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Co-advisor
Department of Computer Science
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ABSTRACT

Information is significantly important in almost all decision-making process. A decision-

maker agent collects information from diverse sources. Thus, it should correctly fuse

opinions, which are shared from different information sources. However, some infor-

mation sources may be unreliable and malicious. That is, some of the information

sources may behave differently while sharing their opinions. Thus, the decision-maker

agent needs to eliminate opinions that these opinions are collected from such kind of

information sources. Motivated by this observation, in this thesis, we propose a sta-

tistical information fusion approach based on behavior estimation. In this approach,

before estimation of fusion, we estimate the behavior of information sources based on

their statistical values. Then, we enhance information fusion process based on our

estimation of the behavior of information sources. Through extensive simulations,

we have shown that our approach has a low computational complexity, and achieves

significantly low behavior estimation and fusion errors.
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ÖZETÇE

Bilgi hemen hemen her karar verme sürecinde oldukça önemlidir. Karar veren tem-

silci çeşitli kaynaklardan bilgiler toplar. Bu nedenle karar veren temsilci farklı bilgi

kaynaklarından toplamış olduğu bilgileri doğru bir şekilde birleştirmelidir. Bununla

birlikte bazı bilgi kaynakları güvenilmez veya yalancı olabilir. Yani, bazı bilgi kay-

nakları fikirlerini paylaşırken farklı şekilde davranabilir. Bu nedenle karar veren

temsilci bu tip kaynaklardan gelen bilgileri elemelidir. Bu gözlemden yola çıkarak

biz bu çalışmamızda davranış tahminine dayalı olarak istatiksel bilgi tümleştirme

yaklaşımı önerdik. Bu yaklaşımımızda öncelikle elde ettiğimiz istatiksel değerlere

uygun dönüşüm fonksiyonu uygulayarak bilgi kaynaklarının davranışlarını tahmin

ediyoruz. Bu tahmine dayalı olarak bilgi tümleştirme işlemini gerçekleştiriyoruz.

Geniş çaplı simülasyonlar vasıtasıyla, biz gördük ki yaklaşımımız oldukça düşük

oranda hesaplama karmaşıklığına sahip ve önemli derecede düşük davranış tahmini

ve tümleştirme hatası ile işlemini gerçekleştiriyor.
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I

INTRODUCTION

All our dreams can come true, if we

have the courage to pursue them.

Walt Disney

In multiagent systems, agents observe their environment through their sensors and

retrieve information from information sources to learn more about their environment.

They may need to merge information gathered from a multitude of sources. However,

some of the information sources may be unreliable. That is, they may provide inac-

curate information deliberately or unintentionally. Such kind of malicious and noisy

information may mislead the agent about the ground truth. In this case, we can be

far from the ground truth. That may lead the agent to make wrong decisions.

This thesis proposes the development of statistical information fusion approaches

based on behavior estimation. In this thesis, we consider the cases where informa-

tion source can adopt different behaviors while sharing their opinions. We try to

learn the behavior of information sources by analyzing their past observations. In

our framework, information sources share their subjective opinions about binomial

or multinomial propositions. A subjective opinion about a proposition is represented

using Beta and Dirichlet distributions, which are the likelihood of the probability

that the proposition is true. In our framework, for each source, we calculate behav-

ior probabilities of information sources using maximum likelihood function. Then

we predict the behavior of information sources using the calculated source behavior

probabilities that based on clustering of similarities among shared opinions. Finally,

1



we need to estimate the ground truth to combine with estimated behaviors of infor-

mation sources. Consequently, we can obtain fusion of information applying specific

transformation based on them. Using extensive simulations, we have shown that our

approach successfully estimates source behavior and gets low fusion errors.

Furthermore, we argue that information sources may behave differently in different

contexts, which are defined by the features of the queried proposition. We make some

preliminary studies for learning a Bayesian Network to capture dependencies between

the features of the proposition and the behavior probabilities. In these studies, we

predict that our approach to automatically can learn types of information sources

so that it can capture new behavior models and incorporate those modes into the

framework.

The rest of the thesis is organized as follows. In Chapter II, we briefly introduce

the motivation of given opinion and learning approach and provide preliminary in-

formation. For this purpose, we define Beta & Dirichlet distributions and introduce

Subjective Logic (SL), which is used for analyzing belief networks with uncertainty.

This chapter also presents the Bayesian Networks. Chapter III is the main chapter

of this thesis. It describes the behavior of information sources and modeling infor-

mation sources, a fusion of opinions. It also provides an evaluation. Then Chapter

IV presents a context-aware behavior estimation model. In this chapter, we try to

estimate behaviors of information sources automatically. Lastly, Chapter V concludes

with a summary of main contributions and draws directions for future work.
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II

BACKGROUND

“What I cannot create, I do not

understand.”

Richard Feynman

In this section, we present an overview of existing work on trust-based fusion

approaches and provide the necessary background regarding Beta and Dirichlet dis-

tributions and Subjective Logic.

2.1 Trust-Based Fusion

There are several fusion approaches in the literature. Jøsang and Ismail have pro-

posed the beta reputation system (BRS) to estimate the likelihood of a proposition

using beta probability density functions [6]. For this purpose, they have used a mech-

anism that considers a beta distribution with aggregated ratings of sources as its

input parameters. We note that the evidence shared by sources are equivalent to

binary opinions in Subjective Logic [5]. Whitby et al. extended the BRS to handle

misleading opinions from malicious sources using a majority-based algorithm [14],

whereas Teacy et al. have proposed TRAVOS [12] that uses personal observations

about information sources to estimate their trustworthiness as we do in this thesis.

All of these approaches model the trustworthiness of information sources and use the

estimated trust to discount opinions during fusion. They, however, do not consider

various behaviors of information sources. Thus, these approaches are similar to the

discounted consensus method used in our evaluations. There are other trust-based

fusion approaches that consider different behaviors of malicious sources and exploit
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these behaviors during fusion. For instance, BLADE [10] and HABIT [11] can exploit

the flipping behavior of sources— i.e., sources deliberately flip their opinions before

sharing— whilst fusing. However, these approaches consider only the expectation

probabilities of behaviors during the fusion as behavioral discounted consensus does.

Furthermore, there are also trust-based fusion approaches for untrustworthy in-

formation provided by a crowd of observers. For instance, [16] model untrustworthy

estimates and developed a trust-based fusion method that is similar to the DS belief

fusion, which has particular limitation.

In the literature, there are various trust-based approaches that combine informa-

tion from unreliable sources to estimate ground truth. These approaches estimate the

truth by utilizing information only from reliable sources [12, 14]. They do not differ-

entiate between different malicious behaviors and simply filter outs information from

untrustworthy sources. However, in many settings, there is no source that consis-

tently provides useful information. In such settings, most of the existing approaches

may fail due to the lack of reliable sources.

2.2 Probabilistic and Subjective Logic

Subjective Logic(SL) is a type of probabilistic logic for reasoning under uncertainty

and incomplete knowledge. It is based on Dempster-Shafer theory (DST), which is a

type of probabilistic logic that can be used for uncertainty and incomplete knowledge

system such as modeling trust network and analyzing Belief networks.

Dempster brought forward the Belief theory as a framework in the 1960s. In the

sequel, Shafer enhanced the theory and published it in his book [?] in 1976. After that

time the theory started to be mentioned as Dempster-Shafer’s belief theory (DST).

In 1991 Lucas and Van Der Gaag [20] presented DST briefly. Furthermore, we need

to clearly understand and implement DST to several applications. There are some

studies about validation of DST such as [22].
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Probability represents the calculation of the likelihood of a given event’s occur-

rence, and it takes a value between 0 and 1 that the value changes according to the

problem. For instance,

0 absent, close, no, false

1 present, open, yes, true

Table 1: Values

Figure 1: Pobabilistic logic

Figure 1 illustrates probabilistic logic (PL) occurs the intersection of probability

and logic. Nilsson, who was the first defined probabilistic logic [?], expressed for

using reasoning models (in general). However, there is a difference between PL and

SL, which is the case of the uncertainty.

In probabilistic logic which also called for standard logic, propositions are evaluated

to be either true or false, so standard logic has a restriction. Restriction means

that it can be seen in this example: a statement of response contains with the same

output binary logic e.g. {0, 1} or {false, true}, but one of the other possible response

can be “I have no idea” or “I do not know”. Standard logic cannot express input

arguments with degrees of ignorance, so as a default these are assigned to the no
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statement. Therefore, by using subjective logic, every probability can be evaluated

more correctly in real word situations.

The traditional logical operators such as AND and OR are the missing part of the

classical DST. Thanks to SL, these missing parts were completed.

SL was described by Audun Josang in 1997 [18]. Then, SL continued to be defined

in a more detailed way. He published a book called ’Subjective Logic’ in 2011 [5],

and this book presents a definition of SL, the usage of mathematical operation and

properties on operators, and applications of SL throughly.

There are different formalisms other than SL to model degrees of uncertainty e.g.

the Bayesian model of subjective probabilities is the oldest one. The Bayesian model

has different theories and DST is the best-known. In this respect, the argument

of SL is related to the belief functions in the well-known DST. DST proposes an

efficient theoretical framework. The theory of belief functions serve the purpose of

modeling uncertainty, and it is a general form of the Bayesian theory of subjective

probability. Belief function gives an idea about the relation between two propositions

on probabilities.

2.3 Beta and Dirichlet Distributions

The Beta distribution is a family of continues probability distributions, which is a

probability density function (pdf) for possible values of the probability mass function

(pmf) p. The Beta distribution describes the probability for a state defined on the

interval [0, 1]. For instance, if you have an event with an unknown probability p, you

can provide some information about that value with a Beta distribution. Furthermore,

Beta (1,1) represents that you have no information about p or you have random

information about p. That is, it is equally likely to take all values between 0 and 1

inclusive.

Figure 2 demonstrates that how changing the value of the parameters alters the
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Figure 2: The shape of pdf for different values of Beta distribution

shape of the pdf. For instance, when α = β = 1, which represents Beta(1, 1), the

Beta distribution simplifies to the standart Uniform distribution on [0, 1].

The Beta pdf denoted as Beta (p|α, β) where α and β are two evidence parameters

and expressed as:

fβ (p|α, β) =
1

B (α, β)
pα−1 (1− p)β−1 , (1)

where 0 ≤ p ≤ 1, α > 0, β > 0.

The Beta function is equal to a ratio of Gamma functions:

B (α, β) =
Γ (α) Γ (β)

Γ (α + β)
(2)

The Dirichlet distribution gives the probability density of possible values of the

probability mass function (pmf) p that describes the probability for the manifestation

of the particular state from the K attribute states. It is characterized by K parameters

α and is given by
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fβ (p|α) =


1

B(α)

∏K
i=1 pαi−1

i ; pεSK ,

0 otherwise,
, (3)

where SK is the K -dimensional unit simplex,

SK =

{
p|
∑K

i=1 pi = 1 and 0 ≤ p1 , . . . , pK ≤ 1

}
,

and

B (α) =

∫
SK

(
K∏
i=1

pαi−1
i

)
dp (4a)

=

∏K
i=1 Γ (αi)

Γ
(∑K

i=1 αi

) (4b)

is the K -dimensional multinomial beta function [8]. The β in the subscript of

fβ (.) is used to signify that the pdf is Dirichlet. A general pdf is presented without

the subscript as f (.). When K = 2, the Dirichlet distribution simplifies to the beta

distribution while considering the restriction that the probability variable p 6= 0 if

α < 1, and p 6= 1 if β < 1.

2.4 Subjective Opinions

Subjective opinions are beliefs about propositions with degrees of uncertainty. Bino-

mial opinion can be represented with a Beta distribution, which is a single proposition.

Similarly, multinomial opinions represent a Dirichlet distribution, which comes to a

set of propositions. This is all to say, a generalization of the Beta distribution can

be seen as the Dirichlet distribution in the same way a generalization of binomial

opinions can be seen as multinomial opinions.

In this thesis, we adopt SL proposed by Jøsang [5], which can be considered as an

interpretation and extension of DST. SL is a probabilistic logic where propositions
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such as the location of a crime in a city can take on one of K mutually exclusive

attributes, e.g., city districts, at any observation time [3, 5]. In general a binomial

opinion is represented by a triple ωx = (bx, dx, ux), which is derived from the basic

probability masses assigned to subsets of truth assignments. In the opinion ωx, bx is

the belief about x — the summation of the probability masses that entail x ; dx is the

disbelief about x— the summation of the probability masses that entail ¬x; and ux

is the uncertainty about x — the summation of the probability masses that neither

entail x nor entail ¬x. The constraints over the probability mass assignment function

require that bx+dx+ux = 1 and bx, dx, uxε [0, 1], where ux = 1−bx−dx. Furthermore,

agents represent their opinion such as ωsx = (bsx, d
s
x, u

s
x), where the subscript x implies

that the proposition to which the opinion applies, and the superscript s implies that

the subject agent who holds the opinion. In this thesis, when the proposition and

agent are implicit, the superscripts and subscripts are not used. In SL, a binomial

opinion about a binary proposition x is represented by ωx = (bx, dx, ux, ax,W ). In this

representation a is a base rate and W denotes non-informative prior weight, which

are set to a = 0.5,W = 2, respectively. In this study, we represent opinions as a

triple. That is, opinions about the common proposition may have the same base rate

vector, and non-informative prior weight. Thus, we can ignore these components.

The subjective opinion characterizes the belief in the probabilities that any of the

K will appear at a given observation time. The subjective opinion also characterizes

the uncertainty related to these beliefs. Formally, SL considers a frame of K mutually

exclusive singletons by providing a belief mass bk for each singleton k = 1, . . . , K and

providing an overall uncertainty mass of u. These K + 1 mass values are all non-

negative and sum up to one, i.e.,

u+
K∑
k=1

bk = 1, (5)

where u ≥ 0 and bk ≥ 0 for k = 1, . . . , K..
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The base rate values represent initial (or a priori) information about the probabil-

ity of a singleton emerging for any given observation. The inclusion of the belief and

uncertainty values along with the base rates and non-informative prior weight rep-

resents the accrued evidence regarding the probability of any singleton appearing in

an observation. For each singleton, we can compute the amount of evidence observed

using the multinomial opinion values:

ek =
Wbk
u

(6)

The computed evidence vector e can be used to compute the parameter vector α

for a Dirichlet distribution via

αk = ek +Wak (7)

Therefore, we have α = e + Wa. The Dirichlet distribution represented by this

parameter vector represent the possible pmf that is controlling how singletons appear

in observations. Likewise, using (5), solving for bk and u in (6) for k = 1, . . . , K, leads

to the mapping of evidence vector e (and do α) to the multinomial opinions

u =
W∑

i ei +W
, (8a)

bk =
ek∑

i ei +W
(8b)

Using subjective opinions, we can show such kinds of logics; true/false values in

binary logic or membership values in fuzzy logic. For instance; the opinion (1, 0, 0)

implies that the proposition is true; while (0, 1, 0 ) indicates that the proposition

is false, and (0, 0, 1) represents that the opinion – ωx is a vacuous opinion such as

with zero belief mass. Similarly, if an opinion such as (0.5, 0.5, 0.0) implies that the

proposition is both true and false with same belief masses. In addition to this, we have

some uncertainties if an opinion such as (0.2, 0.3, 0.5) represents that the proposition
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is both true, false and unknown. In this example, we have 50 % uncertainty for the

proposition.

Furthermore, we assume that opinions are formed on the basis of positive and

negative evidence. Let r and s be the number of positive and negative evidences

(i.e., equivalently weighted pieces of evidence) about the proposition x, respectively.

Then, an opinion composed of b, d, and u is computed based on evidence r and s as

in Equation 9.

op(r, s) = (b, d, u) =

(
r

r + s+ 2
,

s

r + s+ 2
,

2

r + s+ 2

)
(9)

In Equation 9, we clearly show that the transformation from belief space parame-

ters (b, d, u) to evidence space parameters (r, s). There is a transformation that the

evidence space parameters to the belief space parameters as follows:

r =
2 ∗ b
u

, (10a)

s =
2 ∗ d
u

, (10b)

In addition to these descriptions, we also have the projected probability and vari-

ance of a binomial opinion on x is defined as follow, respectively:

Ex = bx + axux, (11)

V arx =
Px (1− Px)ux

W + ux
(12)

where W denotes non-informative prior weight, which must be set to W = 2.

Figure 3 illustrates that the Expectation value of x in belief space. There is a

mapping between an opinion ω and Dirichlet distribution parameters vector α

In the rest of this thesis, we mostly use corresponding Dirichlet distribution param-

eters to refer opinions [23]. However, in order to explain how SL combines opinions,

11



Figure 3: Opinion triangle for binomial opinions with an example opinion [5]

we use the mapping function ψ (ω) = α and its reverse ψ− (α) = ω. Given a set

of opinions Sx = {ω1
x, . . . , ω

n
x} about a proposition x, SL defines consensus fusion

operator ⊕ to combine these opinions as follows [4]:

⊕ (Sx) = ψ−

(
Wax +

∑
ωεSx

(ψ (ω)−Wax)

)
(13)

That is, evidence vectors provided by opinions are added up to generate the evi-

dence vector for the fused opinion.

2.5 Bayesian Networks

Bayesian Networks (BN) is a member of probabilistic graphical models for modeling

uncertainty. BN is a powerful tool for subjective logic. Bayesian networks are also

useful for representing flexible applicability [21]. BN is a directed acyclic graph (DAG)

where the nodes denote the random variables and the edges shows their conditional

dependencies
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p (C|T ) =
p (T |C) p (C)

p (T |C) p (C) + p
(
T |C

)
p
(
C
) (14)

Equation 14 illustrates Bayesian inference with Boolean variables. In this equa-

tion, p(C) denotes the prior probability of an issue belonging to class C where

p(T |C) is the likelihood of observing T when the given issue belongs to C. Note

that p(T ) = p (T |C) p (C) + p
(
T |C

)
p
(
C
)

is the evidence that is the probability of

observing T where p(C|T ) is the posterior probability—the probability of the given

issue, T belonging to C.

p (θ|y, n) =
p (y|θ, n) p (θ|n)

p (y|n)
(15)

Equation 15 illustrates Bayesian inference with continues variables. In this equa-

tion, a normalizing constant equals as follows:

∫
p (y|θ, n) p (θ|n) dθ (16)

Figure 4: Bayesian inference with continuous variables [24]
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Conditional dependency relations (arcs) from node A to another node B represent;

node B is a child of node A or put it differently the node A is a parent of node B

such in Figure 5.

Figure 5: Types of probabilistic relationships [24]

Each node has a prior or conditional probability distribution (CPD) according to

its structure (topology).

There are some real-world examples, which are representing Bayesian Networks.

Graph structure supports the representation of knowledge, distributed algorithms for

inference and learning, and intuitive interpretation.

Alarm network is the best-known application of a real Bayes network.

Figure 6 shows the well-known Bayesian networks for the alarm example.

There are other real-world BN applications such as below;

• Spam filters and many other binary or multinomial classifiers are implemented

using Naive BN.

• MS answer wizards, (printer) troubleshoots,

• Genetic pedigree analysis,

• Speech recognition (HMMs),
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Figure 6: The graphical structure of the alarm example network with probability
values.

• To build medical diagnostic systems,

• Medical diagnosis,

• Gene sequence/ expression analysis,

• Turbo decoding problem.

15



III

FUSION OF SUBJECTIVE OPINION THROUGH

BEHAVIOR ESTIMATION

“Everything is theoretically

impossible, until it is done.”

Robert A. Heinlein

Effective fusion of information from diverse – at times unreliable – sources is an

important problem to be solved for decision-making domain, especially in coalition

context; the purpose of the fusion is to merge information from these sources to

estimate the ground truth about a specific phenomenon. An ideal information source

is the one that is able to estimate the ground truth – e.g., by combining observed

evidence – and honestly reports its estimation. However, this may not be the case for

most of the information sources. Some information sources can be competent, but

not honest; they deliberately diverge from their genuine estimations while reporting.

Other sources may be incompetent in observing evidence about the phenomenon and

cannot estimate the ground truth at all. Their estimations of the ground truth may

not correlate with the ground truth and would not conduct any useful information

during fusion.

In this chapter, a source’s estimation of ground truth is represented as a subjective

opinion, which is a belief assignment over possible values of the ground truth. How-

ever, these estimations may be affected by the behaviors of sources due to the op-

erational context. For example, in order to mislead the decision maker – or due to

incompetence in the context – a source may share an opinion, which does not corre-

late with the ground truth. Moreover, an information source may not have consistent
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behavior – i.e., it may adopt different behavior strategies with varying granularities.

We note that information fusion aims to approximate the ground truth by com-

bining opinions collected from diverse and unreliable sources. Existing fusion ap-

proaches exploit trust estimation methods to determine trustworthy and untrustwor-

thy sources [2, 7]. Then, opinions from untrustworthy sources are eliminated during

fusion. However, these approaches may fail if the sources are not always trustwor-

thy or untrustworthy – i.e., they adopt different behaviors with some probability.

Moreover, filtering misleading information may not always be the best thing to do

during fusion –i.e., misleading information can be useful if it is correlated with the

ground truth. For instance, let us consider that a decision maker asks a source yes/no

questions. The source aims to mislead the decision maker by providing only wrong an-

swers. If the decision maker determines how the source behaves, the source’s answers

would be still very useful; otherwise, these answers would be highly misleading.

In this thesis, we propose a novel fusion framework based on behavior estima-

tion [23]. In this work, a decision maker queries information sources to estimate

the outcome of a binomial or multinomial propositions, e.g., is there any traffic jam

on the road I − 87 now?. As stated earlier, we expect the answers to such queries

to be subjective opinions, which can then be interpreted using Subjective Logic [3]

or Dempster-Shafer theory of evidence [15]. In our framework, we adopt Subjective

Logic’s interpretation of subjective opinions. That is, opinions are represented using

Beta or Dirichlet distributions and they are fused by aggregating these distributions.

Our system is flexible enough to accommodate various source behaviors, and for each

information source, to calculate the behavior probabilities using maximum likelihood

estimation. During the fusion, we efficiently determine the most likely behavior of

sources using a similarity-based clustering of shared opinions influenced by the esti-

mated source behavior probabilities. We then apply specific transformations to the

shared opinions based on the behavior of their sources, and then the transformed
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opinions are combined to estimate the ground truth. Through extensive simulations,

we showed that the proposed approach can successfully estimate behaviors of infor-

mation sources and approximate the ground truth with a very small error.

3.1 Behaviors of Information sources

A decision-maker agent needs to fuse opinions about a specific proposition by using

behavior of information sources. If an agent wants to have an idea about a specific

proposition, a decision-maker agent gathers subjective opinions from multiple sources.

For an information fusion, the decision-maker agent needs to assign some trust values

to these sources. Then, the agent can fuse these opinions by considering their trust

values. However, as noted in Introduction chapter, these diverse information sources

may be both reliable and unreliable such as some of the sources may share their

opinions about not having any idea for a specific proposition, some of them may give

misleading information about the proposition and so on. Thus, in such scenarios,

the decision-maker agent can fuse shared opinions in a wrong way. It shows that the

agent can have an information, which is far from the ground truth. In our approach,

if such scenarios observable, we have an effort to discard incorrect opinions for better

estimation of the ground truth during the information fusion.

In every phase of our lives, we might face with kinds of propositions such as

if an earthquake occurred in Istanbul or if the road D-100 is blocked. These are

binary propositions, that is a decision maker asks a “yes/no ” questions like “did an

earthquake occur in Istanbul?” or “is road D-100 blocked?” from information sources.

Information sources provide their subjective opinions about propositions in the form

of Dirichlet distributions, which represents the likelihood of the probability that the

proposition is true. For instance, in response to the first binary proposition of previous

examples, sources provide their opinions as parameters of the Dirichlet distribution,

which represents a distribution for the probability that the earthquake occurred in
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Istanbul. There can be some misleading information from unreliable sources. For

the previous propositions, the decision-maker agent collects some information from

malicious sources such as Bob and Carol. Bob and Carol behave differently while

sharing their opinions about propositions.

Assume that a decision-maker agent gets information about an earthquake. The

agent wants to learn “did an earthquake occur in Istanbul?”. In this scenario, the

agent collects opinions from three different information sources, who are Bob, Carol,

and John. Bob provides a misleading opinion as a Dirichlet parameters like αBob:x =

〈25, 175〉, which corresponds to the binomial opinion [0.12, 0.87, 0.01, 0.5, 0.5, 2] by

using Equation 9, where 0.12 is the belief that the proposition is true; 0.87 is the

probability that the proposition is false; 0.01 is the uncertainty; and the remaining

parameters 0.5 and 2 correspond to the base rate and non-informative prior weight,

respectively. In general, we can use ωBob:x = (0.12, 0.87, 0.01) without base rate and

non-informative prior weight. Another source Carol, she shares her opinion about the

condition of city with the Dirichlet parameters αCarol:x = 〈38, 62〉, which corresponds

to the binomial opinion by using the same equation [0.37, 0.61, 0.02, 0.5, 0.5, 2], where

base rate and non-informative weight are the same with Bob’s opinion. Similarly,

we can use ωCarol:x = (0.37, 0.61, 0.02). However, she does not have any informa-

tion about the road, so she can have the only prediction about the condition of the

city. That is, she shares a random opinion about given proposition. Bob provides

a misleading opinion represented by parameters (24, 174) by flipping the parameters

within her genuine opinion. In this scenario, the decision maker also collects infor-

mation from John, who is a reliable source. He has knowledge about this proposition

and he shares his opinion as [0.98, 0.01, 0.01, 0.5, 0.5, 2], which is also represented

ωJohn:x = (0.98, 0.01, 0.01). John’s opinion equals to αJohn:x = 〈195, 5〉. If the de-

cision maker knows the behavior of these sources, it may map Carol’s opinion to a

19



Dirichlet with parameters 〈1, 1〉, which corresponds to uniform distribution and im-

plies that the opinion of Carol is non-informative. Similarly, Bob’s opinion should be

mapped to a Dirichlet with parameters (174, 24). With mapping, the decision maker

can compute a fused opinion close to the ground truth. In contrast to both Bob and

Carol, John is a reliable source. He behaves honestly, so John’s opinion should be

mapped to the same parameters as he shared.

3.2 Modeling Information sources

An agent collects opinions about given proposition from information sources, which

may or may not be reliable. That is, opinions of reliable information sources close to

ground truth; however, unreliable sources may share misleading opinions. Information

sources can be categorized into two groups, which are trustworthy and untrustworthy

sources. In our approach, if there is no correlation between the ground truth and

the shared opinion, we categorize such kind of opinion as non-informative and the

source called untrustworthy. In such settings, non-informative opinions are opinions

that are randomly generated from a uniform distribution with parameters α = 〈1, 1〉.

Therefore, we discard such opinions during fusion.

We assume that information sources adopt specific behaviors with a certain proba-

bility while sharing their opinions. Each type of behavior i is internally mapped to a

transformation function ϕi(.), that converts a genuine opinion of an information source

to a shareable opinion. For instance, let us consider binomial opinion αs:x = 〈α1, α2〉

of a source s regarding the binary proposition x . If the source is honest and compe-

tent, it shares its opinion as it is — i.e., ϕh(αs:x) = 〈α1, α2〉. If the source is dishonest,

it may not share its genuine opinion; instead it may provide a random opinion(or an

opinion uncorrelated with the ground truth), — e.g., ϕr(αs:x) = rand(), where rand()

returns random Dirichlet parameters. It is also possible that malicious sources may

provide negations of their genuine opinion to confuse the fusion process. If the source
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behaves in this way, the provided opinion would be flipped, — e.g., ϕf (αs:x) = 〈α2, α1〉.

We note that the list of possible behaviors can be extended through correlation anal-

ysis and expert knowledge. For the sake of clarity and simplicity, in our examples

and evaluations, we only consider the three basic behaviors mentioned above over

binomial opinions.

When a decision-maker agent receives opinions from information sources, it may trans-

form the opinions into more useful ones by tempering them with the expected behavior

of the respective sources. For this purpose, the agent uses the mapping function mi(.)

for each behavior i to transform the shared opinion α
′s:x =

〈
α

′
1 , α

′
2

〉
of a source s

as follows: If the agent believes that the source is honest, the transformation would

be mh

(
α

′s:x
)

= α
′s:x . If the agent believes that the source provides an opinion un-

correlated with the ground truth (e.g., a random opinion), the transformation would

be mr

(
α

′s:x
)

= 〈1, 1〉, which corresponds to uniform beta distribution; so the shared

opinion is neglected. If the agent believes that the source flips its genuine opinion

before sharing, the transformation would be mf

(
α

′s:x
)

=
〈
α

′
2, α

′
1

〉
.

In such environments, to make the necessary transformation before fusion, the agent

may estimate the behavior profile of each information source. Given k behavior types,

the behavior profile for a specific source s is a vector ts of k elements, where each

element t si is the expected probability that the source has the behavior i such that∑k
i=1 t si = 1.

The agent computes the behavior profile of a source s using maximum likelihood

method [9]. For this purpose, the agent uses its own opinion and the opinions of the

sources about the common propositions. By common propositions, we refer to the

propositions that both the agent and the sources have opinions about. Let us assume

that the agent and a source have opinions for n common propositions. The agent

then uses the likelihood function in Equation 17 to estimate the behavior profile ts of

the source, where αa:x corresponds to the opinion of the agent about the proposition
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x while mi (α
s:x) corresponds to the transformation of the source’s opinion for the

proposition given that it adopts behavior i.

L
(
ts|αa:1, αs:1, ..., αa:n, αs:n

)
=

n∏
x=1

∫
p

(
f (p|αa:x)×

k∑
i=1

tsi × f (p|mi (α
s:x))

)
dp (17)

By maximizing the likelihood function in Equation 17, the agent can calculate the

value of the behavior profile of information sources ts. In this equation, the function

includes the conditional probability that the behavior profile of sources given opinions

of agents and sources. That is, how does the opinion of source compatible with the

opinion of agent for the same proposition? We can efficiently compute this function

using the log likelihood method. For this equation, the logarithm of this function

is concave. Thus, we can use gradient ascent, which can be useful for such kind of

concave function. Moreover, the agent cannot calculate this function when there is

no common proposition — i.e., n = 0. In such case, the agent may use a priori

probabilities to compose a default behavior profile for the source — e.g., a uniform

behavior profile where tki = 1/k. After initialization, the agent may recalculate the

value of the behavior of information sources using its personal opinions.

3.3 Fusion of Opinions

Until this section, we define how an agent uses its own opinions about common

propositions to model behavior profiles of information sources. In this section, we

describe how the decision-maker agent fuse shared opinions using information sources

behaviors when new proposition presented.

3.3.1 Estimating Source Behavior

Each information source provides its opinion for a new proposition such as y with its

personal behavior after applying to the corresponding transformation function. Such

behaviors based on some probabilities, which are trust values of information sources.
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Actually, a decision-maker agent has an initial information about behavior profile of

information sources, which are estimated for a current proposition.

After applying the adaptable transformation function to the shared opinions, a

querent gets the behavior profile of information sources. By observing the behavior

profile of sources, the querent can get expectation probabilities for each behavior type.

However, when information sources share their opinions, the querent may estimate

their behavior types. That is, the querent may find the true behavior type which

is the source has adopted. Furthermore, behavior type of information source may

usually flip, so at this time, it may share a malicious opinion and sometimes shares

a truthful opinion. However, for the new proposition, the information source may

share a truthful opinion. The agent may exploit behavior profiles of sources and their

opinions about the current proposition. That is, if an untrustworthy source provides

an opinion that complies with the opinions of trustworthy sources, it is more likely

that the untrustworthy source provides a truthful opinion on this specific case.

For each source s, the agent aims to find an elementary vector zs whose length

is equivalent to the number of behavior types. This is a vector that has only one

element equivalent to one and all others are zero, i.e., if zsi = 1, then zsj = 0 for all

j 6= i. This vector indicates which behavior the source s adopted while proving its

opinion for the proposition y. In order to estimate behaviors of information sources

while providing their opinions for this proposition, the agent may find z vectors that

maximizes the likelihood function in Equation 18.

L
(
z1, . . . , zn|α1:y, . . . , αn:y, t1, . . . , tn

)
=

∫
p

n∏
s=1

k∏
i=1

(tsi × f (p|mi (α
s:y)))z

s
i dp (18)

Finding the z vectors that maximizes the likelihood in Equation 18 is NP-complete

[1]. The complexity of testing all possible z vectors is O (kn), where k is the number

of behavior types and n is the number of information sources.

As defined in chapter II-4, an opinion is represented as a combination of belief
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vector, base rate vector, and non-informative prior weight. Opinions about the same

proposition may have the same base rate vector and non-informative prior weight.

Therefore, we can ignore these components and project each opinion onto belief space.

As we learned before, a source provides their opinions as belief space parameters (b, d,

u) or evidence space parameters (r, s). Furthermore, the evidence space parameters

do not have an upper bound. That is, a sum of the Dirichlet parameters for an opinion

cannot exceed one. We can clearly observe an example binomial opinion, its base rate

vector, non-informative weight, and expectation value in Figure 3. In such settings,

a confusion can occur in belief space. For instance, consider the binomial opinions:

[0.92, 0.03, 0.05, 0.5, 0.5, 2] and [0.97, 0.02, 0.01, 0.5, 0.5, 2] or it can represent without

base rate vector and non-informative weight as (0.92, 0.03, 0.05) and (0.97, 0.02, 0.01),

which correspond to Dirichlet parameters 〈37.8, 2.2〉 and 〈195, 5〉, respectively. These

opinions are very close to belief space, while their Dirichlet parameters are very

different.

In order to estimate z vectors efficiently, we propose to exploit the closeness of

similar opinions in belief space. There is only one ground truth for a proposition,

therefore, the same or similar opinions about this proposition may imply same or sim-

ilar source behavior. If two opinions about the same proposition are similar enough,

the z vectors for these opinions may be the same. In order to estimate z vectors

efficiently, the agent may first determine similar opinions by clustering them in belief

space, then it assigns the same z vectors to the similar opinions in the same clusters.

For this purpose, we propose to use hierarchical clustering [13], which is based on

Euclidean distance and a similarity threshold δ.

Once the agent determines clusters {c1, . . . , cm} of similar opinions, it determines

z vectors for these clusters such that the likelihood function in Equation 19 is maxi-

mized. The complexity of clustering is O (n2) and that of testing all possible z vectors

is O (km). The general upper bound for m is fixed and depends only on the similarity
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threshold δ; it is independent of the number of opinions.

L
(
z1, . . . , zm|c1, . . . , cm, t1, . . . , tn

)
=

∫
p

m∏
j=1

 ∏
ωs:yεcj

k∏
i=1

(tsi × f (p|mi (α
s:y)))z

j
i

 dp

(19)

If an opinion ωs:y is in cluster cj, the estimated z vector for cj is taken as the z

vector for the source s; it determines the estimated behavior of s while sharing the

opinion.

3.3.2 Estimating Ground Truth

Until this section, we model information sources, estimate the source behaviors, and

categorize similar opinions in belief space. Our aim is to fuse shared opinions by the

decision-maker agent using the estimated behaviors of information sources. Thus, in

this section, we formalize that how do we fuse the shared opinions by the decision-

maker agent using the estimated source behaviors. We estimate ground truth using

likelihood function. The equation below formalizes the likelihood function for p, given

the shared opinions such as α1:y, . . . , αn:y and the estimated behaviors of the sources

for the proposition y such as z1, . . . , zn. This likelihood function is not a distribution,

but a multiplication of multiple Dirichlet distributions.

L
(
p|α1:y, . . . , αn:y, z1, . . . , zn

)
=

n∏
s=1

k∏
i=1

f (p|mi (α
s:y))z

s
i (20)

In this likelihood function, approximation of a single Dirichlet distribution f (p|α+)

is found by using the estimation of the fused opinion to approximate the ground truth.

The equation below calculates the Dirichlet parameters α+ of the fused opinion by

summing the evidence from the individual Dirichlet distributions involved in the mul-

tiplication, as in the consensus fusion operator of Subjective Logic [4]. Equation 21

formalizes the computation as follows.
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α+ = Way +
n∑
s=1

k∑
i=1

zsi × (mi (α
s:y)−Way) (21)

3.4 Evaluation

In this section, we extensively evaluate our approach utilizing simulations. In order

to perform these evaluations, we have implemented a multiagent system composed

of a decision-making agent—i.e., the querent—and multiple information sources. At

each simulation, the decision maker queries information sources to find the ground

truth about a binary proposition. Competent sources can observe the evidence about

the proposition and combine it to generate an opinion close to the ground truth.

However, the opinions shared with the decision maker are determined by the behavior

of sources. The collected opinions are binomial; each opinion corresponds to a Beta

distribution—a univariate Dirichlet distribution. Let us note that this simplification

is not a limitation and our approach is applicable to any type of propositions.

3.4.1 Simulated Behaviors

We define three types of behaviors for information sources: 1) Honest Competent

—i.e., a competent source displays honest behavior by sharing its opinion as it is which

is close to the ground truth; 2) Flipping Competent —i.e., a competent source displays

flipping behavior by sharing an opinion which is produced by flipping the Dirichlet

parameters of its genuine opinion, and 3) Random —i.e., a source displays a random

behavior by sharing a randomly generated opinion which is not correlated with the

ground truth. Random behavior corresponds to the behaviors of both incompetent

sources and competent sources who deliberately produce random opinions.

We randomly determine behavior probability vector ps for each source s; the vector

contains psh, p
s
f , and psr, which refer to the individual probabilities for honest, flipping,

and random behaviors for the source such that psh + psf + psr = 1. We formalized our
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simulations in such a way that each information source adopts each type of three

behaviors with some probability. However, one of these three behaviors is more likely

for each source, i.e., have higher probability. If a source adopts honest behaviour

more likely, it is called h-dominated. We have similar terminology for the flipping

and random behavior types, i.e., f -dominated and r -dominated. If a source s is i -

dominated, we set psi = 1 − 2φ and psij = φ for any jε {h, f, r} \ i, where φ is a

parameter such that 0 ≤ φ < 1/3.

In our simulations, ratios of sources are fixed as Rh = 0.2, Rf = 0.3, Rr = 0.5,

which correspond to the ratios of h, f, and r -dominated information sources, respec-

tively.

All simulations are run on a standard PC with 4 RAM and 2.13 GHz Intel Core

2 Duo processor.

3.4.2 Benchmarking Fusion Methods

We compare our fusion approach with two fusion methods based on the consensus

fusion operator and discounting operator of Subjective Logic [5].

Let ωsx = (b, d, u, a,W ) be the opinion of a source s about a binary proposition x

and ts be the trustworthiness of s for the decision-maker agent. Then, the discounting

operator ⊗ is defined as

ωsx ⊗ ts = [b× ts, d× ts, u+ (1− t)× (b+ d), a,W ] (22)

That is, using a discounting operator, the uncertainty of the opinion is increased

inversely proportional to the trustworthiness of its source. In the literature, the

trust value ts usually corresponds to the probability that the source s is honest and

competent. i.e., ts = psh.

The first fusion method we use for benchmarking is called Discounted Consensus

(DC) and based on applying discounting before consensus operator. Given behavior
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probabilities of sources, this fusion method is defined as follows:

DC(ωs1x , ω
s2
x , . . . , ω

sn
x |ps1 , ps2 , . . . , psn) = ⊗(ωs1x ⊗ p

s1
h , ω

s2
x ⊗ p

s2
h , ..., ω

sn
x ⊗ psnh )

The discounted consensus method makes use of only the opinions from trustworthy

sources – ones with honest behavior. However, opinions from the flipping agents may

be useful as well. Therefore, we introduce Behavioral Discounted Consensus (BDC),

which extends the discounted consensus fusion by considering other behaviors, i.e.,

flipping behavior in this specific case:

BDC(ωs1x , ω
s2
x , . . . , ω

sn
x |ps1 , ps2 , . . . , psn) = ⊗(H,F ), where

H = ⊗(ωs1x ⊗ p
s1
h , ω

s2
x ⊗ p

s2
h , . . . , ω

sn
x ⊗ psnh ),

F = ⊗(mf (ω
s1
x )⊗ ps1f ,mf (ω

s2
x )⊗ ps2f , . . . ,mf (ω

sn
x )⊗ psnf )

3.4.3 Simulation Results

We evaluated our approach in two steps. In the first step, we analyzed how successful

our approach is while estimating behavior probabilities of information sources. In

the second step, given the behavior probabilities of the sources, we analyzed how

successful our approach in fusing opinions compared to the benchmarking methods.

Each experiment is repeated at least 10 times and their means are demonstrated in

the figures. The presented results are significant with respect to the paired student-t

test with 95% confidence interval.

3.4.3.1 Behavior Estimation Results

The decision-maker agent estimates behavior probabilities for each information source

as described in Section III.2. That is, for each source s, the agent computes the

probability vector ts that maximizes the likelihood function in Equation 17 using n

opinions about common propositions. While doing, so the agent uses gradient ascent

algorithm with blocking for constraints [1]. We compute the estimation error for ts

given the actual behavior probabilities ps. The error is between zero and
√

2, and
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computed as:

error (ts|ps) =

√
(tsh − psh)

2 +
(
tsf − psf

)2
+ (tsr − psr)

2 (23)

Figure 7 demonstrates the average estimation error as the number of opinions is

varied. Our experiments indicate that the estimation error is around 0.225 when n =

5; however, it goes below 0.1 when 10 or more opinions are used. As the number of

opinions are increased, the error does not change much. Therefore, we can conclude

that our approach for behavior estimation is successful even if the number of used

opinions are as low as 10.

Figure 7: Average behavior estimation error.

Figure 8 demonstrates the average time consumed for behavior estimation. It takes

less than 50 milliseconds to estimate the behavior probabilities when 10 opinions

are used; when the number of opinions are increased to 100, the estimation time

was only creased by 37 milliseconds. Furthermore, the behavior estimation does

not increase rapidly for much larger number of opinions—e.g., it only takes about 95
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milliseconds for 500 opinions. Therefore, our approach successfully estimates behavior

probabilities at a low complexity.

Figure 8: Average time used for behavior estimation.

3.4.3.2 Fusion Results

In this section, we evaluate our fusion approach with respect to the benchmarking

fusion methods, given the behavior probabilities of information sources.

At each experiment, we create a binary proposition x with a ground truth gtx –

the probability that the proposition is true. Information sources observe evidence of

the ground truth and compose their genuine opinions. When queried by the decision-

making agent, the sources share their opinions for the proposition based on specific

behaviors they adopted. After receiving opinions from a number of sources, the agent

fuses these opinions using the proposed approach FUSE-BEE or a benchmarking

method: DC or BDC. Let ωx = [bx, dx, ux, a
x,W ] be the fused opinion. We compute

the fusion error given the ground truth gtx as follows:

30



error (ωx|gtx) =

√
(bx − gtx)2 + (dx + gtx − 1)2 + (tsr − psr)

2 (24)

When queried for an opinion, each source randomly adopts a behavior based on

its behavior probability vector px, which is generated using the parameter φ. In the

first set of our simulations, we set φ = 0.15. In this setting, a source dominated by

iε {h, f, r} adopts the behavior i with probability 0.7, and adopts each of other two

behaviors with probability 0.15. That is, there is no source which consistently adopts

the same behavior, but sources may switch between different behaviors.

Figure 9: Average fusion error for φ = 0.15.

Figure 9 demonstrates the average fusion error for different approaches when the

number of sources is varied between five and one million; for clarity, the logarithm of

the number of sources are shown in the x-axis. Our results indicate that the proposed

approach achieves very low error rate around 0.01 when more than 80 sources are

queried. For a lower number of source, the fusion error is also much lower than error

rates of benchmarking approaches. For instance, with only five sources, the error of
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FUSE-BEE is around 0.23 and decreases to 0.1 when the number of sources increased

to 10. On the other hand, the fusion error of the benchmarking methods oscillates

between 0.4 and 0.5 when 10 or more sources are queried. The performance of DC

is lower when the number of sources is low, because DC does not consider flipping

behavior, i.e., opinions from f -dominated sources are mostly omitted.

Figure 10: Average time for clustering and fusion.

Figure 10 demonstrates time used for clustering and total fusion time for the

proposed approach in seconds. The figure indicates that the most of the fusion time

is used for clustering. While clustering, we use hierarchical clustering in opinion space

with similarity threshold 0.15. Using this threshold, our approach produced around

eight clusters on the average during the fusion process. The number of clusters does

not depend on the number of opinions for a large number of opinions. Fusion of 563

opinions from one million information sources takes around 900 seconds (15 minutes)

on the average while it is reduced to around 15 seconds for 10, 000 sources.

We also examine how successful our approach to estimating source behaviors (i.e.,
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z vectors) during the fusion process. Figure 11 demonstrates that our approach fails

in estimating behaviors of less than 5% of sources when a number of sources are 50

or more.

Figure 11: Average percentage error in estimating source behavior during fusion.

Lastly, we analyzed the performance of the fusion methods when information

sources behave consistently. That is, we have another setting where φ is set to 0.001.

Therefore, in this setting, the sources almost always adopt the same behavior. Fig-

ure 12 demonstrates average fusion error in this setting. As expected, in this trivial

setting, all fusion methods achieve a low error rate, while the error of DC is higher

for a low number of sources, since it omits useful information from flipping sources

while the number of sources is already low.
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Figure 12: Average fusion error when sources are consistent.
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IV

BAYESIAN STRUCTURE LEARNING

“Today’s posterior is tomorrow’s

prior”

Lindley(1972)

In this chapter, we make some preliminary studies for learning Bayesian Networks.

This learning captures dependencies between the features of the proposition and the

behavior probabilities that occurs according to both features of the proposition and

estimated behavior of information sources probabilities. In such settings, a decision-

maker agent can automatically learn behavior types of information sources so that

can capture new behavior models and incorporates those models into the framework.

Furthermore, the behavior of an information source may depend on its context, thus

we have in view an extension to our work where it accommodates a context-aware

behavior estimation model. Where agents may change their opinions when they have

some information about features of propositions. Thus, it may also impact on the

fusion of information at the end of the decision process. For instance, to create

a feature set that some of them are dependent on the proposition but others are

independent. In this case, if an agent learns these dependent features, they may

behave differently.

In the previous chapter, we used Equation 17 and transformation function to mod-

eled behavior types of information sources. In this equation, we use the maximum

likelihood function to estimate the behavior of sources probabilities. This technique

generally gets robust results. However, in this chapter, we have features which are

dependent or independent of the propositions. Thus, we try to learn the behavior
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of information sources by using Bayes’ rule instead of using the maximum likelihood

function. It demonstrates that we can learn the behavior of information sources prob-

ability values using with probabilities, which are priors, likelihoods, and conditional

probabilities from the truth table. At the end of this first step, we can get reason-

able trust values which are very close to a ground truth. For each behavior type,

the difference between estimated behavior probabilities and the ground truth value

is smaller than 0.02.

After the learning step, we can continue to use the same techniques in Chapter

III. We automatically learn to estimate behavior profiles of each source, which are

also called trust values. By using these estimated probabilities, we want to describe

and propose an approach how an agent fuse shared opinions from sources when new

propositions are presented. Our aim in overall studies in this thesis, can we modeled

to the information fusion process if we know the behavior of information sources?

4.1 Methods and Techniques

We set our dataset for feature detection by using Monte Carlo sampling with a con-

siderable number of data. In the learning step, we use K2 search algorithm and in

the structure setting step, we use Jayes, which is an open source Bayesian Network

library in Java-based.

4.1.1 Monte Carlo Simulation

The term “Monte Carlo” first used by Stanislaw Ulam and John von Neumann in the

late 1940’s who respectively worked on nuclear weapons projects at the Los Alamos

National Laboratory, and programmed the ENIAC computer using Monte Carlo (MC)

calculations. Ulam and von Neumann used Monte Carlo method as a Los Alamos code

word for the stochastic simulations they applied to building better atomic bombs. We

have reliable information about the starting point of MC method from Ulam.

Monte Carlo method is a statistical sampling of a mathematical function using
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random numbers. It is useful for independent random variables such as features in

our framework. More clearly, the MC simulation can approximate solutions through

statistical sampling.

To clarify for our extended approach, we use Monte Carlo method (simulation)

for sampling. Before using MC method, we define probabilities, which represent the

dependency between feature and its proposition. Thus, we implement MC method to

the generated Bayesian Networks to identify the dependencies. Then, MC simulation

steps as follows:

In order to, to map the binary outcome to {0 , 1}, which means {false, true}.

Algorithm 1 Monte Carlo Sampling

1: procedure Monte Carlo
2: iter ← the number of iterations
3: rand← a uniformly distributed random variable in [0,1)
4: xk ← any features of proposition, kε1 , 2 , ..., n
5: top:
6: if rand < p1 then
7: to set x1 = 1
8: else x1 = 0

9: end if
10: if x1 = 0 then
11: P (x2 = 0|x1 = 0)← p00 and P (x2 = 1|x1 = 0)← p01.
12: Similarly :
13: P (x2 = 0|x1 = 1)← p10 and P (x2 = 1|x1 = 1)← p11
14: loop:
15: rand← to pick another uniform random variable
16: if rand < p11 then
17: to set x2 = 1
18: else x2 = 0

19: end if
20: Once to pick the value for x2 , to continue with x3 , ..., xn
21: close;

22: end if
23: goto top.
24: end Monte Carlo

Initially, we define a domain of possible inputs, which are two kinds of probabilities

as follow:
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1. A set of initial (prior) probabilities : p (x = 0) = p0, and p (x = 1) = p1 = 1− p0

2. A set of transition (conditional) probabilities: : p (x2 = i|x1 = j) = pij, i, jε {0, 1}

To create sampling data using with Monte Carlo simulation method. We create

five nodes that two of them are dependent features with proposition, third and fourth

ones are independent, and the last node is a behavior node called as class node. Then,

we can use previous algorithm to set data. Also, we need to assign the number of

iterations (sampling size). The output as follows:

Figure 13: Monte Carlo simulation results

Figure 13 demonstarates the sampling data. We have five attributes and their

discrete values. The attribute of class represents behavior of sources, which are

{honest,flip, random}.
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4.1.2 Tools and Programming languages

For the learning of a dependency structure between dependent feature and its propo-

sition, we use Weka [26]. Weka is a collection of machine learning algorithms. It

contains applications and tools for preprocessing, classification, clustering, associa-

tion, attribute selection, and visualization in explorer. Moreover, it has an experiment

and knowledge flow environment. Weka also allows implementing various Bayesian

Network (BN) classifier algorithms. We can summarize main concepts as follows;

structure learning of BNs, local score metrics implementation, global score metrics

implementation, parameter estimation, GUI for BN, and so on.

4.1.3 Classifiers and Algorithms

As a classifier, we use Bayes Net classifier with Simple Estimator and K2 search algo-

rithms. Simple Estimator is used for estimating the conditional probability tables of

a Bayes network (BN) once the structure has been learned. The K2 search algorithm

is a score-based heuristic search algorithm in BN. There are many local search algo-

rithms in BN such as Genetic search, Hill Climbing search, B search, Tabu search. We

use the K2 algorithm as a classifier of BN for detection of feature-proposition depen-

dencies. This BN learning algorithm uses a hill-climbing algorithm restricted by an

order on the variables. In this way, K2 algorithm searches to learn the BN structure

for initial topological ordering, so in general, we can say that K2 is a heuristic search

algorithm for constructing a BN from the data.

K2 algorithm’s pseudo code is given in Algorithm 2:
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Algorithm 2 K2 algorithm

1: procedure K2
2: Input: A set of n nodes, an ordering on the nodes, an upper bound u on the

number of parents a node may have, and a database D containing m cases.
3: Output: For each node, a printout of the parents of the node.
4: for i := 1 to n do
5: πi := Ø;
6: Pold := f (i, πi) ;
7: OKToProceed := true ;
8: while OKToProceed and |πi| < u do
9: let z be the node in Pred (xi)− πi that maximizes f (i, πi ∪ {z}) ;
10: Pnew := f (i, πi ∪ {z}) ;
11: if Pnew > Pold then
12: Pold := Pnew;
13: πi := πi ∪ {z} ;
14: else OKToProceed := false;

15: end while
16: end for
17: end K2

where:

f (i, πi) =
∏qi

j=1
(ri−1)!

(Nij+ri−1)!

∏ri
k=1 αijk!

πi : set of parents of node xi

qi = |øi|

øi : list of all possible instantiations of the parents of xi in database D. That is, if

p1, p2, ..., ps are the parents of xi then øi is the Cartesian product
{
vp11 , v

p1
2 , ..., v

p1
rp1

}
∗

... ∗
{
vps1 , v

ps
2 , ..., v

ps
rp1

}
of all the possible values of attributes p1 through ps.

ri = |Vi|

Vi : list of all possible values of the attribute xi

αijk : number of cases (i.e. instances) in D in which the attribute xi is instantiated

with its kth value, and the parents of xi in πi are instantiated with the jth instantiation

in øi.

Nij =
∑ri

k=1 αijk. That is, the number of instances in the database in which the

parents of xi in πi are instantiated with the jth instantiation in øi.

For instance, assume that we want to learn structure for the previous scenario
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from the MC algorithm step. If we use BN with K2 search algorithm, we have a

structure as follows:

(a) Bayes Net + K2 algorithm (b) The probability values of first-feature node for each
behavior type of sources.

Figure 14: Using Bayes Net classifiers and K2 algorithms

Figure 14(a) demonstrates the structure of proposition-feature pair. The First-

feature and second-feature nodes are dependent to the Class node. Also, we can get

conditional probabilities like p (class|f1), which represents the probability of feature

given the behavior type of source in Figure 14(b). It actually proves that using Bayes

Net classifier with K2 algorithm achieves to learn structure in a reasonable time such

as for this example, it takes only 0.14 seconds.
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V

CONCLUSION

“The important thing is not to stop

questioning. Curiosity has its own

reason for existing.”

Albert Einstein

In this thesis, we have proposed a statistical approach for behavior estimation of

information sources and fusion of information for subjective opinions. Our approach

proposes information fusion by considering unreliable information sources. That is,

we take into consideration that each information source can have different behav-

ior. Thus, the fusion approach can strengthen the validity of the results. Through

extensive simulations, we have shown that it efficiently and successfully estimates

the behavior probabilities of information sources. We use the maximum likelihood

function to estimate the probabilities of behavior types. Then, we can get consis-

tent results through proper usage of transformation function for behavior types. If

information sources do not consistently reflect the same behavior, other approaches

have a high fusion error. In our approach, fusion error is minimized in both settings,

whether the behavior of sources is consistent or not.

In this work, we have developed a system that is capable of adding and extracting

features of the proposition. The extended model can automatically learn behavior

types of sources. In the behavior estimation step for the extended model, our approach

successfully estimates probabilities for each behavior type of information sources.

Through simulations, we have shown that these probability values are very close

to the ground truth. That is, the difference between the probability of estimated
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behavior type values and the ground truth is around 0.015.

In this thesis, we have assumed that the behavior types are honest, flip, and

random. In Chapter IV, we make some preliminary studies for the context-aware

model. In future, we can extend our approach. First, we want to learn that what is

the result of information fusion for the context-aware model? We can implement our

approach in different settings such as weather post-cast, e-commerce, and real human

relationship system. Furthermore, we plan to add new behavior types, which are of a

similar behavior format type as humans’. For instance, in real life, people sometimes

can be so pessimistic while sharing their opinions and evaluating situations. In this

respect, we can use the same equations that are described in Section III.3. Equations

19, 20 and 21 can be used to calculate ground truth and fuse opinions.
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[23] M. Şensoy, L. Kaplan and G. Aycı, and G. de Mel. FUSE-BEE: Fusion of subjec-

tive opinions through behavior estimation. Information Fusion (FUSION), 2015

18th International Conference on, pages 558–565, 2015.

[24] M. S. Lewicki. Artifial Intelligence Bayes Nets-I Lecture Notes. Carnegie Mellon

University, 2007.

[25] R. Eckhardt. Stan Ulam, John von Neumann, and the Monte Carlo method. Los

Alamos Science, pages 131–136, 1987.

[26] Machine Learning Group at the University of Waikato, 2013.

46


