 74.58 80.46
sl-ssj MF 86.23 88.82 81.84 85.33 82.23 85.80
sl-sst MF 64.47 65.41 57.67 59.38 59.31 61.22
sme-giella MF 66.21 71.55 58.73 66.87 61.22 69.03
sr-set MF 80.71 80.36 75.36 74.84 76.74 76.38
sv-lines MF 76.86 77.43 72.98 73.75 74.13 74.72
sv-talbanken MF 83.03 82.39 78.36 77.68 79.27 78.58
tr-imst LS 55.45 56.74 49.29 50.42 50.45 51.97
ug-udt LS 58.02 56.97 47.47 45.52 50.18 47.86
uk-iu MF 76.10 78.87 70.57 74.66 70.77 74.95
ur-udtb MF 86.07 86.04 79.43 79.77 80.75 81.02

Table 3: Comparison of our embedding models with the baseline char-based word embedding model
explained in Section 2.1. MF stands for the morphological features embedding model and LS stands for
the lemma-suffix embedding model.



Treebank Number Embedding LAS MLAS BLEX
of words dimension

tr-imst without pre-trained embeddings - - 56.74 50.42 51.97
tr-imst with CoNLL-17 ud-word-embeddings 3,633,786 100 59.11 53.02 54.51
tr-imst with Facebook word-embeddings 416,051 300 59.69 53.56 54.98

Table 4: The effect of using pre-trained word embeddings on parsing performance on Turkish-IMST test
data set.

2015). Due to time constraints, we trained all
models without pre-trained word embeddings.

From the comparative results shown in Table
3, we observe that on the languages that have
rich inflectional and derivational processes mostly
by adding suffixes to words, our morphological
features model outperforms the baseline model
in terms of parsing scores. This is the case for
the Bulgarian, Croatian, Czech, Basque, Gothic,
Latin, Polish, Russian, Slovak, Slovene, North
Sami, and Ukrainian languages.

The morphological features model is not suit-
able for the grammatical structure of Arabic,
which has derivational morphology and it also
fails to outperform the baseline in Romanic lan-
guages like French, Spanish, Catalan, Galician,
and Portuguese. The possible reason behind this
failure might be the analytic structure of the gram-
mar of these languages. The English, Hebrew,
Hindi and Urdu languages are also categorized as
mostly analytic languages which do not use in-
flections and have a low morpheme-per-word ra-
tio. Dutch, Norwegian, and Swedish languages
have a very simplified inflectional grammar. So,
these languages are not represented well using
our morphology-based embedding models. Be-
sides, our model is not the best choice for the lan-
guages that have high ratio of morphophonologi-
cal modifications to the root word like Old Church
Slavonic.

The lemma-suffix embedding model is applied
to the Danish, Hungarian, Kazakh, Turkish, and
Uyghur languages. The best performance is
reached in the Hungarian language with more than
4% increase in LAS score. Our model outper-
forms the baseline in Turkish too. However, the
lemma-suffix model fails to reach better perfor-
mance than the baseline system on the Kazakh and
Uyghur treebanks. A possible reason might be that
our embedding model increases the complexity of
the system unnecessarily for these languages with
very little training data. Although Dannish can be
considered as an analytic language with a simpli-
fied inflectional grammar, the lemma-suffix model

outperforms the baseline for this language.
Table 4 shows the parsing scores of the parser

with lemma-suffix embedding model on the test
data of Turkish-IMST treebank version 2.2. We
compared the parsing performances when the
parser does not use pre-trained word embed-
dings, when it uses pre-trained embeddings from
CoNLL-17 UD word embeddings, and when it
uses pre-trained embeddings from word vectors
trained on Wikipedia by Facebook (Bojanowski
et al., 2017). From the results, we observe that
the usage of pre-trained word vectors increases
the parsing performance by great extent for Turk-
ish. We also observe that Facebook word vectors
outperform the CoNLL-17 UD word vectors, al-
though the number of words in the Facebook vec-
tors data set is much smaller than the number of
words in the CoNLL-17 UD word vectors data set.

5 Conclusion

We introduced two morphology-based adaptations
of the character-based word embedding model in
(Ballesteros et al., 2015) and experimented with
these models on the UD version 2.2 data set.
The experiment results suggest that our models
utilizing morphological information of words in-
creases the parsing performance in agglutinative
languages.
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