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CHAPTER 9: 

DECISION TREES 



Tree Uses Nodes and Leaves 
3 



Divide and Conquer 
4 

 Internal decision nodes 

 Univariate: Uses a single attribute, xi 

Numeric xi : Binary split : xi  > wm 

 Discrete xi : n-way split for n possible values 

 Multivariate: Uses all attributes, x 

 Leaves 

 Classification: Class labels, or proportions 

 Regression: Numeric; r average, or local fit 

 Learning is greedy; find the best split recursively 
(Breiman et al, 1984; Quinlan, 1986, 1993)  



Classification Trees (ID3,CART,C4.5) 
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 For node m, Nm instances reach m, Ni
m belong to Ci 

 

 

 

 Node m is pure if pi
m is 0 or 1 

 Measure of impurity is entropy 
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 If node m is pure, generate a leaf and stop, otherwise 

split and continue recursively 

 Impurity after split: Nmj of Nm take branch j. Ni
mj 

belong to Ci 

 

 

 Find the variable and split that min impurity (among 

all variables -- and split positions for numeric 

variables) 

Best Split 
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 Error at node m: 

 

 

 

 

 After splitting: 

Regression Trees 
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otherwise
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Model Selection in Trees 



Pruning Trees 
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 Remove subtrees for better generalization 

(decrease variance) 

 Prepruning: Early stopping 

 Postpruning: Grow the whole tree then prune subtrees that 

overfit on the pruning set 

 Prepruning is faster, postpruning is more accurate 

(requires a separate pruning set) 



Rule Extraction from Trees 
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C4.5Rules  

(Quinlan, 1993) 



Learning Rules 
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 Rule induction is similar to tree induction but  

  tree induction is breadth-first,  

  rule induction is depth-first; one rule at a time 

 Rule set contains rules; rules are conjunctions of terms 

 Rule covers an example if all terms of the rule evaluate 
to true for the example 

 Sequential covering: Generate rules one at a time until 
all positive examples are covered 

 IREP (Fürnkrantz and Widmer, 1994), Ripper (Cohen, 
1995) 



13 



14 



Multivariate Trees 
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